mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-13 04:37:05 +01:00
Compare commits
646 Commits
feature/di
...
9a1ad6a5eb
Author | SHA1 | Date | |
---|---|---|---|
9a1ad6a5eb | |||
a90eafad24 | |||
ad14a82742 | |||
14e9d8ed9f | |||
0ac85fa70b | |||
c371de42b9 | |||
ccf147d6c1 | |||
7aa12b446f | |||
c293228102 | |||
5c4c9f721a | |||
057f86c1de | |||
cd52e3cbc2 | |||
24602e1259 | |||
8a098889fc | |||
5c3ace7c3e | |||
aa148455b7 | |||
98cf247f33 | |||
0cf16522d1 | |||
7b7c75f9e5 | |||
aefd255a3c | |||
1c5aa939fd | |||
3a0ff17be0 | |||
47829ae5cc | |||
bfa7b69aff | |||
2aaa959b5f | |||
ce2970b93a | |||
7b76970d10 | |||
9fd41882d2 | |||
ff2ea5de18 | |||
5147a42818 | |||
57552d8ca3 | |||
13713b2a76 | |||
36a14e4ee3 | |||
b4cc788b8c | |||
0f0e7512f3 | |||
1196b1a161 | |||
2c8c3be9ee | |||
5b79d51c22 | |||
da890dc293 | |||
93d0a1e73a | |||
f0a8c7d045 | |||
db8793777c | |||
c745484e65 | |||
da59379612 | |||
3ef2a41518 | |||
aa96f420c6 | |||
49e9e4ed0e | |||
f7b8163016 | |||
93769eacd3 | |||
59b0cc11df | |||
f32c275376 | |||
5404fc66ab | |||
1f53458af8 | |||
434c3e7f1d | |||
500b119f3d | |||
4b87259c1b | |||
503dec34ef | |||
d1e9fe50d2 | |||
d01e5fa838 | |||
a477c25e8c | |||
1bd20cd9e8 | |||
e49e95b037 | |||
6f59fed563 | |||
60b7f6c99d | |||
b92dfcc8d3 | |||
f6fd6dd053 | |||
79ad567dd5 | |||
fab1efb48c | |||
660eb76d93 | |||
62e7bf024a | |||
95f3d69cf9 | |||
89c0519f83 | |||
2704b82084 | |||
cf8632bbac | |||
d224297972 | |||
a4d11a630f | |||
2b4399f8b1 | |||
f17b8de907 | |||
cc04dc42dc | |||
070b61f08f | |||
7e5bd46dd3 | |||
228bbb9d81 | |||
b812a7b4c6 | |||
891a366f73 | |||
10116b3be8 | |||
a46a0f0882 | |||
a26a8a38f4 | |||
7435315d50 | |||
9b5f741e85 | |||
517822fdd2 | |||
1b93a9be88 | |||
783a66b348 | |||
976c3e9b59 | |||
f8ca971dae | |||
21bc8c24df | |||
30228214f7 | |||
2ae980ae43 | |||
6153dec2e4 | |||
c805f86343 | |||
04ca065281 | |||
88d8fa43d7 | |||
3c49762875 | |||
436bf1d9d3 | |||
f70df6e195 | |||
fce3852dff | |||
ee1b8bbdbd | |||
3f1636637d | |||
2e570f5300 | |||
9f89486df5 | |||
22b43b86cb | |||
3c9012676a | |||
ee3b3c4c56 | |||
462d706a63 | |||
ee0d460c8e | |||
cd15abe9d1 | |||
9f40467e24 | |||
d0b6593823 | |||
79fc821d8d | |||
d7fdb9a7e6 | |||
b74de51c18 | |||
b507fe209c | |||
6cd2d8fcd5 | |||
b02d022993 | |||
94581e3c7a | |||
88b52cc045 | |||
0a816b5509 | |||
1c8b807c2e | |||
44b466e072 | |||
5e5b471bb2 | |||
9c2565f64e | |||
e1d0a7cec3 | |||
b19ae8f465 | |||
cdff2c8e18 | |||
66391f84f2 | |||
97f7a9ecb3 | |||
15878f7613 | |||
e0d5e3c6c7 | |||
6f3455900e | |||
56827d6ad6 | |||
73c0b29535 | |||
303b83cdb8 | |||
5ef4da3f29 | |||
1502860004 | |||
585efc6f3f | |||
62055e04dd | |||
e4a641b64e | |||
8849f187f1 | |||
db420525b3 | |||
b5659d106e | |||
4b43307402 | |||
09af8c25a2 | |||
9514035b87 | |||
2da09ae99b | |||
a38fb0e04a | |||
7019916294 | |||
1514b4f137 | |||
91cf5ee312 | |||
0a6e2f42c5 | |||
ab2de131bd | |||
5bfa88be85 | |||
5af8da76d7 | |||
b8b9dc952d | |||
79a6ed32d8 | |||
caa5f97723 | |||
4924b3209e | |||
eb702f581b | |||
3d13fd56c5 | |||
6f51b49ef8 | |||
addc638856 | |||
00f24f8765 | |||
f5b3d582b0 | |||
981c93d67a | |||
c020b78e02 | |||
42ae36bc28 | |||
c69f73ff9f | |||
ca5ae8a2e6 | |||
d967eb53de | |||
839f9f1bbe | |||
b754a152c6 | |||
e07cb2b9de | |||
a1f8bbb078 | |||
7909683f3b | |||
25f71913b7 | |||
34ddd2b7b1 | |||
d5fd90b2f3 | |||
b7c7000d0d | |||
551f6c4edd | |||
defd814750 | |||
3d517bbd2a | |||
78ab955fec | |||
dd13937bb6 | |||
66a1b63aa9 | |||
22c611bd1a | |||
c9bb1bf8ea | |||
2a0d75bac2 | |||
9e489887cf | |||
9feb801bb9 | |||
c00b495933 | |||
d22eebe553 | |||
8bcbd82680 | |||
dfa617c439 | |||
48d1f0df89 | |||
b75cb7a12c | |||
332563e037 | |||
0cce97a4fe | |||
95a8e4be64 | |||
abcd6b8cb6 | |||
e8f21c9b6d | |||
f48298ad4e | |||
645e47c1ba | |||
d1d9827263 | |||
e054078b11 | |||
14643c0aab | |||
b77a9b8947 | |||
6835a7f208 | |||
f59993b979 | |||
2290b8f680 | |||
2c54be651c | |||
e859a199df | |||
0a3682ad0b | |||
59abaeb5cd | |||
3e448435d3 | |||
a294bc3c5b | |||
b302ad3d49 | |||
82fc4b1e94 | |||
b4f1740380 | |||
031f85247c | |||
639cc6f73a | |||
09946cf1ba | |||
f4fa95e7cb | |||
100e29e35e | |||
4cbe471a83 | |||
8bece1f861 | |||
a3ca71ec01 | |||
e0543e8af5 | |||
c1eb80d01a | |||
a26121d97b | |||
043031a757 | |||
807aeebe4c | |||
8aa1a37aad | |||
7d077fe493 | |||
9cd4128833 | |||
c8b17c9526 | |||
2ae2a81e85 | |||
69c869d345 | |||
df9b958c40 | |||
3d3376d1a3 | |||
4efa042f50 | |||
c7cb37e970 | |||
d34b207eab | |||
0e6fa6f6b8 | |||
38b87de53f | |||
aa5047a9e4 | |||
24b6ee0df9 | |||
1e79cc9cbe | |||
b3925df9c3 | |||
f2648e94b9 | |||
351795ac3a | |||
9c9c42d0df | |||
b6ad1bafc7 | |||
a5ca40f446 | |||
9ab54c5565 | |||
4341d96bde | |||
5fac47a26d | |||
e064f17346 | |||
afe10ba2a2 | |||
7cc3435ba8 | |||
541772313c | |||
3747494a09 | |||
f2b98d0dcc | |||
80471bf762 | |||
a06f63c110 | |||
0ae4478cd9 | |||
ae4e705e09 | |||
f5dcea9dbf | |||
21ed6ac0f4 | |||
7bb8ab7000 | |||
2c824c2641 | |||
391fd9cc6a | |||
2207309f8a | |||
51051df62c | |||
33097681b9 | |||
07e4900218 | |||
36ab567d67 | |||
e19171523b | |||
9626a2c7c0 | |||
e936f5b80b | |||
ffc0639cb9 | |||
c5b43b322c | |||
c9c4576237 | |||
bf4369f72d | |||
36600899e2 | |||
b9c70d156b | |||
eb89579fe7 | |||
0cfd13d18b | |||
e6ed516052 | |||
e2a3dae1f2 | |||
2111e7ab5f | |||
d29abfdcaf | |||
a751c42cc5 | |||
6a3bc9865e | |||
4d5f7e4377 | |||
78b117fb78 | |||
ded63a1319 | |||
df3e4d1e9c | |||
b58fd80379 | |||
7f6e0f57d0 | |||
cae27678d8 | |||
48ff655bad | |||
2525ad4623 | |||
e7020017c5 | |||
eacebfad74 | |||
3bc2da5321 | |||
2d710d6bfd | |||
6532b7f32b | |||
7b41b92d99 | |||
dd557af84b | |||
59b9d0e030 | |||
b82eee4733 | |||
6a87487544 | |||
fcf5023845 | |||
c8adad6d8b | |||
737d3ffb98 | |||
6d0c2de399 | |||
7786ea9921 | |||
d93eac7b1c | |||
b01e67bab1 | |||
8a70314f54 | |||
afc316f501 | |||
f14bfd5c1b | |||
c5f1420dea | |||
018e6da872 | |||
b77bccfac2 | |||
36ae6e5aba | |||
9db585cfeb | |||
c564611ba7 | |||
e187bcb85c | |||
be18ffe3b4 | |||
0d63dce4e2 | |||
26b30e1551 | |||
7fc58ac293 | |||
3a86cce8c1 | |||
80359e0d49 | |||
3d437c5cc4 | |||
37884d369f | |||
9246e653cd | |||
64283c8673 | |||
755002da9c | |||
31b8e8b437 | |||
0ec0de97e6 | |||
6c3ade5d89 | |||
980c5f9a34 | |||
63d9b8e8a3 | |||
d247031c98 | |||
471ca5f281 | |||
e82ddcff5d | |||
b9dcad89e8 | |||
993f43ef4a | |||
2b43308208 | |||
04a1ac3a76 | |||
990b8798bd | |||
b334a73a44 | |||
5d113d1c70 | |||
c14977aeab | |||
3e94838204 | |||
c0a0b8ca62 | |||
b8a7004365 | |||
affff3865f | |||
9c22655b5a | |||
99d879ea7f | |||
bd56c95a6f | |||
994512048e | |||
dbd8bb49dc | |||
3a29af0ce4 | |||
f7b79cdd45 | |||
075b9d22d0 | |||
b92428f05f | |||
34b11864b6 | |||
1dfaa08afb | |||
9d263d9a7d | |||
9015c229dc | |||
f44dce390f | |||
bb71e9a96a | |||
78bae9417c | |||
dd170ead01 | |||
014704856f | |||
a7eabaad56 | |||
eeb4703b84 | |||
a07421b3d3 | |||
cda53b4068 | |||
6f6844ccf1 | |||
4c6613d72c | |||
ee92e08edb | |||
c1dcee9328 | |||
559257bbe9 | |||
6b150961fe | |||
cff1f8d3b8 | |||
f27d2083cd | |||
36cc9c524f | |||
2822487450 | |||
e07fafe46a | |||
063d290bd8 | |||
4e6194d92a | |||
de30c4e22a | |||
df99f227c1 | |||
5bafcaedfa | |||
bfeceae708 | |||
eacb66591f | |||
fadaa85626 | |||
02a5b0d786 | |||
0e2141442a | |||
769eb0eecb | |||
4241c7d4a3 | |||
d536c67b9d | |||
f44f005dad | |||
26b2caf570 | |||
7b11075102 | |||
abc658dca5 | |||
8bb078db25 | |||
b61ba40023 | |||
452bf2e907 | |||
2372275b2c | |||
ef736e8aa4 | |||
5e539e2d54 | |||
96773f5254 | |||
d80df09f3b | |||
621e612c30 | |||
8c3792721b | |||
c95bbd3948 | |||
e28ab7a732 | |||
c797cbe737 | |||
e09dfbf1c2 | |||
85e35c4da1 | |||
d72e914cf0 | |||
3b5254e2d5 | |||
f1c358b596 | |||
c0ef210265 | |||
e3e1cc1962 | |||
723eadbb5c | |||
e24637ec1e | |||
8b01ff4ce7 | |||
588197c487 | |||
116d90b0ee | |||
b0646ca187 | |||
1352bad2e4 | |||
14d352ea4f | |||
1cf9ec1cce | |||
4895ff260e | |||
4b994a1bc7 | |||
e506d6d369 | |||
ab56ad8d7a | |||
470d93006a | |||
2f3d03f188 | |||
8db7c23bee | |||
69dc5172dc | |||
fd72eb6546 | |||
ffd7301649 | |||
d2a8494044 | |||
0982e0d19b | |||
3badbfc3c1 | |||
5465961e30 | |||
477b794bc5 | |||
e8c29e2fe5 | |||
4835fd1a87 | |||
6533c25814 | |||
b405767569 | |||
fe88a0c12f | |||
e61a9ed2b4 | |||
de8daa3824 | |||
3a50fb29cb | |||
6647d2656f | |||
a6f4dbeb6d | |||
92a282f2d8 | |||
ca2fd9fc7b | |||
3825329f8e | |||
be1a4f5860 | |||
1b2914ec09 | |||
519f795066 | |||
5897b93dd4 | |||
af091e0881 | |||
3c1e5e9517 | |||
85b2cb7a8a | |||
c7bdf2c0e4 | |||
4240ad5ca8 | |||
d418347d86 | |||
29a4bfe5e5 | |||
9955bf9daf | |||
da9cbfc7cc | |||
6b9f07c1ed | |||
b8bdc2eefb | |||
0078826ff1 | |||
e855c41772 | |||
d169c275b6 | |||
a5125e23f4 | |||
7b83c80757 | |||
e41821e206 | |||
bf91778550 | |||
5a75ab15a2 | |||
932c783fbf | |||
55f9cce577 | |||
b3533ca847 | |||
fd2a637010 | |||
eee27b8b30 | |||
8522352aa3 | |||
3beb8f4091 | |||
12a706e9b1 | |||
170aa7df01 | |||
e8ad1fef53 | |||
876c8f4478 | |||
9c8750f261 | |||
91efd08179 | |||
9953511b65 | |||
025fa9991a | |||
e8c60c355b | |||
6c9c7f9d85 | |||
f534523ede | |||
1b8a834beb | |||
aa9df63a05 | |||
3953312a93 | |||
6e62f4f616 | |||
6a7bdca53b | |||
c7fba9aace | |||
ac6c7cb8d6 | |||
c5924833a1 | |||
ac0a74be0d | |||
42b0e1125d | |||
339c4fda79 | |||
9b85bf9402 | |||
86b02c3cd8 | |||
7b3b7093fa | |||
881b08a465 | |||
3ee5444c69 | |||
5e28fe56d2 | |||
3aa43e6065 | |||
78ac4044ff | |||
119c3db47f | |||
21bbdb8fc2 | |||
5aabe074fe | |||
739bd7572c | |||
074627a5bd | |||
6a23b2c599 | |||
dace904c10 | |||
be98d26610 | |||
bd891fb3f5 | |||
3984265851 | |||
45361d188f | |||
80c9d77e02 | |||
3aff64dddb | |||
b4f2ca81ff | |||
d1dea5f840 | |||
54f8b84d16 | |||
da503fef0e | |||
4a6802098a | |||
f9b41a84d2 | |||
5d7e0d18b9 | |||
9e64387933 | |||
983b681d46 | |||
4072408b6f | |||
bd76b47fbf | |||
5f75735dab | |||
178376f24b | |||
18ce23aa75 | |||
6a0eb466ee | |||
ffa7fe0cc2 | |||
4ea29b8f0f | |||
778291230a | |||
86dac5ff4f | |||
4a382fad3f | |||
cc753670d9 | |||
cc9d88ea1c | |||
b281b0166e | |||
6a21f694ff | |||
026e736dfa | |||
4275b3f431 | |||
af64c1c6b6 | |||
866f48391a | |||
a4df527d74 | |||
5764d21161 | |||
496d04cd85 | |||
10e6d7c6ce | |||
c42e25e5b8 | |||
a00ae981e0 | |||
39214702f6 | |||
3e4614c63a | |||
1b8176e2c0 | |||
cbc053c3db | |||
cdf3f6ef6e | |||
ba7f9d7b70 | |||
371fd123fb | |||
d6ff644aab | |||
29586f6b5e | |||
fd057c838f | |||
f51222086c | |||
f73691ec47 | |||
ccd21f96ff | |||
4b90cb8888 | |||
7ebda3e9ec | |||
b10e1b7bc8 | |||
d7dea44ce7 | |||
37b6b82869 | |||
92ad5b8f74 | |||
8c80f1c168 | |||
0af7d5a793 | |||
505fa49983 | |||
7bcf33def9 | |||
a13820656a | |||
fa71b46a41 | |||
b8b3ae6ac1 | |||
55c008da21 | |||
2507606bd0 | |||
7c2ad4f8c8 | |||
54c8025aad | |||
921e23e83c | |||
6e750ecb0e | |||
b8f1f5d2a3 | |||
9273f2937c | |||
1aa28b47ae | |||
629cb2987a | |||
03235d6368 | |||
22064c7e4c | |||
2de03e5172 | |||
3af4929dda | |||
1ba429345b | |||
88bdd4344b | |||
4044536eea | |||
4d8ae6221c | |||
4e31e4e094 | |||
0d6674e489 | |||
b145fd4f5b | |||
8a5b794f25 | |||
291e80f88a | |||
1ace5850ae | |||
283f14b7c1 | |||
1d6e708083 | |||
89457e25e3 | |||
7e3b298d3d | |||
7ff3e5eed4 | |||
19eb51cf41 | |||
470d4dcc6d | |||
ed03bfd555 | |||
8c0fbcccae | |||
d4866157fe | |||
b6496b6cb5 | |||
4f5fe57920 | |||
11fb943b1e | |||
046a23121e |
54
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
Normal file
54
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
Normal file
@ -0,0 +1,54 @@
|
||||
name: Bug report
|
||||
description: Report a bug.
|
||||
title: "<insert title>"
|
||||
labels: [bug]
|
||||
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thank you for taking the time to file a bug report.
|
||||
Please check that the code is pointing to the HEAD of develop
|
||||
or any commit in master which is tagged with a version number.
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Describe the issue:"
|
||||
description: >
|
||||
Describe the issue and any previous attempt to solve it.
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Code example:"
|
||||
description: >
|
||||
If relevant, show how to reproduce the issue using a minimal working
|
||||
example.
|
||||
placeholder: |
|
||||
<< your code here >>
|
||||
render: shell
|
||||
validations:
|
||||
required: false
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Target platform:"
|
||||
description: >
|
||||
Give a description of the target platform (CPU, network, compiler).
|
||||
Please give the full CPU part description, using for example
|
||||
`cat /proc/cpuinfo | grep 'model name' | uniq` (Linux)
|
||||
or `sysctl machdep.cpu.brand_string` (macOS) and the full output
|
||||
the `--version` option of your compiler.
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Configure options:"
|
||||
description: >
|
||||
Please give the exact configure command used and attach
|
||||
`config.log`, `grid.config.summary` and the output of `make V=1`.
|
||||
render: shell
|
||||
validations:
|
||||
required: true
|
4
.gitignore
vendored
4
.gitignore
vendored
@ -1,3 +1,7 @@
|
||||
# Doxygen stuff
|
||||
html/*
|
||||
latex/*
|
||||
|
||||
# Compiled Object files #
|
||||
#########################
|
||||
*.slo
|
||||
|
@ -59,6 +59,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/lattice/Lattice.h>
|
||||
#include <Grid/cshift/Cshift.h>
|
||||
#include <Grid/stencil/Stencil.h>
|
||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
||||
#include <Grid/parallelIO/BinaryIO.h>
|
||||
#include <Grid/algorithms/Algorithms.h>
|
||||
NAMESPACE_CHECK(GridCore)
|
||||
|
@ -34,7 +34,7 @@
|
||||
#pragma push_macro("__SYCL_DEVICE_ONLY__")
|
||||
#undef __SYCL_DEVICE_ONLY__
|
||||
#define EIGEN_DONT_VECTORIZE
|
||||
//#undef EIGEN_USE_SYCL
|
||||
#undef EIGEN_USE_SYCL
|
||||
#define __SYCL__REDEFINE__
|
||||
#endif
|
||||
|
||||
|
@ -66,6 +66,10 @@ if BUILD_FERMION_REPS
|
||||
extra_sources+=$(ADJ_FERMION_FILES)
|
||||
extra_sources+=$(TWOIND_FERMION_FILES)
|
||||
endif
|
||||
if BUILD_SP
|
||||
extra_sources+=$(SP_FERMION_FILES)
|
||||
extra_sources+=$(SP_TWOIND_FERMION_FILES)
|
||||
endif
|
||||
|
||||
lib_LIBRARIES = libGrid.a
|
||||
|
||||
|
@ -29,6 +29,9 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#ifndef GRID_ALGORITHMS_H
|
||||
#define GRID_ALGORITHMS_H
|
||||
|
||||
NAMESPACE_CHECK(blas);
|
||||
#include <Grid/algorithms/blas/BatchedBlas.h>
|
||||
|
||||
NAMESPACE_CHECK(algorithms);
|
||||
#include <Grid/algorithms/SparseMatrix.h>
|
||||
#include <Grid/algorithms/LinearOperator.h>
|
||||
@ -44,7 +47,10 @@ NAMESPACE_CHECK(SparseMatrix);
|
||||
#include <Grid/algorithms/approx/RemezGeneral.h>
|
||||
#include <Grid/algorithms/approx/ZMobius.h>
|
||||
NAMESPACE_CHECK(approx);
|
||||
#include <Grid/algorithms/iterative/Deflation.h>
|
||||
#include <Grid/algorithms/deflation/Deflation.h>
|
||||
#include <Grid/algorithms/deflation/MultiRHSBlockProject.h>
|
||||
#include <Grid/algorithms/deflation/MultiRHSDeflation.h>
|
||||
NAMESPACE_CHECK(deflation);
|
||||
#include <Grid/algorithms/iterative/ConjugateGradient.h>
|
||||
NAMESPACE_CHECK(ConjGrad);
|
||||
#include <Grid/algorithms/iterative/BiCGSTAB.h>
|
||||
@ -67,10 +73,11 @@ NAMESPACE_CHECK(BiCGSTAB);
|
||||
#include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
|
||||
#include <Grid/algorithms/iterative/PowerMethod.h>
|
||||
|
||||
#include <Grid/algorithms/iterative/AdefGeneric.h>
|
||||
#include <Grid/algorithms/iterative/AdefMrhs.h>
|
||||
NAMESPACE_CHECK(PowerMethod);
|
||||
#include <Grid/algorithms/CoarsenedMatrix.h>
|
||||
NAMESPACE_CHECK(CoarsendMatrix);
|
||||
#include <Grid/algorithms/multigrid/MultiGrid.h>
|
||||
NAMESPACE_CHECK(multigrid);
|
||||
#include <Grid/algorithms/FFT.h>
|
||||
|
||||
#endif
|
||||
|
@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#define _GRID_FFT_H_
|
||||
|
||||
#ifdef HAVE_FFTW
|
||||
#ifdef USE_MKL
|
||||
#if defined(USE_MKL) || defined(GRID_SYCL)
|
||||
#include <fftw/fftw3.h>
|
||||
#else
|
||||
#include <fftw3.h>
|
||||
|
@ -145,6 +145,44 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// Create a shifted HermOp
|
||||
////////////////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class ShiftedHermOpLinearOperator : public LinearOperatorBase<Field> {
|
||||
LinearOperatorBase<Field> &_Mat;
|
||||
RealD _shift;
|
||||
public:
|
||||
ShiftedHermOpLinearOperator(LinearOperatorBase<Field> &Mat,RealD shift): _Mat(Mat), _shift(shift){};
|
||||
// Support for coarsening to a multigrid
|
||||
void OpDiag (const Field &in, Field &out) {
|
||||
assert(0);
|
||||
}
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
assert(0);
|
||||
}
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){
|
||||
assert(0);
|
||||
};
|
||||
void Op (const Field &in, Field &out){
|
||||
HermOp(in,out);
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
HermOp(in,out);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
HermOp(in,out);
|
||||
ComplexD dot = innerProduct(in,out);
|
||||
n1=real(dot);
|
||||
n2=norm2(out);
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
_Mat.HermOp(in,out);
|
||||
out = out + _shift*in;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// Wrap an already herm matrix
|
||||
////////////////////////////////////////////////////////////////////
|
||||
@ -542,6 +580,7 @@ public:
|
||||
(*this)(in[i], out[i]);
|
||||
}
|
||||
}
|
||||
virtual ~LinearFunction(){};
|
||||
};
|
||||
|
||||
template<class Field> class IdentityLinearFunction : public LinearFunction<Field> {
|
||||
|
@ -90,9 +90,8 @@ public:
|
||||
order=_order;
|
||||
|
||||
if(order < 2) exit(-1);
|
||||
Coeffs.resize(order);
|
||||
Coeffs.assign(0.,order);
|
||||
Coeffs[order-1] = 1.;
|
||||
Coeffs.resize(order,0.0);
|
||||
Coeffs[order-1] = 1.0;
|
||||
};
|
||||
|
||||
// PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
|
||||
|
@ -40,7 +40,7 @@ public:
|
||||
RealD norm;
|
||||
RealD lo,hi;
|
||||
|
||||
MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), lo(_lo), hi(_hi) {;};
|
||||
MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), tolerances(n), lo(_lo), hi(_hi) {;};
|
||||
RealD approx(RealD x);
|
||||
void csv(std::ostream &out);
|
||||
void gnuplot(std::ostream &out);
|
||||
|
@ -293,7 +293,7 @@ static void sncndnFK(INTERNAL_PRECISION u, INTERNAL_PRECISION k,
|
||||
* Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and
|
||||
* type = 1 for the approximation which is infinite at x = 0. */
|
||||
|
||||
zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
|
||||
zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
|
||||
INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F,
|
||||
l, invlambda, xi, xisq, *tv, s, opl;
|
||||
int m, czero, ts;
|
||||
@ -375,12 +375,12 @@ zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
|
||||
construct_partfrac(d);
|
||||
construct_contfrac(d);
|
||||
|
||||
/* Converting everything to PRECISION for external use only */
|
||||
/* Converting everything to ZOLO_PRECISION for external use only */
|
||||
|
||||
zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
|
||||
zd -> A = (PRECISION) d -> A;
|
||||
zd -> Delta = (PRECISION) d -> Delta;
|
||||
zd -> epsilon = (PRECISION) d -> epsilon;
|
||||
zd -> A = (ZOLO_PRECISION) d -> A;
|
||||
zd -> Delta = (ZOLO_PRECISION) d -> Delta;
|
||||
zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
|
||||
zd -> n = d -> n;
|
||||
zd -> type = d -> type;
|
||||
zd -> dn = d -> dn;
|
||||
@ -390,24 +390,24 @@ zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
|
||||
zd -> deg_num = d -> deg_num;
|
||||
zd -> deg_denom = d -> deg_denom;
|
||||
|
||||
zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
|
||||
zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
|
||||
free(d -> a);
|
||||
|
||||
zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
|
||||
zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
|
||||
free(d -> ap);
|
||||
|
||||
zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
|
||||
zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
|
||||
free(d -> alpha);
|
||||
|
||||
zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
|
||||
zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
|
||||
free(d -> beta);
|
||||
|
||||
zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
|
||||
zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
|
||||
free(d -> gamma);
|
||||
|
||||
free(d);
|
||||
@ -426,7 +426,7 @@ void zolotarev_free(zolotarev_data *zdata)
|
||||
}
|
||||
|
||||
|
||||
zolotarev_data* higham(PRECISION epsilon, int n) {
|
||||
zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
|
||||
INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq;
|
||||
int m, czero;
|
||||
zolotarev_data *zd;
|
||||
@ -481,9 +481,9 @@ zolotarev_data* higham(PRECISION epsilon, int n) {
|
||||
/* Converting everything to PRECISION for external use only */
|
||||
|
||||
zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
|
||||
zd -> A = (PRECISION) d -> A;
|
||||
zd -> Delta = (PRECISION) d -> Delta;
|
||||
zd -> epsilon = (PRECISION) d -> epsilon;
|
||||
zd -> A = (ZOLO_PRECISION) d -> A;
|
||||
zd -> Delta = (ZOLO_PRECISION) d -> Delta;
|
||||
zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
|
||||
zd -> n = d -> n;
|
||||
zd -> type = d -> type;
|
||||
zd -> dn = d -> dn;
|
||||
@ -493,24 +493,24 @@ zolotarev_data* higham(PRECISION epsilon, int n) {
|
||||
zd -> deg_num = d -> deg_num;
|
||||
zd -> deg_denom = d -> deg_denom;
|
||||
|
||||
zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
|
||||
zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
|
||||
free(d -> a);
|
||||
|
||||
zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
|
||||
zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
|
||||
free(d -> ap);
|
||||
|
||||
zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
|
||||
zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
|
||||
free(d -> alpha);
|
||||
|
||||
zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
|
||||
zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
|
||||
free(d -> beta);
|
||||
|
||||
zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
|
||||
zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
|
||||
free(d -> gamma);
|
||||
|
||||
free(d);
|
||||
@ -523,17 +523,17 @@ NAMESPACE_END(Grid);
|
||||
#ifdef TEST
|
||||
|
||||
#undef ZERO
|
||||
#define ZERO ((PRECISION) 0)
|
||||
#define ZERO ((ZOLO_PRECISION) 0)
|
||||
#undef ONE
|
||||
#define ONE ((PRECISION) 1)
|
||||
#define ONE ((ZOLO_PRECISION) 1)
|
||||
#undef TWO
|
||||
#define TWO ((PRECISION) 2)
|
||||
#define TWO ((ZOLO_PRECISION) 2)
|
||||
|
||||
/* Evaluate the rational approximation R(x) using the factored form */
|
||||
|
||||
static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
||||
int m;
|
||||
PRECISION R;
|
||||
ZOLO_PRECISION R;
|
||||
|
||||
if (rdata -> type == 0) {
|
||||
R = rdata -> A * x;
|
||||
@ -551,9 +551,9 @@ static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
|
||||
/* Evaluate the rational approximation R(x) using the partial fraction form */
|
||||
|
||||
static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
||||
int m;
|
||||
PRECISION R = rdata -> alpha[rdata -> da - 1];
|
||||
ZOLO_PRECISION R = rdata -> alpha[rdata -> da - 1];
|
||||
for (m = 0; m < rdata -> dd; m++)
|
||||
R += rdata -> alpha[m] / (x * x - rdata -> ap[m]);
|
||||
if (rdata -> type == 1) R += rdata -> alpha[rdata -> dd] / (x * x);
|
||||
@ -568,18 +568,18 @@ static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
* non-signalling overflow this will work correctly since 1/(1/0) = 1/INF = 0,
|
||||
* but with signalling overflow you will get an error message. */
|
||||
|
||||
static PRECISION zolotarev_contfrac_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
static ZOLO_PRECISION zolotarev_contfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
||||
int m;
|
||||
PRECISION R = rdata -> beta[0] * x;
|
||||
ZOLO_PRECISION R = rdata -> beta[0] * x;
|
||||
for (m = 1; m < rdata -> db; m++) R = rdata -> beta[m] * x + ONE / R;
|
||||
return R;
|
||||
}
|
||||
|
||||
/* Evaluate the rational approximation R(x) using Cayley form */
|
||||
|
||||
static PRECISION zolotarev_cayley_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
static ZOLO_PRECISION zolotarev_cayley_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
||||
int m;
|
||||
PRECISION T;
|
||||
ZOLO_PRECISION T;
|
||||
|
||||
T = rdata -> type == 0 ? ONE : -ONE;
|
||||
for (m = 0; m < rdata -> n; m++)
|
||||
@ -607,7 +607,7 @@ int main(int argc, char** argv) {
|
||||
int m, n, plotpts = 5000, type = 0;
|
||||
float eps, x, ypferr, ycferr, ycaylerr, maxypferr, maxycferr, maxycaylerr;
|
||||
zolotarev_data *rdata;
|
||||
PRECISION y;
|
||||
ZOLO_PRECISION y;
|
||||
FILE *plot_function, *plot_error,
|
||||
*plot_partfrac, *plot_contfrac, *plot_cayley;
|
||||
|
||||
@ -626,13 +626,13 @@ int main(int argc, char** argv) {
|
||||
}
|
||||
|
||||
rdata = type == 2
|
||||
? higham((PRECISION) eps, n)
|
||||
: zolotarev((PRECISION) eps, n, type);
|
||||
? higham((ZOLO_PRECISION) eps, n)
|
||||
: zolotarev((ZOLO_PRECISION) eps, n, type);
|
||||
|
||||
printf("Zolotarev Test: R(epsilon = %g, n = %d, type = %d)\n\t"
|
||||
STRINGIFY(VERSION) "\n\t" STRINGIFY(HVERSION)
|
||||
"\n\tINTERNAL_PRECISION = " STRINGIFY(INTERNAL_PRECISION)
|
||||
"\tPRECISION = " STRINGIFY(PRECISION)
|
||||
"\tZOLO_PRECISION = " STRINGIFY(ZOLO_PRECISION)
|
||||
"\n\n\tRational approximation of degree (%d,%d), %s at x = 0\n"
|
||||
"\tDelta = %g (maximum error)\n\n"
|
||||
"\tA = %g (overall factor)\n",
|
||||
@ -681,15 +681,15 @@ int main(int argc, char** argv) {
|
||||
x = 2.4 * (float) m / plotpts - 1.2;
|
||||
if (rdata -> type == 0 || fabs(x) * (float) plotpts > 1.0) {
|
||||
/* skip x = 0 for type 1, as R(0) is singular */
|
||||
y = zolotarev_eval((PRECISION) x, rdata);
|
||||
y = zolotarev_eval((ZOLO_PRECISION) x, rdata);
|
||||
fprintf(plot_function, "%g %g\n", x, (float) y);
|
||||
fprintf(plot_error, "%g %g\n",
|
||||
x, (float)((y - ((x > 0.0 ? ONE : -ONE))) / rdata -> Delta));
|
||||
ypferr = (float)((zolotarev_partfrac_eval((PRECISION) x, rdata) - y)
|
||||
ypferr = (float)((zolotarev_partfrac_eval((ZOLO_PRECISION) x, rdata) - y)
|
||||
/ rdata -> Delta);
|
||||
ycferr = (float)((zolotarev_contfrac_eval((PRECISION) x, rdata) - y)
|
||||
ycferr = (float)((zolotarev_contfrac_eval((ZOLO_PRECISION) x, rdata) - y)
|
||||
/ rdata -> Delta);
|
||||
ycaylerr = (float)((zolotarev_cayley_eval((PRECISION) x, rdata) - y)
|
||||
ycaylerr = (float)((zolotarev_cayley_eval((ZOLO_PRECISION) x, rdata) - y)
|
||||
/ rdata -> Delta);
|
||||
if (fabs(x) < 1.0 && fabs(x) > rdata -> epsilon) {
|
||||
maxypferr = MAX(maxypferr, fabs(ypferr));
|
||||
|
@ -9,10 +9,10 @@ NAMESPACE_BEGIN(Approx);
|
||||
#define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY>
|
||||
|
||||
#ifndef ZOLOTAREV_INTERNAL
|
||||
#ifndef PRECISION
|
||||
#define PRECISION double
|
||||
#ifndef ZOLO_PRECISION
|
||||
#define ZOLO_PRECISION double
|
||||
#endif
|
||||
#define ZPRECISION PRECISION
|
||||
#define ZPRECISION ZOLO_PRECISION
|
||||
#define ZOLOTAREV_DATA zolotarev_data
|
||||
#endif
|
||||
|
||||
@ -77,8 +77,8 @@ typedef struct {
|
||||
* zolotarev_data structure. The arguments must satisfy the constraints that
|
||||
* epsilon > 0, n > 0, and type = 0 or 1. */
|
||||
|
||||
ZOLOTAREV_DATA* higham(PRECISION epsilon, int n) ;
|
||||
ZOLOTAREV_DATA* zolotarev(PRECISION epsilon, int n, int type);
|
||||
ZOLOTAREV_DATA* higham(ZOLO_PRECISION epsilon, int n) ;
|
||||
ZOLOTAREV_DATA* zolotarev(ZOLO_PRECISION epsilon, int n, int type);
|
||||
void zolotarev_free(zolotarev_data *zdata);
|
||||
#endif
|
||||
|
||||
@ -86,3 +86,4 @@ void zolotarev_free(zolotarev_data *zdata);
|
||||
NAMESPACE_END(Approx);
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
||||
|
||||
|
34
Grid/algorithms/blas/BatchedBlas.cc
Normal file
34
Grid/algorithms/blas/BatchedBlas.cc
Normal file
@ -0,0 +1,34 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: BatchedBlas.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/GridCore.h>
|
||||
#include <Grid/algorithms/blas/BatchedBlas.h>
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
gridblasHandle_t GridBLAS::gridblasHandle;
|
||||
int GridBLAS::gridblasInit;
|
||||
NAMESPACE_END(Grid);
|
||||
|
727
Grid/algorithms/blas/BatchedBlas.h
Normal file
727
Grid/algorithms/blas/BatchedBlas.h
Normal file
@ -0,0 +1,727 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: BatchedBlas.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#ifdef GRID_HIP
|
||||
#include <hipblas/hipblas.h>
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
#include <cublas_v2.h>
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
#include <oneapi/mkl.hpp>
|
||||
#endif
|
||||
#if 0
|
||||
#define GRID_ONE_MKL
|
||||
#endif
|
||||
#ifdef GRID_ONE_MKL
|
||||
#include <oneapi/mkl.hpp>
|
||||
#endif
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Need to rearrange lattice data to be in the right format for a
|
||||
// batched multiply. Might as well make these static, dense packed
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
#ifdef GRID_HIP
|
||||
typedef hipblasHandle_t gridblasHandle_t;
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
typedef cublasHandle_t gridblasHandle_t;
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
typedef cl::sycl::queue *gridblasHandle_t;
|
||||
#endif
|
||||
#ifdef GRID_ONE_MKL
|
||||
typedef cl::sycl::queue *gridblasHandle_t;
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
|
||||
typedef int32_t gridblasHandle_t;
|
||||
#endif
|
||||
|
||||
enum GridBLASOperation_t { GridBLAS_OP_N, GridBLAS_OP_T, GridBLAS_OP_C } ;
|
||||
|
||||
class GridBLAS {
|
||||
public:
|
||||
|
||||
|
||||
static gridblasHandle_t gridblasHandle;
|
||||
static int gridblasInit;
|
||||
|
||||
static void Init(void)
|
||||
{
|
||||
if ( ! gridblasInit ) {
|
||||
#ifdef GRID_CUDA
|
||||
std::cout << "cublasCreate"<<std::endl;
|
||||
cublasCreate(&gridblasHandle);
|
||||
cublasSetPointerMode(gridblasHandle, CUBLAS_POINTER_MODE_DEVICE);
|
||||
#endif
|
||||
#ifdef GRID_HIP
|
||||
std::cout << "hipblasCreate"<<std::endl;
|
||||
hipblasCreate(&gridblasHandle);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
gridblasHandle = theGridAccelerator;
|
||||
#endif
|
||||
#ifdef GRID_ONE_MKL
|
||||
cl::sycl::cpu_selector selector;
|
||||
cl::sycl::device selectedDevice { selector };
|
||||
gridblasHandle =new sycl::queue (selectedDevice);
|
||||
#endif
|
||||
gridblasInit=1;
|
||||
}
|
||||
}
|
||||
|
||||
// Force construct once
|
||||
GridBLAS() { Init(); };
|
||||
~GridBLAS() { };
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// BLAS GEMM conventions:
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// - C = alpha A * B + beta C
|
||||
// Dimensions:
|
||||
// - C_m.n
|
||||
// - A_m.k
|
||||
// - B_k.n
|
||||
// - Flops = 8 M N K
|
||||
// - Bytes = 2*sizeof(word) * (MN+MK+KN)
|
||||
// M=60, N=12
|
||||
// Flop/Byte = 8 . 60.60.12 / (60.12+60.60+60.12)/16 = 4 so expect about 4 TF/s on a GCD
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
void synchronise(void)
|
||||
{
|
||||
#ifdef GRID_HIP
|
||||
auto err = hipDeviceSynchronize();
|
||||
assert(err==hipSuccess);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
auto err = cudaDeviceSynchronize();
|
||||
assert(err==cudaSuccess);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
accelerator_barrier();
|
||||
#endif
|
||||
#ifdef GRID_ONE_MKL
|
||||
gridblasHandle->wait();
|
||||
#endif
|
||||
}
|
||||
|
||||
void gemmBatched(int m,int n, int k,
|
||||
ComplexD alpha,
|
||||
deviceVector<ComplexD*> &Amk, // pointer list to matrices
|
||||
deviceVector<ComplexD*> &Bkn,
|
||||
ComplexD beta,
|
||||
deviceVector<ComplexD*> &Cmn)
|
||||
{
|
||||
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
Amk,
|
||||
Bkn,
|
||||
beta,
|
||||
Cmn);
|
||||
}
|
||||
void gemmBatched(int m,int n, int k,
|
||||
ComplexF alpha,
|
||||
deviceVector<ComplexF*> &Amk, // pointer list to matrices
|
||||
deviceVector<ComplexF*> &Bkn,
|
||||
ComplexF beta,
|
||||
deviceVector<ComplexF*> &Cmn)
|
||||
{
|
||||
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
Amk,
|
||||
Bkn,
|
||||
beta,
|
||||
Cmn);
|
||||
}
|
||||
void gemmBatched(int m,int n, int k,
|
||||
RealD alpha,
|
||||
deviceVector<RealD*> &Amk, // pointer list to matrices
|
||||
deviceVector<RealD*> &Bkn,
|
||||
RealD beta,
|
||||
deviceVector<RealD*> &Cmn)
|
||||
{
|
||||
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
Amk,
|
||||
Bkn,
|
||||
beta,
|
||||
Cmn);
|
||||
}
|
||||
void gemmBatched(int m,int n, int k,
|
||||
RealF alpha,
|
||||
deviceVector<RealF*> &Amk, // pointer list to matrices
|
||||
deviceVector<RealF*> &Bkn,
|
||||
RealF beta,
|
||||
deviceVector<RealF*> &Cmn)
|
||||
{
|
||||
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
Amk,
|
||||
Bkn,
|
||||
beta,
|
||||
Cmn);
|
||||
}
|
||||
|
||||
void gemmBatched(GridBLASOperation_t OpA,
|
||||
GridBLASOperation_t OpB,
|
||||
int m,int n, int k,
|
||||
ComplexD alpha,
|
||||
deviceVector<ComplexD*> &Amk, // pointer list to matrices
|
||||
deviceVector<ComplexD*> &Bkn,
|
||||
ComplexD beta,
|
||||
deviceVector<ComplexD*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
if(OpA!=GridBLAS_OP_N)
|
||||
lda = k;
|
||||
if(OpB!=GridBLAS_OP_N)
|
||||
ldb = n;
|
||||
|
||||
static deviceVector<ComplexD> alpha_p(1);
|
||||
static deviceVector<ComplexD> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
|
||||
RealD t0=usecond();
|
||||
// std::cout << "ZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
||||
#ifdef GRID_HIP
|
||||
hipblasOperation_t hOpA;
|
||||
hipblasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
||||
auto err = hipblasZgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(hipblasDoubleComplex *) &alpha_p[0],
|
||||
(hipblasDoubleComplex **)&Amk[0], lda,
|
||||
(hipblasDoubleComplex **)&Bkn[0], ldb,
|
||||
(hipblasDoubleComplex *) &beta_p[0],
|
||||
(hipblasDoubleComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
// std::cout << " hipblas return code " <<(int)err<<std::endl;
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasOperation_t hOpA;
|
||||
cublasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
||||
auto err = cublasZgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(cuDoubleComplex *) &alpha_p[0],
|
||||
(cuDoubleComplex **)&Amk[0], lda,
|
||||
(cuDoubleComplex **)&Bkn[0], ldb,
|
||||
(cuDoubleComplex *) &beta_p[0],
|
||||
(cuDoubleComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
// Need a default/reference implementation
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
// synchronise();
|
||||
RealD t1=usecond();
|
||||
RealD flops = 8.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount;
|
||||
// std::cout <<GridLogMessage<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
|
||||
// std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
||||
// std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
||||
}
|
||||
|
||||
void gemmBatched(GridBLASOperation_t OpA,
|
||||
GridBLASOperation_t OpB,
|
||||
int m,int n, int k,
|
||||
ComplexF alpha,
|
||||
deviceVector<ComplexF*> &Amk, // pointer list to matrices
|
||||
deviceVector<ComplexF*> &Bkn,
|
||||
ComplexF beta,
|
||||
deviceVector<ComplexF*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
if(OpA!=GridBLAS_OP_N)
|
||||
lda = k;
|
||||
if(OpB!=GridBLAS_OP_N)
|
||||
ldb = n;
|
||||
static deviceVector<ComplexF> alpha_p(1);
|
||||
static deviceVector<ComplexF> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF));
|
||||
RealD t0=usecond();
|
||||
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
#ifdef GRID_HIP
|
||||
hipblasOperation_t hOpA;
|
||||
hipblasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
||||
auto err = hipblasCgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(hipblasComplex *) &alpha_p[0],
|
||||
(hipblasComplex **)&Amk[0], lda,
|
||||
(hipblasComplex **)&Bkn[0], ldb,
|
||||
(hipblasComplex *) &beta_p[0],
|
||||
(hipblasComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasOperation_t hOpA;
|
||||
cublasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
||||
auto err = cublasCgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(cuComplex *) &alpha_p[0],
|
||||
(cuComplex **)&Amk[0], lda,
|
||||
(cuComplex **)&Bkn[0], ldb,
|
||||
(cuComplex *) &beta_p[0],
|
||||
(cuComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
ComplexF alphaf(real(alpha),imag(alpha));
|
||||
ComplexF betaf(real(beta),imag(beta));
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexF c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alphaf)*c_mn + (betaf)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 8.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Single precision real GEMM
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void gemmBatched(GridBLASOperation_t OpA,
|
||||
GridBLASOperation_t OpB,
|
||||
int m,int n, int k,
|
||||
RealF alpha,
|
||||
deviceVector<RealF*> &Amk, // pointer list to matrices
|
||||
deviceVector<RealF*> &Bkn,
|
||||
RealF beta,
|
||||
deviceVector<RealF*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
if(OpA!=GridBLAS_OP_N)
|
||||
lda = k;
|
||||
if(OpB!=GridBLAS_OP_N)
|
||||
ldb = n;
|
||||
static deviceVector<RealF> alpha_p(1);
|
||||
static deviceVector<RealF> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF));
|
||||
RealD t0=usecond();
|
||||
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
#ifdef GRID_HIP
|
||||
hipblasOperation_t hOpA;
|
||||
hipblasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
||||
auto err = hipblasSgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(float *) &alpha_p[0],
|
||||
(float **)&Amk[0], lda,
|
||||
(float **)&Bkn[0], ldb,
|
||||
(float *) &beta_p[0],
|
||||
(float **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasOperation_t hOpA;
|
||||
cublasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
||||
auto err = cublasSgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(float *) &alpha_p[0],
|
||||
(float **)&Amk[0], lda,
|
||||
(float **)&Bkn[0], ldb,
|
||||
(float *) &beta_p[0],
|
||||
(float **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
RealD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 2.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount;
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Double precision real GEMM
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void gemmBatched(GridBLASOperation_t OpA,
|
||||
GridBLASOperation_t OpB,
|
||||
int m,int n, int k,
|
||||
RealD alpha,
|
||||
deviceVector<RealD*> &Amk, // pointer list to matrices
|
||||
deviceVector<RealD*> &Bkn,
|
||||
RealD beta,
|
||||
deviceVector<RealD*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
if(OpA!=GridBLAS_OP_N)
|
||||
lda = k;
|
||||
if(OpB!=GridBLAS_OP_N)
|
||||
ldb = n;
|
||||
|
||||
static deviceVector<RealD> alpha_p(1);
|
||||
static deviceVector<RealD> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD));
|
||||
RealD t0=usecond();
|
||||
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
#ifdef GRID_HIP
|
||||
hipblasOperation_t hOpA;
|
||||
hipblasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
||||
auto err = hipblasDgemmBatched(gridblasHandle,
|
||||
HIPBLAS_OP_N,
|
||||
HIPBLAS_OP_N,
|
||||
m,n,k,
|
||||
(double *) &alpha_p[0],
|
||||
(double **)&Amk[0], lda,
|
||||
(double **)&Bkn[0], ldb,
|
||||
(double *) &beta_p[0],
|
||||
(double **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasOperation_t hOpA;
|
||||
cublasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
||||
auto err = cublasDgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(double *) &alpha_p[0],
|
||||
(double **)&Amk[0], lda,
|
||||
(double **)&Bkn[0], ldb,
|
||||
(double *) &beta_p[0],
|
||||
(double **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
/*
|
||||
int64_t m64=m;
|
||||
int64_t n64=n;
|
||||
int64_t k64=k;
|
||||
int64_t batchCount64=batchCount;
|
||||
oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator,
|
||||
onemkl::transpose::N,
|
||||
onemkl::transpose::N,
|
||||
&m64,&n64,&k64,
|
||||
(double *) &alpha_p[0],
|
||||
(double **)&Amk[0], lda,
|
||||
(double **)&Bkn[0], ldb,
|
||||
(double *) &beta_p[0],
|
||||
(double **)&Cmn[0], ldc,
|
||||
1,&batchCount64);
|
||||
*/
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
RealD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 2.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
|
||||
}
|
||||
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Strided case used by benchmark, but generally unused in Grid
|
||||
// Keep a code example in double complex, but don't generate the single and real variants for now
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void gemmStridedBatched(int m,int n, int k,
|
||||
ComplexD alpha,
|
||||
ComplexD* Amk, // pointer list to matrices
|
||||
ComplexD* Bkn,
|
||||
ComplexD beta,
|
||||
ComplexD* Cmn,
|
||||
int batchCount)
|
||||
{
|
||||
// Use C-row major storage, so transpose calls
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
int sda = m*k;
|
||||
int sdb = k*n;
|
||||
int sdc = m*n;
|
||||
deviceVector<ComplexD> alpha_p(1);
|
||||
deviceVector<ComplexD> beta_p(1);
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
|
||||
// std::cout << "blasZgemmStridedBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
||||
// std::cout << "blasZgemmStridedBatched ld "<<lda<<","<<ldb<<","<<ldc<<std::endl;
|
||||
// std::cout << "blasZgemmStridedBatched sd "<<sda<<","<<sdb<<","<<sdc<<std::endl;
|
||||
#ifdef GRID_HIP
|
||||
auto err = hipblasZgemmStridedBatched(gridblasHandle,
|
||||
HIPBLAS_OP_N,
|
||||
HIPBLAS_OP_N,
|
||||
m,n,k,
|
||||
(hipblasDoubleComplex *) &alpha_p[0],
|
||||
(hipblasDoubleComplex *) Amk, lda, sda,
|
||||
(hipblasDoubleComplex *) Bkn, ldb, sdb,
|
||||
(hipblasDoubleComplex *) &beta_p[0],
|
||||
(hipblasDoubleComplex *) Cmn, ldc, sdc,
|
||||
batchCount);
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasZgemmStridedBatched(gridblasHandle,
|
||||
CUBLAS_OP_N,
|
||||
CUBLAS_OP_N,
|
||||
m,n,k,
|
||||
(cuDoubleComplex *) &alpha_p[0],
|
||||
(cuDoubleComplex *) Amk, lda, sda,
|
||||
(cuDoubleComplex *) Bkn, ldb, sdb,
|
||||
(cuDoubleComplex *) &beta_p[0],
|
||||
(cuDoubleComplex *) Cmn, ldc, sdc,
|
||||
batchCount);
|
||||
#endif
|
||||
#if defined(GRID_SYCL) || defined(GRID_ONE_MKL)
|
||||
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
|
||||
oneapi::mkl::transpose::N,
|
||||
oneapi::mkl::transpose::N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
(const ComplexD *)Amk,lda,sda,
|
||||
(const ComplexD *)Bkn,ldb,sdb,
|
||||
beta,
|
||||
(ComplexD *)Cmn,ldc,sdc,
|
||||
batchCount);
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
|
||||
Cmn[mm + nn*ldc + p*sdc] = (alpha)*c_mn + (beta)*Cmn[mm + nn*ldc + p*sdc];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
double benchmark(int M, int N, int K, int BATCH)
|
||||
{
|
||||
int32_t N_A = M*K*BATCH;
|
||||
int32_t N_B = K*N*BATCH;
|
||||
int32_t N_C = M*N*BATCH;
|
||||
deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD));
|
||||
deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD));
|
||||
deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD));
|
||||
ComplexD alpha(1.0);
|
||||
ComplexD beta (1.0);
|
||||
RealD flops = 8.0*M*N*K*BATCH;
|
||||
int ncall=10;
|
||||
RealD t0 = usecond();
|
||||
for(int i=0;i<ncall;i++){
|
||||
gemmStridedBatched(M,N,K,
|
||||
alpha,
|
||||
&A[0], // m x k
|
||||
&B[0], // k x n
|
||||
beta,
|
||||
&C[0], // m x n
|
||||
BATCH);
|
||||
}
|
||||
synchronise();
|
||||
RealD t1 = usecond();
|
||||
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K)*BATCH;
|
||||
flops = 8.0*M*N*K*BATCH*ncall;
|
||||
flops = flops/(t1-t0)/1.e3;
|
||||
return flops; // Returns gigaflops
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
513
Grid/algorithms/deflation/MultiRHSBlockProject.h
Normal file
513
Grid/algorithms/deflation/MultiRHSBlockProject.h
Normal file
@ -0,0 +1,513 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: MultiRHSDeflation.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
/*
|
||||
MultiRHS block projection
|
||||
|
||||
Import basis -> nblock x nbasis x (block x internal)
|
||||
Import vector of fine lattice objects -> nblock x nrhs x (block x internal)
|
||||
|
||||
=> coarse_(nrhs x nbasis )^block = via batched GEMM
|
||||
|
||||
//template<class vobj,class CComplex,int nbasis,class VLattice>
|
||||
//inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||
// const VLattice &fineData,
|
||||
// const VLattice &Basis)
|
||||
*/
|
||||
|
||||
template<class Field>
|
||||
class MultiRHSBlockProject
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename Field::scalar_type scalar;
|
||||
typedef typename Field::scalar_object scalar_object;
|
||||
typedef Field Fermion;
|
||||
|
||||
int nbasis;
|
||||
GridBase *coarse_grid;
|
||||
GridBase *fine_grid;
|
||||
uint64_t block_vol;
|
||||
uint64_t fine_vol;
|
||||
uint64_t coarse_vol;
|
||||
uint64_t words;
|
||||
|
||||
// Row major layout "C" order:
|
||||
// BLAS_V[coarse_vol][nbasis][block_vol][words]
|
||||
// BLAS_F[coarse_vol][nrhs][block_vol][words]
|
||||
// BLAS_C[coarse_vol][nrhs][nbasis]
|
||||
/*
|
||||
* in Fortran column major notation (cuBlas order)
|
||||
*
|
||||
* Vxb = [v1(x)][..][vn(x)] ... x coarse vol
|
||||
*
|
||||
* Fxr = [r1(x)][..][rm(x)] ... x coarse vol
|
||||
*
|
||||
* Block project:
|
||||
* C_br = V^dag F x coarse vol
|
||||
*
|
||||
* Block promote:
|
||||
* F_xr = Vxb Cbr x coarse_vol
|
||||
*/
|
||||
deviceVector<scalar> BLAS_V; // words * block_vol * nbasis x coarse_vol
|
||||
deviceVector<scalar> BLAS_F; // nrhs x fine_vol * words -- the sources
|
||||
deviceVector<scalar> BLAS_C; // nrhs x coarse_vol * nbasis -- the coarse coeffs
|
||||
|
||||
RealD blasNorm2(deviceVector<scalar> &blas)
|
||||
{
|
||||
scalar ss(0.0);
|
||||
std::vector<scalar> tmp(blas.size());
|
||||
acceleratorCopyFromDevice(&blas[0],&tmp[0],blas.size()*sizeof(scalar));
|
||||
for(int64_t s=0;s<blas.size();s++){
|
||||
ss=ss+tmp[s]*adj(tmp[s]);
|
||||
}
|
||||
coarse_grid->GlobalSum(ss);
|
||||
return real(ss);
|
||||
}
|
||||
|
||||
MultiRHSBlockProject(){};
|
||||
~MultiRHSBlockProject(){ Deallocate(); };
|
||||
|
||||
void Deallocate(void)
|
||||
{
|
||||
nbasis=0;
|
||||
coarse_grid=nullptr;
|
||||
fine_grid=nullptr;
|
||||
fine_vol=0;
|
||||
block_vol=0;
|
||||
coarse_vol=0;
|
||||
words=0;
|
||||
BLAS_V.resize(0);
|
||||
BLAS_F.resize(0);
|
||||
BLAS_C.resize(0);
|
||||
}
|
||||
void Allocate(int _nbasis,GridBase *_fgrid,GridBase *_cgrid)
|
||||
{
|
||||
nbasis=_nbasis;
|
||||
|
||||
fine_grid=_fgrid;
|
||||
coarse_grid=_cgrid;
|
||||
|
||||
fine_vol = fine_grid->lSites();
|
||||
coarse_vol = coarse_grid->lSites();
|
||||
block_vol = fine_vol/coarse_vol;
|
||||
|
||||
words = sizeof(scalar_object)/sizeof(scalar);
|
||||
|
||||
BLAS_V.resize (fine_vol * words * nbasis );
|
||||
}
|
||||
void ImportFineGridVectors(std::vector <Field > &vecs, deviceVector<scalar> &blas)
|
||||
{
|
||||
int nvec = vecs.size();
|
||||
typedef typename Field::vector_object vobj;
|
||||
// std::cout << GridLogMessage <<" BlockProjector importing "<<nvec<< " fine grid vectors" <<std::endl;
|
||||
|
||||
assert(vecs[0].Grid()==fine_grid);
|
||||
|
||||
subdivides(coarse_grid,fine_grid); // require they map
|
||||
|
||||
int _ndimension = coarse_grid->_ndimension;
|
||||
assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
|
||||
|
||||
Coordinate block_r (_ndimension);
|
||||
for(int d=0 ; d<_ndimension;d++){
|
||||
block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
|
||||
}
|
||||
|
||||
uint64_t sz = blas.size();
|
||||
|
||||
acceleratorMemSet(&blas[0],0,blas.size()*sizeof(scalar));
|
||||
|
||||
Coordinate fine_rdimensions = fine_grid->_rdimensions;
|
||||
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
|
||||
int64_t bv= block_vol;
|
||||
for(int v=0;v<vecs.size();v++){
|
||||
|
||||
// std::cout << " BlockProjector importing vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
|
||||
autoView( fineData , vecs[v], AcceleratorRead);
|
||||
|
||||
auto blasData_p = &blas[0];
|
||||
auto fineData_p = &fineData[0];
|
||||
|
||||
int64_t osites = fine_grid->oSites();
|
||||
|
||||
// loop over fine sites
|
||||
const int Nsimd = vobj::Nsimd();
|
||||
// std::cout << "sz "<<sz<<std::endl;
|
||||
// std::cout << "prod "<<Nsimd * coarse_grid->oSites() * block_vol * nvec * words<<std::endl;
|
||||
assert(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words);
|
||||
uint64_t lwords= words; // local variable for copy in to GPU
|
||||
accelerator_for(sf,osites,Nsimd,{
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
|
||||
#else
|
||||
for(int lane=0;lane<Nsimd;lane++) {
|
||||
#endif
|
||||
// One thread per fine site
|
||||
Coordinate coor_f(_ndimension);
|
||||
Coordinate coor_b(_ndimension);
|
||||
Coordinate coor_c(_ndimension);
|
||||
|
||||
// Fine site to fine coor
|
||||
Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
|
||||
|
||||
for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
|
||||
for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
|
||||
|
||||
int sc;// coarse site
|
||||
int sb;// block site
|
||||
Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
|
||||
Lexicographic::IndexFromCoor(coor_b,sb,block_r);
|
||||
|
||||
scalar_object data = extractLane(lane,fineData[sf]);
|
||||
|
||||
// BLAS layout address calculation
|
||||
// words * block_vol * nbasis x coarse_vol
|
||||
// coarse oSite x block vole x lanes
|
||||
int64_t site = (lane*osites + sc*bv)*nvec
|
||||
+ v*bv
|
||||
+ sb;
|
||||
|
||||
// assert(site*lwords<sz);
|
||||
|
||||
scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
|
||||
|
||||
*ptr = data;
|
||||
#ifdef GRID_SIMT
|
||||
}
|
||||
#else
|
||||
}
|
||||
#endif
|
||||
});
|
||||
// std::cout << " import fine Blas norm "<<blasNorm2(blas)<<std::endl;
|
||||
// std::cout << " BlockProjector imported vector"<<v<<std::endl;
|
||||
}
|
||||
}
|
||||
void ExportFineGridVectors(std::vector <Field> &vecs, deviceVector<scalar> &blas)
|
||||
{
|
||||
typedef typename Field::vector_object vobj;
|
||||
|
||||
int nvec = vecs.size();
|
||||
|
||||
assert(vecs[0].Grid()==fine_grid);
|
||||
|
||||
subdivides(coarse_grid,fine_grid); // require they map
|
||||
|
||||
int _ndimension = coarse_grid->_ndimension;
|
||||
assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
|
||||
|
||||
Coordinate block_r (_ndimension);
|
||||
for(int d=0 ; d<_ndimension;d++){
|
||||
block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
|
||||
}
|
||||
Coordinate fine_rdimensions = fine_grid->_rdimensions;
|
||||
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
|
||||
|
||||
// std::cout << " export fine Blas norm "<<blasNorm2(blas)<<std::endl;
|
||||
|
||||
int64_t bv= block_vol;
|
||||
for(int v=0;v<vecs.size();v++){
|
||||
|
||||
autoView( fineData , vecs[v], AcceleratorWrite);
|
||||
|
||||
auto blasData_p = &blas[0];
|
||||
auto fineData_p = &fineData[0];
|
||||
|
||||
int64_t osites = fine_grid->oSites();
|
||||
uint64_t lwords = words;
|
||||
// std::cout << " Nsimd is "<<vobj::Nsimd() << std::endl;
|
||||
// std::cout << " lwords is "<<lwords << std::endl;
|
||||
// std::cout << " sizeof(scalar_object) is "<<sizeof(scalar_object) << std::endl;
|
||||
// loop over fine sites
|
||||
accelerator_for(sf,osites,vobj::Nsimd(),{
|
||||
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
int lane=acceleratorSIMTlane(vobj::Nsimd()); // buffer lane
|
||||
#else
|
||||
for(int lane=0;lane<vobj::Nsimd();lane++) {
|
||||
#endif
|
||||
// One thread per fine site
|
||||
Coordinate coor_f(_ndimension);
|
||||
Coordinate coor_b(_ndimension);
|
||||
Coordinate coor_c(_ndimension);
|
||||
|
||||
Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
|
||||
|
||||
for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
|
||||
for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
|
||||
|
||||
int sc;
|
||||
int sb;
|
||||
Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
|
||||
Lexicographic::IndexFromCoor(coor_b,sb,block_r);
|
||||
|
||||
// BLAS layout address calculation
|
||||
// words * block_vol * nbasis x coarse_vol
|
||||
int64_t site = (lane*osites + sc*bv)*nvec
|
||||
+ v*bv
|
||||
+ sb;
|
||||
|
||||
scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
|
||||
|
||||
scalar_object data = *ptr;
|
||||
|
||||
insertLane(lane,fineData[sf],data);
|
||||
#ifdef GRID_SIMT
|
||||
}
|
||||
#else
|
||||
}
|
||||
#endif
|
||||
});
|
||||
}
|
||||
}
|
||||
template<class vobj>
|
||||
void ImportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
|
||||
{
|
||||
int nvec = vecs.size();
|
||||
typedef typename vobj::scalar_object coarse_scalar_object;
|
||||
|
||||
// std::cout << " BlockProjector importing "<<nvec<< " coarse grid vectors" <<std::endl;
|
||||
|
||||
assert(vecs[0].Grid()==coarse_grid);
|
||||
|
||||
int _ndimension = coarse_grid->_ndimension;
|
||||
|
||||
uint64_t sz = blas.size();
|
||||
|
||||
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
|
||||
|
||||
for(int v=0;v<vecs.size();v++){
|
||||
|
||||
// std::cout << " BlockProjector importing coarse vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
|
||||
autoView( coarseData , vecs[v], AcceleratorRead);
|
||||
|
||||
auto blasData_p = &blas[0];
|
||||
auto coarseData_p = &coarseData[0];
|
||||
|
||||
int64_t osites = coarse_grid->oSites();
|
||||
|
||||
// loop over fine sites
|
||||
const int Nsimd = vobj::Nsimd();
|
||||
uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
|
||||
assert(cwords==nbasis);
|
||||
|
||||
accelerator_for(sc,osites,Nsimd,{
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
|
||||
#else
|
||||
for(int lane=0;lane<Nsimd;lane++) {
|
||||
#endif
|
||||
// C_br per site
|
||||
int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
|
||||
|
||||
coarse_scalar_object data = extractLane(lane,coarseData[sc]);
|
||||
|
||||
coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
|
||||
|
||||
*ptr = data;
|
||||
#ifdef GRID_SIMT
|
||||
}
|
||||
#else
|
||||
}
|
||||
#endif
|
||||
});
|
||||
// std::cout << " import coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
|
||||
}
|
||||
}
|
||||
template<class vobj>
|
||||
void ExportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
|
||||
{
|
||||
int nvec = vecs.size();
|
||||
typedef typename vobj::scalar_object coarse_scalar_object;
|
||||
// std::cout << GridLogMessage<<" BlockProjector exporting "<<nvec<< " coarse grid vectors" <<std::endl;
|
||||
|
||||
assert(vecs[0].Grid()==coarse_grid);
|
||||
|
||||
int _ndimension = coarse_grid->_ndimension;
|
||||
|
||||
uint64_t sz = blas.size();
|
||||
|
||||
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
|
||||
|
||||
// std::cout << " export coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
|
||||
for(int v=0;v<vecs.size();v++){
|
||||
|
||||
// std::cout << " BlockProjector exporting coarse vector"<<v<<std::endl;
|
||||
autoView( coarseData , vecs[v], AcceleratorWrite);
|
||||
|
||||
auto blasData_p = &blas[0];
|
||||
auto coarseData_p = &coarseData[0];
|
||||
|
||||
int64_t osites = coarse_grid->oSites();
|
||||
|
||||
// loop over fine sites
|
||||
const int Nsimd = vobj::Nsimd();
|
||||
uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
|
||||
assert(cwords==nbasis);
|
||||
|
||||
accelerator_for(sc,osites,Nsimd,{
|
||||
// Wrap in a macro "FOR_ALL_LANES(lane,{ ... });
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
|
||||
#else
|
||||
for(int lane=0;lane<Nsimd;lane++) {
|
||||
#endif
|
||||
int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
|
||||
coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
|
||||
coarse_scalar_object data = *ptr;
|
||||
insertLane(lane,coarseData[sc],data);
|
||||
#ifdef GRID_SIMT
|
||||
}
|
||||
#else
|
||||
}
|
||||
#endif
|
||||
});
|
||||
}
|
||||
}
|
||||
void ImportBasis(std::vector < Field > &vecs)
|
||||
{
|
||||
// std::cout << " BlockProjector Import basis size "<<vecs.size()<<std::endl;
|
||||
ImportFineGridVectors(vecs,BLAS_V);
|
||||
}
|
||||
|
||||
template<class cobj>
|
||||
void blockProject(std::vector<Field> &fine,std::vector< Lattice<cobj> > & coarse)
|
||||
{
|
||||
int nrhs=fine.size();
|
||||
int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
|
||||
// std::cout << "blockProject nbasis " <<nbasis<<" " << _nbasis<<std::endl;
|
||||
assert(nbasis==_nbasis);
|
||||
|
||||
BLAS_F.resize (fine_vol * words * nrhs );
|
||||
BLAS_C.resize (coarse_vol * nbasis * nrhs );
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Copy in the multi-rhs sources to same data layout
|
||||
/////////////////////////////////////////////
|
||||
// std::cout << "BlockProject import fine"<<std::endl;
|
||||
ImportFineGridVectors(fine,BLAS_F);
|
||||
|
||||
deviceVector<scalar *> Vd(coarse_vol);
|
||||
deviceVector<scalar *> Fd(coarse_vol);
|
||||
deviceVector<scalar *> Cd(coarse_vol);
|
||||
|
||||
// std::cout << "BlockProject pointers"<<std::endl;
|
||||
for(int c=0;c<coarse_vol;c++){
|
||||
// BLAS_V[coarse_vol][nbasis][block_vol][words]
|
||||
// BLAS_F[coarse_vol][nrhs][block_vol][words]
|
||||
// BLAS_C[coarse_vol][nrhs][nbasis]
|
||||
scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
|
||||
scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
|
||||
scalar * Ch = & BLAS_C[c*nrhs*nbasis];
|
||||
|
||||
acceleratorPut(Vd[c],Vh);
|
||||
acceleratorPut(Fd[c],Fh);
|
||||
acceleratorPut(Cd[c],Ch);
|
||||
}
|
||||
|
||||
GridBLAS BLAS;
|
||||
|
||||
// std::cout << "BlockProject BLAS"<<std::endl;
|
||||
int64_t vw = block_vol * words;
|
||||
/////////////////////////////////////////
|
||||
// C_br = V^dag R
|
||||
/////////////////////////////////////////
|
||||
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
|
||||
nbasis,nrhs,vw,
|
||||
ComplexD(1.0),
|
||||
Vd,
|
||||
Fd,
|
||||
ComplexD(0.0), // wipe out C
|
||||
Cd);
|
||||
BLAS.synchronise();
|
||||
// std::cout << "BlockProject done"<<std::endl;
|
||||
ExportCoarseGridVectors(coarse, BLAS_C);
|
||||
// std::cout << "BlockProject done"<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
template<class cobj>
|
||||
void blockPromote(std::vector<Field> &fine,std::vector<Lattice<cobj> > & coarse)
|
||||
{
|
||||
int nrhs=fine.size();
|
||||
int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
|
||||
assert(nbasis==_nbasis);
|
||||
|
||||
BLAS_F.resize (fine_vol * words * nrhs );
|
||||
BLAS_C.resize (coarse_vol * nbasis * nrhs );
|
||||
|
||||
ImportCoarseGridVectors(coarse, BLAS_C);
|
||||
|
||||
GridBLAS BLAS;
|
||||
|
||||
deviceVector<scalar *> Vd(coarse_vol);
|
||||
deviceVector<scalar *> Fd(coarse_vol);
|
||||
deviceVector<scalar *> Cd(coarse_vol);
|
||||
|
||||
for(int c=0;c<coarse_vol;c++){
|
||||
// BLAS_V[coarse_vol][nbasis][block_vol][words]
|
||||
// BLAS_F[coarse_vol][nrhs][block_vol][words]
|
||||
// BLAS_C[coarse_vol][nrhs][nbasis]
|
||||
scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
|
||||
scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
|
||||
scalar * Ch = & BLAS_C[c*nrhs*nbasis];
|
||||
acceleratorPut(Vd[c],Vh);
|
||||
acceleratorPut(Fd[c],Fh);
|
||||
acceleratorPut(Cd[c],Ch);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////
|
||||
// Block promote:
|
||||
// F_xr = Vxb Cbr (x coarse_vol)
|
||||
/////////////////////////////////////////
|
||||
|
||||
int64_t vw = block_vol * words;
|
||||
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
vw,nrhs,nbasis,
|
||||
ComplexD(1.0),
|
||||
Vd,
|
||||
Cd,
|
||||
ComplexD(0.0), // wipe out C
|
||||
Fd);
|
||||
BLAS.synchronise();
|
||||
// std::cout << " blas call done"<<std::endl;
|
||||
|
||||
ExportFineGridVectors(fine, BLAS_F);
|
||||
// std::cout << " exported "<<std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
233
Grid/algorithms/deflation/MultiRHSDeflation.h
Normal file
233
Grid/algorithms/deflation/MultiRHSDeflation.h
Normal file
@ -0,0 +1,233 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: MultiRHSDeflation.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
/* Need helper object for BLAS accelerated mrhs projection
|
||||
|
||||
i) MultiRHS Deflation
|
||||
|
||||
Import Evecs -> nev x vol x internal
|
||||
Import vector of Lattice objects -> nrhs x vol x internal
|
||||
=> Cij (nrhs x Nev) via GEMM.
|
||||
=> Guess (nrhs x vol x internal) = C x evecs (via GEMM)
|
||||
Export
|
||||
|
||||
|
||||
ii) MultiRHS block projection
|
||||
|
||||
Import basis -> nblock x nbasis x (block x internal)
|
||||
Import vector of fine lattice objects -> nblock x nrhs x (block x internal)
|
||||
|
||||
=> coarse_(nrhs x nbasis )^block = via batched GEMM
|
||||
|
||||
iii) Alternate interface:
|
||||
Import higher dim Lattice object-> vol x nrhs layout
|
||||
|
||||
*/
|
||||
template<class Field>
|
||||
class MultiRHSDeflation
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename Field::scalar_type scalar;
|
||||
typedef typename Field::scalar_object scalar_object;
|
||||
|
||||
int nev;
|
||||
std::vector<RealD> eval;
|
||||
GridBase *grid;
|
||||
uint64_t vol;
|
||||
uint64_t words;
|
||||
|
||||
deviceVector<scalar> BLAS_E; // nev x vol -- the eigenbasis (up to a 1/sqrt(lambda))
|
||||
deviceVector<scalar> BLAS_R; // nrhs x vol -- the sources
|
||||
deviceVector<scalar> BLAS_G; // nrhs x vol -- the guess
|
||||
deviceVector<scalar> BLAS_C; // nrhs x nev -- the coefficients
|
||||
|
||||
MultiRHSDeflation(){};
|
||||
~MultiRHSDeflation(){ Deallocate(); };
|
||||
|
||||
void Deallocate(void)
|
||||
{
|
||||
nev=0;
|
||||
grid=nullptr;
|
||||
vol=0;
|
||||
words=0;
|
||||
BLAS_E.resize(0);
|
||||
BLAS_R.resize(0);
|
||||
BLAS_C.resize(0);
|
||||
BLAS_G.resize(0);
|
||||
}
|
||||
void Allocate(int _nev,GridBase *_grid)
|
||||
{
|
||||
nev=_nev;
|
||||
grid=_grid;
|
||||
vol = grid->lSites();
|
||||
words = sizeof(scalar_object)/sizeof(scalar);
|
||||
eval.resize(nev);
|
||||
BLAS_E.resize (vol * words * nev );
|
||||
std::cout << GridLogMessage << " Allocate for "<<nev<<" eigenvectors and volume "<<vol<<std::endl;
|
||||
}
|
||||
void ImportEigenVector(Field &evec,RealD &_eval, int ev)
|
||||
{
|
||||
// std::cout << " ev " <<ev<<" eval "<<_eval<< std::endl;
|
||||
assert(ev<eval.size());
|
||||
eval[ev] = _eval;
|
||||
|
||||
int64_t offset = ev*vol*words;
|
||||
autoView(v,evec,AcceleratorRead);
|
||||
acceleratorCopyDeviceToDevice(&v[0],&BLAS_E[offset],sizeof(scalar_object)*vol);
|
||||
|
||||
}
|
||||
void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval)
|
||||
{
|
||||
ImportEigenBasis(evec,_eval,0,evec.size());
|
||||
}
|
||||
// Could use to import a batch of eigenvectors
|
||||
void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval, int _ev0, int _nev)
|
||||
{
|
||||
assert(_ev0+_nev<=evec.size());
|
||||
|
||||
Allocate(_nev,evec[0].Grid());
|
||||
|
||||
// Imports a sub-batch of eigenvectors, _ev0, ..., _ev0+_nev-1
|
||||
for(int e=0;e<nev;e++){
|
||||
std::cout << "Importing eigenvector "<<e<<" evalue "<<_eval[_ev0+e]<<std::endl;
|
||||
ImportEigenVector(evec[_ev0+e],_eval[_ev0+e],e);
|
||||
}
|
||||
}
|
||||
void DeflateSources(std::vector<Field> &source,std::vector<Field> & guess)
|
||||
{
|
||||
int nrhs = source.size();
|
||||
assert(source.size()==guess.size());
|
||||
assert(grid == guess[0].Grid());
|
||||
conformable(guess[0],source[0]);
|
||||
|
||||
int64_t vw = vol * words;
|
||||
|
||||
RealD t0 = usecond();
|
||||
BLAS_R.resize(nrhs * vw); // cost free if size doesn't change
|
||||
BLAS_G.resize(nrhs * vw); // cost free if size doesn't change
|
||||
BLAS_C.resize(nev * nrhs);// cost free if size doesn't change
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Copy in the multi-rhs sources
|
||||
/////////////////////////////////////////////
|
||||
// for(int r=0;r<nrhs;r++){
|
||||
// std::cout << " source["<<r<<"] = "<<norm2(source[r])<<std::endl;
|
||||
// }
|
||||
for(int r=0;r<nrhs;r++){
|
||||
int64_t offset = r*vw;
|
||||
autoView(v,source[r],AcceleratorRead);
|
||||
acceleratorCopyDeviceToDevice(&v[0],&BLAS_R[offset],sizeof(scalar_object)*vol);
|
||||
}
|
||||
|
||||
/*
|
||||
* in Fortran column major notation (cuBlas order)
|
||||
*
|
||||
* Exe = [e1(x)][..][en(x)]
|
||||
*
|
||||
* Rxr = [r1(x)][..][rm(x)]
|
||||
*
|
||||
* C_er = E^dag R
|
||||
* C_er = C_er / lambda_e
|
||||
* G_xr = Exe Cer
|
||||
*/
|
||||
deviceVector<scalar *> Ed(1);
|
||||
deviceVector<scalar *> Rd(1);
|
||||
deviceVector<scalar *> Cd(1);
|
||||
deviceVector<scalar *> Gd(1);
|
||||
|
||||
scalar * Eh = & BLAS_E[0];
|
||||
scalar * Rh = & BLAS_R[0];
|
||||
scalar * Ch = & BLAS_C[0];
|
||||
scalar * Gh = & BLAS_G[0];
|
||||
|
||||
acceleratorPut(Ed[0],Eh);
|
||||
acceleratorPut(Rd[0],Rh);
|
||||
acceleratorPut(Cd[0],Ch);
|
||||
acceleratorPut(Gd[0],Gh);
|
||||
|
||||
GridBLAS BLAS;
|
||||
|
||||
/////////////////////////////////////////
|
||||
// C_er = E^dag R
|
||||
/////////////////////////////////////////
|
||||
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
|
||||
nev,nrhs,vw,
|
||||
ComplexD(1.0),
|
||||
Ed,
|
||||
Rd,
|
||||
ComplexD(0.0), // wipe out C
|
||||
Cd);
|
||||
BLAS.synchronise();
|
||||
|
||||
assert(BLAS_C.size()==nev*nrhs);
|
||||
|
||||
std::vector<scalar> HOST_C(BLAS_C.size()); // nrhs . nev -- the coefficients
|
||||
acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
|
||||
grid->GlobalSumVector(&HOST_C[0],nev*nrhs);
|
||||
for(int e=0;e<nev;e++){
|
||||
RealD lam(1.0/eval[e]);
|
||||
for(int r=0;r<nrhs;r++){
|
||||
int off = e+nev*r;
|
||||
HOST_C[off]=HOST_C[off] * lam;
|
||||
// std::cout << "C["<<e<<"]["<<r<<"] ="<<HOST_C[off]<< " eval[e] "<<eval[e] <<std::endl;
|
||||
}
|
||||
}
|
||||
acceleratorCopyToDevice(&HOST_C[0],&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
|
||||
|
||||
|
||||
/////////////////////////////////////////
|
||||
// Guess G_xr = Exe Cer
|
||||
/////////////////////////////////////////
|
||||
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
vw,nrhs,nev,
|
||||
ComplexD(1.0),
|
||||
Ed, // x . nev
|
||||
Cd, // nev . nrhs
|
||||
ComplexD(0.0),
|
||||
Gd);
|
||||
BLAS.synchronise();
|
||||
|
||||
///////////////////////////////////////
|
||||
// Copy out the multirhs
|
||||
///////////////////////////////////////
|
||||
for(int r=0;r<nrhs;r++){
|
||||
int64_t offset = r*vw;
|
||||
autoView(v,guess[r],AcceleratorWrite);
|
||||
acceleratorCopyDeviceToDevice(&BLAS_G[offset],&v[0],sizeof(scalar_object)*vol);
|
||||
}
|
||||
RealD t1 = usecond();
|
||||
std::cout << GridLogMessage << "MultiRHSDeflation for "<<nrhs<<" sources with "<<nev<<" eigenvectors took " << (t1-t0)/1e3 <<" ms"<<std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -33,109 +33,111 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
* Script A = SolverMatrix
|
||||
* Script P = Preconditioner
|
||||
*
|
||||
* Deflation methods considered
|
||||
* -- Solve P A x = P b [ like Luscher ]
|
||||
* DEF-1 M P A x = M P b [i.e. left precon]
|
||||
* DEF-2 P^T M A x = P^T M b
|
||||
* ADEF-1 Preconditioner = M P + Q [ Q + M + M A Q]
|
||||
* ADEF-2 Preconditioner = P^T M + Q
|
||||
* BNN Preconditioner = P^T M P + Q
|
||||
* BNN2 Preconditioner = M P + P^TM +Q - M P A M
|
||||
*
|
||||
* Implement ADEF-2
|
||||
*
|
||||
* Vstart = P^Tx + Qb
|
||||
* M1 = P^TM + Q
|
||||
* M2=M3=1
|
||||
* Vout = x
|
||||
*/
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// abstract base
|
||||
template<class Field, class CoarseField>
|
||||
class TwoLevelFlexiblePcg : public LinearFunction<Field>
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelCG : public LinearFunction<Field>
|
||||
{
|
||||
public:
|
||||
int verbose;
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
const int mmax = 5;
|
||||
GridBase *grid;
|
||||
GridBase *coarsegrid;
|
||||
|
||||
LinearOperatorBase<Field> *_Linop
|
||||
OperatorFunction<Field> *_Smoother,
|
||||
LinearFunction<CoarseField> *_CoarseSolver;
|
||||
|
||||
// Need somthing that knows how to get from Coarse to fine and back again
|
||||
// Fine operator, Smoother, CoarseSolver
|
||||
LinearOperatorBase<Field> &_FineLinop;
|
||||
LinearFunction<Field> &_Smoother;
|
||||
|
||||
// more most opertor functions
|
||||
TwoLevelFlexiblePcg(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> *Linop,
|
||||
LinearOperatorBase<Field> *SmootherLinop,
|
||||
OperatorFunction<Field> *Smoother,
|
||||
OperatorFunction<CoarseField> CoarseLinop
|
||||
) :
|
||||
TwoLevelCG(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> &FineLinop,
|
||||
LinearFunction<Field> &Smoother,
|
||||
GridBase *fine) :
|
||||
Tolerance(tol),
|
||||
MaxIterations(maxit),
|
||||
_Linop(Linop),
|
||||
_PreconditionerLinop(PrecLinop),
|
||||
_Preconditioner(Preconditioner)
|
||||
{
|
||||
verbose=0;
|
||||
_FineLinop(FineLinop),
|
||||
_Smoother(Smoother)
|
||||
{
|
||||
grid = fine;
|
||||
};
|
||||
|
||||
// The Pcg routine is common to all, but the various matrices differ from derived
|
||||
// implementation to derived implmentation
|
||||
void operator() (const Field &src, Field &psi){
|
||||
void operator() (const Field &src, Field &psi){
|
||||
|
||||
psi.Checkerboard() = src.Checkerboard();
|
||||
grid = src.Grid();
|
||||
|
||||
|
||||
virtual void operator() (const Field &src, Field &x)
|
||||
{
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg starting single RHS"<<std::endl;
|
||||
RealD f;
|
||||
RealD rtzp,rtz,a,d,b;
|
||||
RealD rptzp;
|
||||
RealD tn;
|
||||
RealD guess = norm2(psi);
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = ssq*Tolerance*Tolerance;
|
||||
|
||||
|
||||
/////////////////////////////
|
||||
// Set up history vectors
|
||||
/////////////////////////////
|
||||
std::vector<Field> p (mmax,grid);
|
||||
int mmax = 5;
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
|
||||
std::vector<Field> p(mmax,grid);
|
||||
std::vector<Field> mmp(mmax,grid);
|
||||
std::vector<RealD> pAp(mmax);
|
||||
|
||||
Field x (grid); x = psi;
|
||||
Field z (grid);
|
||||
Field z(grid);
|
||||
Field tmp(grid);
|
||||
Field r (grid);
|
||||
Field mu (grid);
|
||||
|
||||
Field mp (grid);
|
||||
Field r (grid);
|
||||
Field mu (grid);
|
||||
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated"<<std::endl;
|
||||
//Initial residual computation & set up
|
||||
RealD guess = norm2(x);
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg guess nrm "<<guess<<std::endl;
|
||||
RealD src_nrm = norm2(src);
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg src nrm "<<src_nrm<<std::endl;
|
||||
|
||||
if ( src_nrm == 0.0 ) {
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg given trivial source norm "<<src_nrm<<std::endl;
|
||||
x=Zero();
|
||||
}
|
||||
RealD tn;
|
||||
|
||||
GridStopWatch HDCGTimer;
|
||||
HDCGTimer.Start();
|
||||
//////////////////////////
|
||||
// x0 = Vstart -- possibly modify guess
|
||||
//////////////////////////
|
||||
x=src;
|
||||
Vstart(x,src);
|
||||
|
||||
|
||||
// r0 = b -A x0
|
||||
HermOp(x,mmp); // Shouldn't this be something else?
|
||||
_FineLinop.HermOp(x,mmp[0]);
|
||||
axpy (r, -1.0,mmp[0], src); // Recomputes r=src-Ax0
|
||||
{
|
||||
double n1 = norm2(x);
|
||||
double n2 = norm2(mmp[0]);
|
||||
double n3 = norm2(r);
|
||||
std::cout<<GridLogMessage<<"x,vstart,r = "<<n1<<" "<<n2<<" "<<n3<<std::endl;
|
||||
}
|
||||
|
||||
//////////////////////////////////
|
||||
// Compute z = M1 x
|
||||
//////////////////////////////////
|
||||
M1(r,z,tmp,mp,SmootherMirs);
|
||||
PcgM1(r,z);
|
||||
rtzp =real(innerProduct(r,z));
|
||||
|
||||
|
||||
///////////////////////////////////////
|
||||
// Solve for Mss mu = P A z and set p = z-mu
|
||||
// Def2: p = 1 - Q Az = Pright z
|
||||
// Def2 p = 1 - Q Az = Pright z
|
||||
// Other algos M2 is trivial
|
||||
///////////////////////////////////////
|
||||
M2(z,p[0]);
|
||||
PcgM2(z,p[0]);
|
||||
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = ssq*Tolerance*Tolerance;
|
||||
|
||||
std::cout << GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" rsq "<<rsq<<"\n";
|
||||
|
||||
Field pp(grid);
|
||||
|
||||
for (int k=0;k<=MaxIterations;k++){
|
||||
|
||||
@ -143,31 +145,46 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field>
|
||||
int peri_kp = (k+1) % mmax;
|
||||
|
||||
rtz=rtzp;
|
||||
d= M3(p[peri_k],mp,mmp[peri_k],tmp);
|
||||
d= PcgM3(p[peri_k],mmp[peri_k]);
|
||||
a = rtz/d;
|
||||
|
||||
// Memorise this
|
||||
pAp[peri_k] = d;
|
||||
|
||||
|
||||
axpy(x,a,p[peri_k],x);
|
||||
RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
|
||||
|
||||
// Compute z = M x
|
||||
M1(r,z,tmp,mp);
|
||||
|
||||
PcgM1(r,z);
|
||||
|
||||
{
|
||||
RealD n1,n2;
|
||||
n1=norm2(r);
|
||||
n2=norm2(z);
|
||||
std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : vector r,z "<<n1<<" "<<n2<<"\n";
|
||||
}
|
||||
rtzp =real(innerProduct(r,z));
|
||||
std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : inner rtzp "<<rtzp<<"\n";
|
||||
|
||||
M2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
|
||||
// PcgM2(z,p[0]);
|
||||
PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
|
||||
|
||||
p[peri_kp]=mu;
|
||||
|
||||
p[peri_kp]=p[peri_k];
|
||||
|
||||
// Standard search direction p -> z + b p ; b =
|
||||
// Standard search direction p -> z + b p
|
||||
b = (rtzp)/rtz;
|
||||
|
||||
|
||||
int northog;
|
||||
// k=zero <=> peri_kp=1; northog = 1
|
||||
// k=1 <=> peri_kp=2; northog = 2
|
||||
// ... ... ...
|
||||
// k=mmax-2<=> peri_kp=mmax-1; northog = mmax-1
|
||||
// k=mmax-1<=> peri_kp=0; northog = 1
|
||||
|
||||
// northog = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
|
||||
northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
|
||||
|
||||
std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
|
||||
for(int back=0; back < northog; back++){
|
||||
int peri_back = (k-back)%mmax;
|
||||
RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
|
||||
@ -176,75 +193,324 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field>
|
||||
}
|
||||
|
||||
RealD rrn=sqrt(rn/ssq);
|
||||
std::cout<<GridLogMessage<<"TwoLevelfPcg: k= "<<k<<" residual = "<<rrn<<std::endl;
|
||||
RealD rtn=sqrt(rtz/ssq);
|
||||
RealD rtnp=sqrt(rtzp/ssq);
|
||||
|
||||
std::cout<<GridLogMessage<<"HDCG: fPcg k= "<<k<<" residual = "<<rrn<<"\n";
|
||||
|
||||
// Stopping condition
|
||||
if ( rn <= rsq ) {
|
||||
|
||||
HermOp(x,mmp); // Shouldn't this be something else?
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
|
||||
|
||||
_FineLinop.HermOp(x,mmp[0]);
|
||||
axpy(tmp,-1.0,src,mmp[0]);
|
||||
|
||||
RealD psinorm = sqrt(norm2(x));
|
||||
RealD srcnorm = sqrt(norm2(src));
|
||||
RealD tmpnorm = sqrt(norm2(tmp));
|
||||
RealD true_residual = tmpnorm/srcnorm;
|
||||
std::cout<<GridLogMessage<<"TwoLevelfPcg: true residual is "<<true_residual<<std::endl;
|
||||
std::cout<<GridLogMessage<<"TwoLevelfPcg: target residual was"<<Tolerance<<std::endl;
|
||||
return k;
|
||||
RealD mmpnorm = sqrt(norm2(mmp[0]));
|
||||
RealD xnorm = sqrt(norm2(x));
|
||||
RealD srcnorm = sqrt(norm2(src));
|
||||
RealD tmpnorm = sqrt(norm2(tmp));
|
||||
RealD true_residual = tmpnorm/srcnorm;
|
||||
std::cout<<GridLogMessage
|
||||
<<"HDCG: true residual is "<<true_residual
|
||||
<<" solution "<<xnorm
|
||||
<<" source "<<srcnorm
|
||||
<<" mmp "<<mmpnorm
|
||||
<<std::endl;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
// Non-convergence
|
||||
assert(0);
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
|
||||
RealD xnorm = sqrt(norm2(x));
|
||||
RealD srcnorm = sqrt(norm2(src));
|
||||
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
|
||||
}
|
||||
|
||||
|
||||
|
||||
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
|
||||
{
|
||||
std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
int nrhs = src.size();
|
||||
std::vector<RealD> f(nrhs);
|
||||
std::vector<RealD> rtzp(nrhs);
|
||||
std::vector<RealD> rtz(nrhs);
|
||||
std::vector<RealD> a(nrhs);
|
||||
std::vector<RealD> d(nrhs);
|
||||
std::vector<RealD> b(nrhs);
|
||||
std::vector<RealD> rptzp(nrhs);
|
||||
/////////////////////////////
|
||||
// Set up history vectors
|
||||
/////////////////////////////
|
||||
int mmax = 3;
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
std::vector<std::vector<Field> > p(nrhs); for(int r=0;r<nrhs;r++) p[r].resize(mmax,grid);
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated p"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated mmp"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated pAp"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
std::vector<Field> z(nrhs,grid);
|
||||
std::vector<Field> mp (nrhs,grid);
|
||||
std::vector<Field> r (nrhs,grid);
|
||||
std::vector<Field> mu (nrhs,grid);
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated z,mp,r,mu"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
|
||||
//Initial residual computation & set up
|
||||
std::vector<RealD> src_nrm(nrhs);
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
src_nrm[rhs]=norm2(src[rhs]);
|
||||
assert(src_nrm[rhs]!=0.0);
|
||||
}
|
||||
std::vector<RealD> tn(nrhs);
|
||||
|
||||
GridStopWatch HDCGTimer;
|
||||
HDCGTimer.Start();
|
||||
//////////////////////////
|
||||
// x0 = Vstart -- possibly modify guess
|
||||
//////////////////////////
|
||||
Vstart(x,src);
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
// r0 = b -A x0
|
||||
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
|
||||
axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]); // Recomputes r=src-Ax0
|
||||
}
|
||||
|
||||
//////////////////////////////////
|
||||
// Compute z = M1 x
|
||||
//////////////////////////////////
|
||||
// This needs a multiRHS version for acceleration
|
||||
PcgM1(r,z);
|
||||
|
||||
std::vector<RealD> ssq(nrhs);
|
||||
std::vector<RealD> rsq(nrhs);
|
||||
std::vector<Field> pp(nrhs,grid);
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
|
||||
p[rhs][0]=z[rhs];
|
||||
ssq[rhs]=norm2(src[rhs]);
|
||||
rsq[rhs]= ssq[rhs]*Tolerance*Tolerance;
|
||||
std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
|
||||
}
|
||||
|
||||
std::vector<RealD> rn(nrhs);
|
||||
for (int k=0;k<=MaxIterations;k++){
|
||||
|
||||
int peri_k = k % mmax;
|
||||
int peri_kp = (k+1) % mmax;
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
rtz[rhs]=rtzp[rhs];
|
||||
d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
|
||||
a[rhs] = rtz[rhs]/d[rhs];
|
||||
|
||||
// Memorise this
|
||||
pAp[rhs][peri_k] = d[rhs];
|
||||
|
||||
axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
|
||||
rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
|
||||
}
|
||||
|
||||
// Compute z = M x (for *all* RHS)
|
||||
PcgM1(r,z);
|
||||
std::cout << GridLogMessage<<"HDCG::fPcg M1 complete"<<std::endl;
|
||||
grid->Barrier();
|
||||
|
||||
RealD max_rn=0.0;
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
|
||||
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
|
||||
|
||||
std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
|
||||
|
||||
mu[rhs]=z[rhs];
|
||||
|
||||
p[rhs][peri_kp]=mu[rhs];
|
||||
|
||||
// Standard search direction p == z + b p
|
||||
b[rhs] = (rtzp[rhs])/rtz[rhs];
|
||||
|
||||
int northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
|
||||
std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
|
||||
for(int back=0; back < northog; back++){
|
||||
int peri_back = (k-back)%mmax;
|
||||
RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
|
||||
RealD beta = -pbApk/pAp[rhs][peri_back];
|
||||
axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
|
||||
}
|
||||
|
||||
RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
|
||||
RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
|
||||
RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
|
||||
|
||||
std::cout<<GridLogMessage<<"HDCG: rhs "<<rhs<<"fPcg k= "<<k<<" residual = "<<rrn<<"\n";
|
||||
if ( rrn > max_rn ) max_rn = rrn;
|
||||
}
|
||||
|
||||
// Stopping condition based on worst case
|
||||
if ( max_rn <= Tolerance ) {
|
||||
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
|
||||
Field tmp(grid);
|
||||
axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
|
||||
|
||||
RealD mmpnorm = sqrt(norm2(mmp[rhs][0]));
|
||||
RealD xnorm = sqrt(norm2(x[rhs]));
|
||||
RealD srcnorm = sqrt(norm2(src[rhs]));
|
||||
RealD tmpnorm = sqrt(norm2(tmp));
|
||||
RealD true_residual = tmpnorm/srcnorm;
|
||||
std::cout<<GridLogMessage
|
||||
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
|
||||
<<" solution "<<xnorm
|
||||
<<" source "<<srcnorm
|
||||
<<" mmp "<<mmpnorm
|
||||
<<std::endl;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
RealD xnorm = sqrt(norm2(x[rhs]));
|
||||
RealD srcnorm = sqrt(norm2(src[rhs]));
|
||||
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public:
|
||||
|
||||
virtual void M(Field & in,Field & out,Field & tmp) {
|
||||
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out)
|
||||
{
|
||||
std::cout << "PcgM1 default (cheat) mrhs version"<<std::endl;
|
||||
for(int rhs=0;rhs<in.size();rhs++){
|
||||
this->PcgM1(in[rhs],out[rhs]);
|
||||
}
|
||||
}
|
||||
virtual void PcgM1(Field & in, Field & out) =0;
|
||||
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
|
||||
{
|
||||
std::cout << "Vstart default (cheat) mrhs version"<<std::endl;
|
||||
for(int rhs=0;rhs<x.size();rhs++){
|
||||
this->Vstart(x[rhs],src[rhs]);
|
||||
}
|
||||
}
|
||||
virtual void Vstart(Field & x,const Field & src)=0;
|
||||
|
||||
virtual void PcgM2(const Field & in, Field & out) {
|
||||
out=in;
|
||||
}
|
||||
|
||||
virtual void M1(Field & in, Field & out) {// the smoother
|
||||
virtual RealD PcgM3(const Field & p, Field & mmp){
|
||||
RealD dd;
|
||||
_FineLinop.HermOp(p,mmp);
|
||||
ComplexD dot = innerProduct(p,mmp);
|
||||
dd=real(dot);
|
||||
return dd;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Only Def1 has non-trivial Vout.
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
|
||||
};
|
||||
|
||||
template<class Field, class CoarseField, class Aggregation>
|
||||
class TwoLevelADEF2 : public TwoLevelCG<Field>
|
||||
{
|
||||
public:
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
// Need something that knows how to get from Coarse to fine and back again
|
||||
// void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
|
||||
// void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
GridBase *coarsegrid;
|
||||
Aggregation &_Aggregates;
|
||||
LinearFunction<CoarseField> &_CoarseSolver;
|
||||
LinearFunction<CoarseField> &_CoarseSolverPrecise;
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// more most opertor functions
|
||||
TwoLevelADEF2(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> &FineLinop,
|
||||
LinearFunction<Field> &Smoother,
|
||||
LinearFunction<CoarseField> &CoarseSolver,
|
||||
LinearFunction<CoarseField> &CoarseSolverPrecise,
|
||||
Aggregation &Aggregates
|
||||
) :
|
||||
TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid),
|
||||
_CoarseSolver(CoarseSolver),
|
||||
_CoarseSolverPrecise(CoarseSolverPrecise),
|
||||
_Aggregates(Aggregates)
|
||||
{
|
||||
coarsegrid = Aggregates.CoarseGrid;
|
||||
};
|
||||
|
||||
virtual void PcgM1(Field & in, Field & out)
|
||||
{
|
||||
GRID_TRACE("MultiGridPreconditioner ");
|
||||
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
|
||||
Field tmp(grid);
|
||||
Field Min(grid);
|
||||
|
||||
PcgM(in,Min); // Smoother call
|
||||
Field tmp(this->grid);
|
||||
Field Min(this->grid);
|
||||
CoarseField PleftProj(this->coarsegrid);
|
||||
CoarseField PleftMss_proj(this->coarsegrid);
|
||||
|
||||
HermOp(Min,out);
|
||||
GridStopWatch SmootherTimer;
|
||||
GridStopWatch MatrixTimer;
|
||||
SmootherTimer.Start();
|
||||
this->_Smoother(in,Min);
|
||||
SmootherTimer.Stop();
|
||||
|
||||
MatrixTimer.Start();
|
||||
this->_FineLinop.HermOp(Min,out);
|
||||
MatrixTimer.Stop();
|
||||
axpy(tmp,-1.0,out,in); // tmp = in - A Min
|
||||
|
||||
ProjectToSubspace(tmp,PleftProj);
|
||||
ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
|
||||
PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
|
||||
GridStopWatch ProjTimer;
|
||||
GridStopWatch CoarseTimer;
|
||||
GridStopWatch PromTimer;
|
||||
ProjTimer.Start();
|
||||
this->_Aggregates.ProjectToSubspace(PleftProj,tmp);
|
||||
ProjTimer.Stop();
|
||||
CoarseTimer.Start();
|
||||
this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
|
||||
CoarseTimer.Stop();
|
||||
PromTimer.Start();
|
||||
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
|
||||
PromTimer.Stop();
|
||||
std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl;
|
||||
std::cout << GridLogPerformance << "\tSmoother " << SmootherTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tProj " << ProjTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tCoarse " << CoarseTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tProm " << PromTimer.Elapsed() <<std::endl;
|
||||
|
||||
axpy(out,1.0,Min,tmp); // Min+tmp
|
||||
}
|
||||
|
||||
virtual void M2(const Field & in, Field & out) {
|
||||
out=in;
|
||||
// Must override for Def2 only
|
||||
// case PcgDef2:
|
||||
// Pright(in,out);
|
||||
// break;
|
||||
}
|
||||
|
||||
virtual RealD M3(const Field & p, Field & mmp){
|
||||
double d,dd;
|
||||
HermOpAndNorm(p,mmp,d,dd);
|
||||
return dd;
|
||||
// Must override for Def1 only
|
||||
// case PcgDef1:
|
||||
// d=linop_d->Mprec(p,mmp,tmp,0,1);// Dag no
|
||||
// linop_d->Mprec(mmp,mp,tmp,1);// Dag yes
|
||||
// Pleft(mp,mmp);
|
||||
// d=real(linop_d->inner(p,mmp));
|
||||
}
|
||||
|
||||
virtual void VstartDef2(Field & xconst Field & src){
|
||||
//case PcgDef2:
|
||||
//case PcgAdef2:
|
||||
//case PcgAdef2f:
|
||||
//case PcgV11f:
|
||||
virtual void Vstart(Field & x,const Field & src)
|
||||
{
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg Vstart "<<std::endl;
|
||||
///////////////////////////////////
|
||||
// Choose x_0 such that
|
||||
// x_0 = guess + (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
|
||||
@ -256,142 +522,78 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field>
|
||||
// = src_s - (A guess)_s - src_s + (A guess)_s
|
||||
// = 0
|
||||
///////////////////////////////////
|
||||
Field r(grid);
|
||||
Field mmp(grid);
|
||||
|
||||
HermOp(x,mmp);
|
||||
axpy (r, -1.0, mmp, src); // r_{-1} = src - A x
|
||||
ProjectToSubspace(r,PleftProj);
|
||||
ApplyInverseCG(PleftProj,PleftMss_proj); // Ass^{-1} r_s
|
||||
PromoteFromSubspace(PleftMss_proj,mmp);
|
||||
x=x+mmp;
|
||||
Field r(this->grid);
|
||||
Field mmp(this->grid);
|
||||
CoarseField PleftProj(this->coarsegrid);
|
||||
CoarseField PleftMss_proj(this->coarsegrid);
|
||||
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg Vstart projecting "<<std::endl;
|
||||
this->_Aggregates.ProjectToSubspace(PleftProj,src);
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg Vstart coarse solve "<<std::endl;
|
||||
this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg Vstart promote "<<std::endl;
|
||||
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelADEF1defl : public TwoLevelCG<Field>
|
||||
{
|
||||
public:
|
||||
const std::vector<Field> &evec;
|
||||
const std::vector<RealD> &eval;
|
||||
|
||||
TwoLevelADEF1defl(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> &FineLinop,
|
||||
LinearFunction<Field> &Smoother,
|
||||
std::vector<Field> &_evec,
|
||||
std::vector<RealD> &_eval) :
|
||||
TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()),
|
||||
evec(_evec),
|
||||
eval(_eval)
|
||||
{};
|
||||
|
||||
// Can just inherit existing M2
|
||||
// Can just inherit existing M3
|
||||
|
||||
// Simple vstart - do nothing
|
||||
virtual void Vstart(Field & x,const Field & src){
|
||||
return;
|
||||
x=src; // Could apply Q
|
||||
};
|
||||
|
||||
// Override PcgM1
|
||||
virtual void PcgM1(Field & in, Field & out)
|
||||
{
|
||||
GRID_TRACE("EvecPreconditioner ");
|
||||
int N=evec.size();
|
||||
Field Pin(this->grid);
|
||||
Field Qin(this->grid);
|
||||
|
||||
//MP + Q = M(1-AQ) + Q = M
|
||||
// // If we are eigenvector deflating in coarse space
|
||||
// // Q = Sum_i |phi_i> 1/lambda_i <phi_i|
|
||||
// // A Q = Sum_i |phi_i> <phi_i|
|
||||
// // M(1-AQ) = M(1-proj) + Q
|
||||
Qin.Checkerboard()=in.Checkerboard();
|
||||
Qin = Zero();
|
||||
Pin = in;
|
||||
for (int i=0;i<N;i++) {
|
||||
const Field& tmp = evec[i];
|
||||
auto ip = TensorRemove(innerProduct(tmp,in));
|
||||
axpy(Qin, ip / eval[i],tmp,Qin);
|
||||
axpy(Pin, -ip ,tmp,Pin);
|
||||
}
|
||||
|
||||
this->_Smoother(Pin,out);
|
||||
|
||||
out = out + Qin;
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Only Def1 has non-trivial Vout. Override in Def1
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
virtual void Vout (Field & in, Field & out,Field & src){
|
||||
out = in;
|
||||
//case PcgDef1:
|
||||
// //Qb + PT x
|
||||
// ProjectToSubspace(src,PleftProj);
|
||||
// ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} r_s
|
||||
// PromoteFromSubspace(PleftMss_proj,tmp);
|
||||
//
|
||||
// Pright(in,out);
|
||||
//
|
||||
// linop_d->axpy(out,tmp,out,1.0);
|
||||
// break;
|
||||
}
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Pright and Pleft are common to all implementations
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
virtual void Pright(Field & in,Field & out){
|
||||
// P_R = [ 1 0 ]
|
||||
// [ -Mss^-1 Msb 0 ]
|
||||
Field in_sbar(grid);
|
||||
|
||||
ProjectToSubspace(in,PleftProj);
|
||||
PromoteFromSubspace(PleftProj,out);
|
||||
axpy(in_sbar,-1.0,out,in); // in_sbar = in - in_s
|
||||
|
||||
HermOp(in_sbar,out);
|
||||
ProjectToSubspace(out,PleftProj); // Mssbar in_sbar (project)
|
||||
|
||||
ApplyInverse (PleftProj,PleftMss_proj); // Mss^{-1} Mssbar
|
||||
PromoteFromSubspace(PleftMss_proj,out); //
|
||||
|
||||
axpy(out,-1.0,out,in_sbar); // in_sbar - Mss^{-1} Mssbar in_sbar
|
||||
}
|
||||
virtual void Pleft (Field & in,Field & out){
|
||||
// P_L = [ 1 -Mbs Mss^-1]
|
||||
// [ 0 0 ]
|
||||
Field in_sbar(grid);
|
||||
Field tmp2(grid);
|
||||
Field Mtmp(grid);
|
||||
|
||||
ProjectToSubspace(in,PleftProj);
|
||||
PromoteFromSubspace(PleftProj,out);
|
||||
axpy(in_sbar,-1.0,out,in); // in_sbar = in - in_s
|
||||
|
||||
ApplyInverse(PleftProj,PleftMss_proj); // Mss^{-1} in_s
|
||||
PromoteFromSubspace(PleftMss_proj,out);
|
||||
|
||||
HermOp(out,Mtmp);
|
||||
|
||||
ProjectToSubspace(Mtmp,PleftProj); // Msbar s Mss^{-1}
|
||||
PromoteFromSubspace(PleftProj,tmp2);
|
||||
|
||||
axpy(out,-1.0,tmp2,Mtmp);
|
||||
axpy(out,-1.0,out,in_sbar); // in_sbar - Msbars Mss^{-1} in_s
|
||||
}
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelFlexiblePcgADef2 : public TwoLevelFlexiblePcg<Field> {
|
||||
public:
|
||||
virtual void M(Field & in,Field & out,Field & tmp){
|
||||
|
||||
}
|
||||
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp){
|
||||
|
||||
}
|
||||
virtual void M2(Field & in, Field & out){
|
||||
|
||||
}
|
||||
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp){
|
||||
|
||||
}
|
||||
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp){
|
||||
|
||||
}
|
||||
}
|
||||
/*
|
||||
template<class Field>
|
||||
class TwoLevelFlexiblePcgAD : public TwoLevelFlexiblePcg<Field> {
|
||||
public:
|
||||
virtual void M(Field & in,Field & out,Field & tmp);
|
||||
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||
virtual void M2(Field & in, Field & out);
|
||||
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelFlexiblePcgDef1 : public TwoLevelFlexiblePcg<Field> {
|
||||
public:
|
||||
virtual void M(Field & in,Field & out,Field & tmp);
|
||||
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||
virtual void M2(Field & in, Field & out);
|
||||
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||
virtual void Vout (Field & in, Field & out,Field & src,Field & tmp);
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelFlexiblePcgDef2 : public TwoLevelFlexiblePcg<Field> {
|
||||
public:
|
||||
virtual void M(Field & in,Field & out,Field & tmp);
|
||||
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||
virtual void M2(Field & in, Field & out);
|
||||
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelFlexiblePcgV11: public TwoLevelFlexiblePcg<Field> {
|
||||
public:
|
||||
virtual void M(Field & in,Field & out,Field & tmp);
|
||||
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||
virtual void M2(Field & in, Field & out);
|
||||
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||
}
|
||||
*/
|
||||
#endif
|
||||
|
414
Grid/algorithms/iterative/AdefMrhs.h
Normal file
414
Grid/algorithms/iterative/AdefMrhs.h
Normal file
@ -0,0 +1,414 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/AdefGeneric.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
|
||||
/*
|
||||
* Compared to Tang-2009: P=Pleft. P^T = PRight Q=MssInv.
|
||||
* Script A = SolverMatrix
|
||||
* Script P = Preconditioner
|
||||
*
|
||||
* Implement ADEF-2
|
||||
*
|
||||
* Vstart = P^Tx + Qb
|
||||
* M1 = P^TM + Q
|
||||
* M2=M3=1
|
||||
*/
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelCGmrhs
|
||||
{
|
||||
public:
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
GridBase *grid;
|
||||
|
||||
// Fine operator, Smoother, CoarseSolver
|
||||
LinearOperatorBase<Field> &_FineLinop;
|
||||
LinearFunction<Field> &_Smoother;
|
||||
|
||||
GridStopWatch ProjectTimer;
|
||||
GridStopWatch PromoteTimer;
|
||||
GridStopWatch DeflateTimer;
|
||||
GridStopWatch CoarseTimer;
|
||||
GridStopWatch FineTimer;
|
||||
GridStopWatch SmoothTimer;
|
||||
GridStopWatch InsertTimer;
|
||||
|
||||
|
||||
// more most opertor functions
|
||||
TwoLevelCGmrhs(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> &FineLinop,
|
||||
LinearFunction<Field> &Smoother,
|
||||
GridBase *fine) :
|
||||
Tolerance(tol),
|
||||
MaxIterations(maxit),
|
||||
_FineLinop(FineLinop),
|
||||
_Smoother(Smoother)
|
||||
{
|
||||
grid = fine;
|
||||
};
|
||||
|
||||
// Vector case
|
||||
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
|
||||
{
|
||||
std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
int nrhs = src.size();
|
||||
std::vector<RealD> f(nrhs);
|
||||
std::vector<RealD> rtzp(nrhs);
|
||||
std::vector<RealD> rtz(nrhs);
|
||||
std::vector<RealD> a(nrhs);
|
||||
std::vector<RealD> d(nrhs);
|
||||
std::vector<RealD> b(nrhs);
|
||||
std::vector<RealD> rptzp(nrhs);
|
||||
/////////////////////////////
|
||||
// Set up history vectors
|
||||
/////////////////////////////
|
||||
int mmax = 3;
|
||||
|
||||
std::vector<std::vector<Field> > p(nrhs); for(int r=0;r<nrhs;r++) p[r].resize(mmax,grid);
|
||||
std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
|
||||
std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
|
||||
|
||||
std::vector<Field> z(nrhs,grid);
|
||||
std::vector<Field> mp (nrhs,grid);
|
||||
std::vector<Field> r (nrhs,grid);
|
||||
std::vector<Field> mu (nrhs,grid);
|
||||
|
||||
//Initial residual computation & set up
|
||||
std::vector<RealD> src_nrm(nrhs);
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
src_nrm[rhs]=norm2(src[rhs]);
|
||||
assert(src_nrm[rhs]!=0.0);
|
||||
}
|
||||
std::vector<RealD> tn(nrhs);
|
||||
|
||||
GridStopWatch HDCGTimer;
|
||||
//////////////////////////
|
||||
// x0 = Vstart -- possibly modify guess
|
||||
//////////////////////////
|
||||
Vstart(x,src);
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
// r0 = b -A x0
|
||||
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
|
||||
axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]); // Recomputes r=src-Ax0
|
||||
}
|
||||
|
||||
//////////////////////////////////
|
||||
// Compute z = M1 x
|
||||
//////////////////////////////////
|
||||
// This needs a multiRHS version for acceleration
|
||||
PcgM1(r,z);
|
||||
|
||||
std::vector<RealD> ssq(nrhs);
|
||||
std::vector<RealD> rsq(nrhs);
|
||||
std::vector<Field> pp(nrhs,grid);
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
|
||||
p[rhs][0]=z[rhs];
|
||||
ssq[rhs]=norm2(src[rhs]);
|
||||
rsq[rhs]= ssq[rhs]*Tolerance*Tolerance;
|
||||
// std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
|
||||
}
|
||||
|
||||
ProjectTimer.Reset();
|
||||
PromoteTimer.Reset();
|
||||
DeflateTimer.Reset();
|
||||
CoarseTimer.Reset();
|
||||
SmoothTimer.Reset();
|
||||
FineTimer.Reset();
|
||||
InsertTimer.Reset();
|
||||
|
||||
GridStopWatch M1Timer;
|
||||
GridStopWatch M2Timer;
|
||||
GridStopWatch M3Timer;
|
||||
GridStopWatch LinalgTimer;
|
||||
|
||||
HDCGTimer.Start();
|
||||
|
||||
std::vector<RealD> rn(nrhs);
|
||||
for (int k=0;k<=MaxIterations;k++){
|
||||
|
||||
int peri_k = k % mmax;
|
||||
int peri_kp = (k+1) % mmax;
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
rtz[rhs]=rtzp[rhs];
|
||||
M3Timer.Start();
|
||||
d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
|
||||
M3Timer.Stop();
|
||||
a[rhs] = rtz[rhs]/d[rhs];
|
||||
|
||||
LinalgTimer.Start();
|
||||
// Memorise this
|
||||
pAp[rhs][peri_k] = d[rhs];
|
||||
|
||||
axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
|
||||
rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
|
||||
// Compute z = M x (for *all* RHS)
|
||||
M1Timer.Start();
|
||||
PcgM1(r,z);
|
||||
M1Timer.Stop();
|
||||
|
||||
RealD max_rn=0.0;
|
||||
LinalgTimer.Start();
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
|
||||
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
|
||||
|
||||
// std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
|
||||
mu[rhs]=z[rhs];
|
||||
|
||||
p[rhs][peri_kp]=mu[rhs];
|
||||
|
||||
// Standard search direction p == z + b p
|
||||
b[rhs] = (rtzp[rhs])/rtz[rhs];
|
||||
|
||||
int northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
|
||||
for(int back=0; back < northog; back++){
|
||||
int peri_back = (k-back)%mmax;
|
||||
RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
|
||||
RealD beta = -pbApk/pAp[rhs][peri_back];
|
||||
axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
|
||||
}
|
||||
|
||||
RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
|
||||
RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
|
||||
RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
|
||||
|
||||
std::cout<<GridLogMessage<<"HDCG:fPcg rhs "<<rhs<<" k= "<<k<<" residual = "<<rrn<<"\n";
|
||||
if ( rrn > max_rn ) max_rn = rrn;
|
||||
}
|
||||
LinalgTimer.Stop();
|
||||
|
||||
// Stopping condition based on worst case
|
||||
if ( max_rn <= Tolerance ) {
|
||||
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Linalg "<<LinalgTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : fine M3 "<<M3Timer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Project "<<ProjectTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Coarse "<<CoarseTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Fine "<<FineTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Smooth "<<SmoothTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Insert "<<InsertTimer.Elapsed()<<std::endl;;
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
|
||||
Field tmp(grid);
|
||||
axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
|
||||
|
||||
RealD mmpnorm = sqrt(norm2(mmp[rhs][0]));
|
||||
RealD xnorm = sqrt(norm2(x[rhs]));
|
||||
RealD srcnorm = sqrt(norm2(src[rhs]));
|
||||
RealD tmpnorm = sqrt(norm2(tmp));
|
||||
RealD true_residual = tmpnorm/srcnorm;
|
||||
std::cout<<GridLogMessage
|
||||
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
|
||||
<<" solution "<<xnorm
|
||||
<<" source "<<srcnorm
|
||||
<<" mmp "<<mmpnorm
|
||||
<<std::endl;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
RealD xnorm = sqrt(norm2(x[rhs]));
|
||||
RealD srcnorm = sqrt(norm2(src[rhs]));
|
||||
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public:
|
||||
|
||||
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out) = 0;
|
||||
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) = 0;
|
||||
virtual void PcgM2(const Field & in, Field & out) {
|
||||
out=in;
|
||||
}
|
||||
|
||||
virtual RealD PcgM3(const Field & p, Field & mmp){
|
||||
RealD dd;
|
||||
_FineLinop.HermOp(p,mmp);
|
||||
ComplexD dot = innerProduct(p,mmp);
|
||||
dd=real(dot);
|
||||
return dd;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
template<class Field, class CoarseField>
|
||||
class TwoLevelADEF2mrhs : public TwoLevelCGmrhs<Field>
|
||||
{
|
||||
public:
|
||||
GridBase *coarsegrid;
|
||||
GridBase *coarsegridmrhs;
|
||||
LinearFunction<CoarseField> &_CoarseSolverMrhs;
|
||||
LinearFunction<CoarseField> &_CoarseSolverPreciseMrhs;
|
||||
MultiRHSBlockProject<Field> &_Projector;
|
||||
MultiRHSDeflation<CoarseField> &_Deflator;
|
||||
|
||||
|
||||
TwoLevelADEF2mrhs(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> &FineLinop,
|
||||
LinearFunction<Field> &Smoother,
|
||||
LinearFunction<CoarseField> &CoarseSolverMrhs,
|
||||
LinearFunction<CoarseField> &CoarseSolverPreciseMrhs,
|
||||
MultiRHSBlockProject<Field> &Projector,
|
||||
MultiRHSDeflation<CoarseField> &Deflator,
|
||||
GridBase *_coarsemrhsgrid) :
|
||||
TwoLevelCGmrhs<Field>(tol, maxit,FineLinop,Smoother,Projector.fine_grid),
|
||||
_CoarseSolverMrhs(CoarseSolverMrhs),
|
||||
_CoarseSolverPreciseMrhs(CoarseSolverPreciseMrhs),
|
||||
_Projector(Projector),
|
||||
_Deflator(Deflator)
|
||||
{
|
||||
coarsegrid = Projector.coarse_grid;
|
||||
coarsegridmrhs = _coarsemrhsgrid;// Thi could be in projector
|
||||
};
|
||||
|
||||
// Override Vstart
|
||||
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
|
||||
{
|
||||
int nrhs=x.size();
|
||||
///////////////////////////////////
|
||||
// Choose x_0 such that
|
||||
// x_0 = guess + (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
|
||||
// = [1 - Ass_inv A] Guess + Assinv src
|
||||
// = P^T guess + Assinv src
|
||||
// = Vstart [Tang notation]
|
||||
// This gives:
|
||||
// W^T (src - A x_0) = src_s - A guess_s - r_s
|
||||
// = src_s - (A guess)_s - src_s + (A guess)_s
|
||||
// = 0
|
||||
///////////////////////////////////
|
||||
std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
|
||||
std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
|
||||
CoarseField PleftProjMrhs(this->coarsegridmrhs);
|
||||
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
|
||||
|
||||
this->_Projector.blockProject(src,PleftProj);
|
||||
this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
|
||||
InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
|
||||
}
|
||||
|
||||
this->_CoarseSolverPreciseMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} r_s
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
|
||||
}
|
||||
this->_Projector.blockPromote(x,PleftMss_proj);
|
||||
}
|
||||
|
||||
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){
|
||||
|
||||
int nrhs=in.size();
|
||||
|
||||
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
|
||||
std::vector<Field> tmp(nrhs,this->grid);
|
||||
std::vector<Field> Min(nrhs,this->grid);
|
||||
|
||||
std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
|
||||
std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
|
||||
|
||||
CoarseField PleftProjMrhs(this->coarsegridmrhs);
|
||||
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
|
||||
this->SmoothTimer.Start();
|
||||
this->_Smoother(in[rhs],Min[rhs]);
|
||||
this->SmoothTimer.Stop();
|
||||
|
||||
this->FineTimer.Start();
|
||||
this->_FineLinop.HermOp(Min[rhs],out[rhs]);
|
||||
|
||||
axpy(tmp[rhs],-1.0,out[rhs],in[rhs]); // resid = in - A Min
|
||||
this->FineTimer.Stop();
|
||||
|
||||
}
|
||||
|
||||
this->ProjectTimer.Start();
|
||||
this->_Projector.blockProject(tmp,PleftProj);
|
||||
this->ProjectTimer.Stop();
|
||||
this->DeflateTimer.Start();
|
||||
this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
|
||||
this->DeflateTimer.Stop();
|
||||
this->InsertTimer.Start();
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
|
||||
InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
|
||||
}
|
||||
this->InsertTimer.Stop();
|
||||
|
||||
this->CoarseTimer.Start();
|
||||
this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s
|
||||
this->CoarseTimer.Stop();
|
||||
|
||||
this->InsertTimer.Start();
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
|
||||
}
|
||||
this->InsertTimer.Stop();
|
||||
this->PromoteTimer.Start();
|
||||
this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]
|
||||
this->PromoteTimer.Stop();
|
||||
this->FineTimer.Start();
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp
|
||||
}
|
||||
this->FineTimer.Stop();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -54,11 +54,14 @@ public:
|
||||
ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
|
||||
: Tolerance(tol),
|
||||
MaxIterations(maxit),
|
||||
ErrorOnNoConverge(err_on_no_conv){};
|
||||
ErrorOnNoConverge(err_on_no_conv)
|
||||
{};
|
||||
|
||||
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
|
||||
|
||||
GRID_TRACE("ConjugateGradient");
|
||||
GridStopWatch PreambleTimer;
|
||||
PreambleTimer.Start();
|
||||
psi.Checkerboard() = src.Checkerboard();
|
||||
|
||||
conformable(psi, src);
|
||||
@ -66,22 +69,26 @@ public:
|
||||
RealD cp, c, a, d, b, ssq, qq;
|
||||
//RealD b_pred;
|
||||
|
||||
Field p(src);
|
||||
Field mmp(src);
|
||||
Field r(src);
|
||||
// Was doing copies
|
||||
Field p(src.Grid());
|
||||
Field mmp(src.Grid());
|
||||
Field r(src.Grid());
|
||||
|
||||
// Initial residual computation & set up
|
||||
ssq = norm2(src);
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
Linop.HermOpAndNorm(psi, mmp, d, b);
|
||||
|
||||
r = src - mmp;
|
||||
p = r;
|
||||
|
||||
a = norm2(p);
|
||||
if ( guess == 0.0 ) {
|
||||
r = src;
|
||||
p = r;
|
||||
a = ssq;
|
||||
} else {
|
||||
Linop.HermOpAndNorm(psi, mmp, d, b);
|
||||
r = src - mmp;
|
||||
p = r;
|
||||
a = norm2(p);
|
||||
}
|
||||
cp = a;
|
||||
ssq = norm2(src);
|
||||
|
||||
// Handle trivial case of zero src
|
||||
if (ssq == 0.){
|
||||
@ -111,6 +118,7 @@ public:
|
||||
std::cout << GridLogIterative << std::setprecision(8)
|
||||
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
PreambleTimer.Stop();
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch InnerTimer;
|
||||
GridStopWatch AxpyNormTimer;
|
||||
@ -183,13 +191,14 @@ public:
|
||||
<< "\tTrue residual " << true_residual
|
||||
<< "\tTarget " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "Time breakdown "<<std::endl;
|
||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tInner " << InnerTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
||||
// std::cout << GridLogMessage << "\tPreamble " << PreambleTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tSolver Elapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "Time breakdown "<<std::endl;
|
||||
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tInner " << InnerTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
||||
|
||||
std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
|
||||
|
||||
@ -202,12 +211,22 @@ public:
|
||||
}
|
||||
}
|
||||
// Failed. Calculate true residual before giving up
|
||||
Linop.HermOpAndNorm(psi, mmp, d, qq);
|
||||
p = mmp - src;
|
||||
// Linop.HermOpAndNorm(psi, mmp, d, qq);
|
||||
// p = mmp - src;
|
||||
//TrueResidual = sqrt(norm2(p)/ssq);
|
||||
// TrueResidual = 1;
|
||||
|
||||
TrueResidual = sqrt(norm2(p)/ssq);
|
||||
|
||||
std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl;
|
||||
std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations
|
||||
<<" residual "<< std::sqrt(cp / ssq)<< std::endl;
|
||||
SolverTimer.Stop();
|
||||
std::cout << GridLogMessage << "\tPreamble " << PreambleTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "Solver breakdown "<<std::endl;
|
||||
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage<< "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tInner " << InnerTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
||||
|
||||
if (ErrorOnNoConverge) assert(0);
|
||||
IterationsToComplete = k;
|
||||
|
@ -144,7 +144,7 @@ public:
|
||||
for(int s=0;s<nshift;s++){
|
||||
rsq[s] = cp * mresidual[s] * mresidual[s];
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
|
||||
<<" target resid "<<rsq[s]<<std::endl;
|
||||
<<" target resid^2 "<<rsq[s]<<std::endl;
|
||||
ps[s] = src;
|
||||
}
|
||||
// r and p for primary
|
||||
|
@ -166,16 +166,16 @@ public:
|
||||
rsqf[s] =rsq[s];
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
|
||||
// ps_d[s] = src_d;
|
||||
precisionChangeFast(ps_f[s],src_d);
|
||||
precisionChange(ps_f[s],src_d);
|
||||
}
|
||||
// r and p for primary
|
||||
p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
|
||||
r_d = p_d;
|
||||
|
||||
//MdagM+m[0]
|
||||
precisionChangeFast(p_f,p_d);
|
||||
precisionChange(p_f,p_d);
|
||||
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
||||
precisionChangeFast(tmp_d,mmp_f);
|
||||
precisionChange(tmp_d,mmp_f);
|
||||
Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
||||
tmp_d = tmp_d - mmp_d;
|
||||
std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
|
||||
@ -204,7 +204,7 @@ public:
|
||||
|
||||
for(int s=0;s<nshift;s++) {
|
||||
axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
|
||||
precisionChangeFast(psi_f[s],psi_d[s]);
|
||||
precisionChange(psi_f[s],psi_d[s]);
|
||||
}
|
||||
|
||||
///////////////////////////////////////
|
||||
@ -225,7 +225,7 @@ public:
|
||||
AXPYTimer.Stop();
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChangeFast(r_f, r_d);
|
||||
precisionChange(r_f, r_d);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
AXPYTimer.Start();
|
||||
@ -243,13 +243,13 @@ public:
|
||||
|
||||
cp=c;
|
||||
PrecChangeTimer.Start();
|
||||
precisionChangeFast(p_f, p_d); //get back single prec search direction for linop
|
||||
precisionChange(p_f, p_d); //get back single prec search direction for linop
|
||||
PrecChangeTimer.Stop();
|
||||
MatrixTimer.Start();
|
||||
Linop_f.HermOp(p_f,mmp_f);
|
||||
MatrixTimer.Stop();
|
||||
PrecChangeTimer.Start();
|
||||
precisionChangeFast(mmp_d, mmp_f); // From Float to Double
|
||||
precisionChange(mmp_d, mmp_f); // From Float to Double
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
d=real(innerProduct(p_d,mmp_d));
|
||||
@ -311,7 +311,7 @@ public:
|
||||
SolverTimer.Stop();
|
||||
|
||||
for(int s=0;s<nshift;s++){
|
||||
precisionChangeFast(psi_d[s],psi_f[s]);
|
||||
precisionChange(psi_d[s],psi_f[s]);
|
||||
}
|
||||
|
||||
|
||||
|
@ -211,7 +211,7 @@ public:
|
||||
Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
||||
tmp_d = tmp_d - mmp_d;
|
||||
std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
|
||||
// assert(norm2(tmp_d)< 1.0e-4);
|
||||
assert(norm2(tmp_d)< 1.0);
|
||||
|
||||
axpy(mmp_d,mass[0],p_d,mmp_d);
|
||||
RealD rn = norm2(p_d);
|
||||
|
1212
Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h
Normal file
1212
Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h
Normal file
File diff suppressed because it is too large
Load Diff
@ -79,14 +79,16 @@ template<class Field> class ImplicitlyRestartedLanczosHermOpTester : public Imp
|
||||
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
|
||||
|
||||
std::cout.precision(13);
|
||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||
<<std::endl;
|
||||
|
||||
int conv=0;
|
||||
if( (vv<eresid*eresid) ) conv = 1;
|
||||
|
||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||
<<" target " << eresid*eresid << " conv " <<conv
|
||||
<<std::endl;
|
||||
|
||||
return conv;
|
||||
}
|
||||
};
|
||||
@ -419,14 +421,15 @@ until convergence
|
||||
}
|
||||
}
|
||||
|
||||
if ( Nconv < Nstop )
|
||||
if ( Nconv < Nstop ) {
|
||||
std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
|
||||
|
||||
std::cout << GridLogIRL << "returning Nstop vectors, the last "<< Nstop-Nconv << "of which might meet convergence criterion only approximately" <<std::endl;
|
||||
}
|
||||
eval=eval2;
|
||||
|
||||
//Keep only converged
|
||||
eval.resize(Nconv);// Nstop?
|
||||
evec.resize(Nconv,grid);// Nstop?
|
||||
eval.resize(Nstop);// was Nconv
|
||||
evec.resize(Nstop,grid);// was Nconv
|
||||
basisSortInPlace(evec,eval,reverse);
|
||||
|
||||
}
|
||||
@ -456,7 +459,7 @@ until convergence
|
||||
std::vector<Field>& evec,
|
||||
Field& w,int Nm,int k)
|
||||
{
|
||||
std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl;
|
||||
std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl;
|
||||
const RealD tiny = 1.0e-20;
|
||||
assert( k< Nm );
|
||||
|
||||
@ -464,7 +467,7 @@ until convergence
|
||||
|
||||
Field& evec_k = evec[k];
|
||||
|
||||
_PolyOp(evec_k,w); std::cout<<GridLogIRL << "PolyOp" <<std::endl;
|
||||
_PolyOp(evec_k,w); std::cout<<GridLogDebug << "PolyOp" <<std::endl;
|
||||
|
||||
if(k>0) w -= lme[k-1] * evec[k-1];
|
||||
|
||||
@ -479,18 +482,18 @@ until convergence
|
||||
lme[k] = beta;
|
||||
|
||||
if ( (k>0) && ( (k % orth_period) == 0 )) {
|
||||
std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl;
|
||||
std::cout<<GridLogDebug << "Orthogonalising " <<k<<std::endl;
|
||||
orthogonalize(w,evec,k); // orthonormalise
|
||||
std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl;
|
||||
std::cout<<GridLogDebug << "Orthogonalised " <<k<<std::endl;
|
||||
}
|
||||
|
||||
if(k < Nm-1) evec[k+1] = w;
|
||||
|
||||
std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
|
||||
std::cout<<GridLogIRL << "Lanczos step alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
|
||||
if ( beta < tiny )
|
||||
std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
|
||||
|
||||
std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl;
|
||||
std::cout<<GridLogDebug << "Lanczos step complete " <<k<<std::endl;
|
||||
}
|
||||
|
||||
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
|
@ -33,7 +33,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form an NE solver calling a Herm solver
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class NormalEquations {
|
||||
template<class Field> class NormalEquations : public LinearFunction<Field>{
|
||||
private:
|
||||
SparseMatrixBase<Field> & _Matrix;
|
||||
OperatorFunction<Field> & _HermitianSolver;
|
||||
@ -60,7 +60,7 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field> class HPDSolver {
|
||||
template<class Field> class HPDSolver : public LinearFunction<Field> {
|
||||
private:
|
||||
LinearOperatorBase<Field> & _Matrix;
|
||||
OperatorFunction<Field> & _HermitianSolver;
|
||||
@ -78,13 +78,13 @@ public:
|
||||
void operator() (const Field &in, Field &out){
|
||||
|
||||
_Guess(in,out);
|
||||
_HermitianSolver(_Matrix,in,out); // Mdag M out = Mdag in
|
||||
_HermitianSolver(_Matrix,in,out); //M out = in
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<class Field> class MdagMSolver {
|
||||
template<class Field> class MdagMSolver : public LinearFunction<Field> {
|
||||
private:
|
||||
SparseMatrixBase<Field> & _Matrix;
|
||||
OperatorFunction<Field> & _HermitianSolver;
|
||||
|
@ -20,7 +20,7 @@ template<class Field> class PowerMethod
|
||||
RealD evalMaxApprox = 0.0;
|
||||
auto src_n = src;
|
||||
auto tmp = src;
|
||||
const int _MAX_ITER_EST_ = 50;
|
||||
const int _MAX_ITER_EST_ = 100;
|
||||
|
||||
for (int i=0;i<_MAX_ITER_EST_;i++) {
|
||||
|
||||
|
478
Grid/algorithms/multigrid/Aggregates.h
Normal file
478
Grid/algorithms/multigrid/Aggregates.h
Normal file
@ -0,0 +1,478 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/Aggregates.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
inline RealD AggregatePowerLaw(RealD x)
|
||||
{
|
||||
// return std::pow(x,-4);
|
||||
// return std::pow(x,-3);
|
||||
return std::pow(x,-5);
|
||||
}
|
||||
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class Aggregation {
|
||||
public:
|
||||
constexpr int Nbasis(void) { return nbasis; };
|
||||
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef Lattice<siteVector> CoarseVector;
|
||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
|
||||
GridBase *CoarseGrid;
|
||||
GridBase *FineGrid;
|
||||
std::vector<Lattice<Fobj> > subspace;
|
||||
int checkerboard;
|
||||
int Checkerboard(void){return checkerboard;}
|
||||
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
|
||||
CoarseGrid(_CoarseGrid),
|
||||
FineGrid(_FineGrid),
|
||||
subspace(nbasis,_FineGrid),
|
||||
checkerboard(_checkerboard)
|
||||
{
|
||||
};
|
||||
|
||||
|
||||
void Orthogonalise(void){
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
// std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
|
||||
blockOrthogonalise(InnerProd,subspace);
|
||||
}
|
||||
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
|
||||
blockProject(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
|
||||
FineVec.Checkerboard() = subspace[0].Checkerboard();
|
||||
blockPromote(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
|
||||
virtual void CreateSubspaceRandom(GridParallelRNG &RNG) {
|
||||
int nn=nbasis;
|
||||
RealD scale;
|
||||
FineField noise(FineGrid);
|
||||
for(int b=0;b<nn;b++){
|
||||
subspace[b] = Zero();
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
subspace[b] = noise;
|
||||
}
|
||||
}
|
||||
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
|
||||
{
|
||||
|
||||
RealD scale;
|
||||
|
||||
ConjugateGradient<FineField> CG(1.0e-2,100,false);
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
|
||||
for(int b=0;b<nn;b++){
|
||||
|
||||
subspace[b] = Zero();
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
for(int i=0;i<1;i++){
|
||||
|
||||
CG(hermop,noise,subspace[b]);
|
||||
|
||||
noise = subspace[b];
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
}
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
|
||||
subspace[b] = noise;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
|
||||
// and this is the best I found
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
double lo,
|
||||
int orderfilter,
|
||||
int ordermin,
|
||||
int orderstep,
|
||||
double filterlo
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min "
|
||||
<<ordermin<<" step "<<orderstep
|
||||
<<" lo"<<filterlo<<std::endl;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
int b =0;
|
||||
{
|
||||
// Filter
|
||||
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
||||
Cheb(hermop,noise,Mn);
|
||||
// normalise
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
b++;
|
||||
}
|
||||
|
||||
// Generate a full sequence of Chebyshevs
|
||||
{
|
||||
lo=filterlo;
|
||||
noise=Mn;
|
||||
|
||||
FineField T0(FineGrid); T0 = noise;
|
||||
FineField T1(FineGrid);
|
||||
FineField T2(FineGrid);
|
||||
FineField y(FineGrid);
|
||||
|
||||
FineField *Tnm = &T0;
|
||||
FineField *Tn = &T1;
|
||||
FineField *Tnp = &T2;
|
||||
|
||||
// Tn=T1 = (xscale M + mscale)in
|
||||
RealD xscale = 2.0/(hi-lo);
|
||||
RealD mscale = -(hi+lo)/(hi-lo);
|
||||
hermop.HermOp(T0,y);
|
||||
T1=y*xscale+noise*mscale;
|
||||
|
||||
for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
|
||||
|
||||
hermop.HermOp(*Tn,y);
|
||||
|
||||
autoView( y_v , y, AcceleratorWrite);
|
||||
autoView( Tn_v , (*Tn), AcceleratorWrite);
|
||||
autoView( Tnp_v , (*Tnp), AcceleratorWrite);
|
||||
autoView( Tnm_v , (*Tnm), AcceleratorWrite);
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
accelerator_for(ss, FineGrid->oSites(), Nsimd, {
|
||||
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
|
||||
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
|
||||
});
|
||||
|
||||
// Possible more fine grained control is needed than a linear sweep,
|
||||
// but huge productivity gain if this is simple algorithm and not a tunable
|
||||
int m =1;
|
||||
if ( n>=ordermin ) m=n-ordermin;
|
||||
if ( (m%orderstep)==0 ) {
|
||||
Mn=*Tnp;
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
b++;
|
||||
}
|
||||
|
||||
// Cycle pointers to avoid copies
|
||||
FineField *swizzle = Tnm;
|
||||
Tnm =Tn;
|
||||
Tn =Tnp;
|
||||
Tnp =swizzle;
|
||||
|
||||
}
|
||||
}
|
||||
assert(b==nn);
|
||||
}
|
||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
double lo,
|
||||
int orderfilter
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : nbasis "<<nn<<std::endl;
|
||||
|
||||
|
||||
for(int b =0;b<nbasis;b++)
|
||||
{
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn);
|
||||
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
// Filter
|
||||
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
||||
Cheb(hermop,noise,Mn);
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
|
||||
// Refine
|
||||
Chebyshev<FineField> PowerLaw(lo,hi,1000,AggregatePowerLaw);
|
||||
noise = Mn;
|
||||
PowerLaw(hermop,noise,Mn);
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
|
||||
// normalise
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
virtual void CreateSubspaceChebyshevPowerLaw(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
int orderfilter
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" [0,"<<hi<<"]"<<std::endl;
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : nbasis "<<nn<<std::endl;
|
||||
|
||||
for(int b =0;b<nbasis;b++)
|
||||
{
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn);
|
||||
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
// Filter
|
||||
Chebyshev<FineField> Cheb(0.0,hi,orderfilter,AggregatePowerLaw);
|
||||
Cheb(hermop,noise,Mn);
|
||||
// normalise
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
virtual void CreateSubspaceChebyshevNew(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
double hi
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
for(int b =0;b<nbasis;b++)
|
||||
{
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn);
|
||||
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
// Filter
|
||||
//#opt2(x) = acheb(x,3,90,300)* acheb(x,1,90,50) * acheb(x,0.5,90,200) * acheb(x,0.05,90,400) * acheb(x,0.01,90,1500)
|
||||
/*266
|
||||
Chebyshev<FineField> Cheb1(3.0,hi,300);
|
||||
Chebyshev<FineField> Cheb2(1.0,hi,50);
|
||||
Chebyshev<FineField> Cheb3(0.5,hi,300);
|
||||
Chebyshev<FineField> Cheb4(0.05,hi,500);
|
||||
Chebyshev<FineField> Cheb5(0.01,hi,2000);
|
||||
*/
|
||||
/* 242 */
|
||||
/*
|
||||
Chebyshev<FineField> Cheb3(0.1,hi,300);
|
||||
Chebyshev<FineField> Cheb2(0.02,hi,1000);
|
||||
Chebyshev<FineField> Cheb1(0.003,hi,2000);
|
||||
8?
|
||||
*/
|
||||
/* How many??
|
||||
*/
|
||||
Chebyshev<FineField> Cheb2(0.001,hi,2500); // 169 iters on HDCG after refine
|
||||
Chebyshev<FineField> Cheb1(0.02,hi,600);
|
||||
|
||||
// Chebyshev<FineField> Cheb2(0.001,hi,1500);
|
||||
// Chebyshev<FineField> Cheb1(0.02,hi,600);
|
||||
Cheb1(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
||||
hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb1 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
Cheb2(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
||||
hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb2 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
// Cheb3(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
||||
// hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb3 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
// Cheb4(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
||||
// hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb4 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
// Cheb5(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
||||
// hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb5 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
subspace[b] = noise;
|
||||
hermop.Op(subspace[b],tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<< " norm " << norm2(noise)<<std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
virtual void CreateSubspaceMultishift(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
double Lo,double tol,int maxit)
|
||||
{
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
std::cout << GridLogMessage<<" Multishift subspace : Lo "<<Lo<<std::endl;
|
||||
|
||||
// Filter
|
||||
// [ 1/6(x+Lo) - 1/2(x+2Lo) + 1/2(x+3Lo) -1/6(x+4Lo) = Lo^3 /[ (x+1Lo)(x+2Lo)(x+3Lo)(x+4Lo) ]
|
||||
//
|
||||
// 1/(x+Lo) - 1/(x+2 Lo)
|
||||
double epsilon = Lo/3;
|
||||
std::vector<RealD> alpha({1.0/6.0,-1.0/2.0,1.0/2.0,-1.0/6.0});
|
||||
std::vector<RealD> shifts({Lo,Lo+epsilon,Lo+2*epsilon,Lo+3*epsilon});
|
||||
std::vector<RealD> tols({tol,tol,tol,tol});
|
||||
std::cout << "sizes "<<alpha.size()<<" "<<shifts.size()<<" "<<tols.size()<<std::endl;
|
||||
|
||||
MultiShiftFunction msf(4,0.0,95.0);
|
||||
std::cout << "msf constructed "<<std::endl;
|
||||
msf.poles=shifts;
|
||||
msf.residues=alpha;
|
||||
msf.tolerances=tols;
|
||||
msf.norm=0.0;
|
||||
msf.order=alpha.size();
|
||||
ConjugateGradientMultiShift<FineField> MSCG(maxit,msf);
|
||||
|
||||
for(int b =0;b<nbasis;b++)
|
||||
{
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn);
|
||||
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
MSCG(hermop,noise,Mn);
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
virtual void RefineSubspace(LinearOperatorBase<FineField> &hermop,
|
||||
double Lo,double tol,int maxit)
|
||||
{
|
||||
FineField tmp(FineGrid);
|
||||
for(int b =0;b<nbasis;b++)
|
||||
{
|
||||
ConjugateGradient<FineField> CGsloppy(tol,maxit,false);
|
||||
ShiftedHermOpLinearOperator<FineField> ShiftedFineHermOp(hermop,Lo);
|
||||
tmp=Zero();
|
||||
CGsloppy(hermop,subspace[b],tmp);
|
||||
RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
|
||||
subspace[b]=tmp;
|
||||
hermop.Op(subspace[b],tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
}
|
||||
}
|
||||
virtual void RefineSubspaceHDCG(LinearOperatorBase<FineField> &hermop,
|
||||
TwoLevelADEF2mrhs<FineField,CoarseVector> & theHDCG,
|
||||
int nrhs)
|
||||
{
|
||||
std::vector<FineField> src_mrhs(nrhs,FineGrid);
|
||||
std::vector<FineField> res_mrhs(nrhs,FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
for(int b =0;b<nbasis;b+=nrhs)
|
||||
{
|
||||
tmp = subspace[b];
|
||||
RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
|
||||
subspace[b] =tmp;
|
||||
hermop.Op(subspace[b],tmp);
|
||||
std::cout<<GridLogMessage << "before filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
|
||||
for(int r=0;r<MIN(nbasis-b,nrhs);r++){
|
||||
src_mrhs[r] = subspace[b+r];
|
||||
}
|
||||
for(int r=0;r<nrhs;r++){
|
||||
res_mrhs[r] = Zero();
|
||||
}
|
||||
theHDCG(src_mrhs,res_mrhs);
|
||||
|
||||
for(int r=0;r<MIN(nbasis-b,nrhs);r++){
|
||||
tmp = res_mrhs[r];
|
||||
RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
|
||||
subspace[b+r]=tmp;
|
||||
}
|
||||
hermop.Op(subspace[b],tmp);
|
||||
std::cout<<GridLogMessage << "after filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -56,243 +56,6 @@ inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
|
||||
blockSum(CoarseInner,fine_inner_msk);
|
||||
}
|
||||
|
||||
|
||||
class Geometry {
|
||||
public:
|
||||
int npoint;
|
||||
int base;
|
||||
std::vector<int> directions ;
|
||||
std::vector<int> displacements;
|
||||
std::vector<int> points_dagger;
|
||||
|
||||
Geometry(int _d) {
|
||||
|
||||
base = (_d==5) ? 1:0;
|
||||
|
||||
// make coarse grid stencil for 4d , not 5d
|
||||
if ( _d==5 ) _d=4;
|
||||
|
||||
npoint = 2*_d+1;
|
||||
directions.resize(npoint);
|
||||
displacements.resize(npoint);
|
||||
points_dagger.resize(npoint);
|
||||
for(int d=0;d<_d;d++){
|
||||
directions[d ] = d+base;
|
||||
directions[d+_d] = d+base;
|
||||
displacements[d ] = +1;
|
||||
displacements[d+_d]= -1;
|
||||
points_dagger[d ] = d+_d;
|
||||
points_dagger[d+_d] = d;
|
||||
}
|
||||
directions [2*_d]=0;
|
||||
displacements[2*_d]=0;
|
||||
points_dagger[2*_d]=2*_d;
|
||||
}
|
||||
|
||||
int point(int dir, int disp) {
|
||||
assert(disp == -1 || disp == 0 || disp == 1);
|
||||
assert(base+0 <= dir && dir < base+4);
|
||||
|
||||
// directions faster index = new indexing
|
||||
// 4d (base = 0):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 0 1 2 3 0 1 2 3 0
|
||||
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
|
||||
// 5d (base = 1):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 1 2 3 4 1 2 3 4 0
|
||||
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
|
||||
|
||||
// displacements faster index = old indexing
|
||||
// 4d (base = 0):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 0 0 1 1 2 2 3 3 0
|
||||
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
|
||||
// 5d (base = 1):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 1 1 2 2 3 3 4 4 0
|
||||
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
|
||||
|
||||
if(dir == 0 and disp == 0)
|
||||
return 8;
|
||||
else // New indexing
|
||||
return (1 - disp) / 2 * 4 + dir - base;
|
||||
// else // Old indexing
|
||||
// return (4 * (dir - base) + 1 - disp) / 2;
|
||||
}
|
||||
};
|
||||
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class Aggregation {
|
||||
public:
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef Lattice<siteVector> CoarseVector;
|
||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
|
||||
GridBase *CoarseGrid;
|
||||
GridBase *FineGrid;
|
||||
std::vector<Lattice<Fobj> > subspace;
|
||||
int checkerboard;
|
||||
int Checkerboard(void){return checkerboard;}
|
||||
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
|
||||
CoarseGrid(_CoarseGrid),
|
||||
FineGrid(_FineGrid),
|
||||
subspace(nbasis,_FineGrid),
|
||||
checkerboard(_checkerboard)
|
||||
{
|
||||
};
|
||||
|
||||
void Orthogonalise(void){
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
|
||||
blockOrthogonalise(InnerProd,subspace);
|
||||
}
|
||||
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
|
||||
blockProject(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
|
||||
FineVec.Checkerboard() = subspace[0].Checkerboard();
|
||||
blockPromote(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
|
||||
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
ConjugateGradient<FineField> CG(1.0e-2,100,false);
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
|
||||
for(int b=0;b<nn;b++){
|
||||
|
||||
subspace[b] = Zero();
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
for(int i=0;i<1;i++){
|
||||
|
||||
CG(hermop,noise,subspace[b]);
|
||||
|
||||
noise = subspace[b];
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
}
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
|
||||
subspace[b] = noise;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
|
||||
// and this is the best I found
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
double lo,
|
||||
int orderfilter,
|
||||
int ordermin,
|
||||
int orderstep,
|
||||
double filterlo
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
int b =0;
|
||||
{
|
||||
// Filter
|
||||
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
||||
Cheb(hermop,noise,Mn);
|
||||
// normalise
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
b++;
|
||||
}
|
||||
|
||||
// Generate a full sequence of Chebyshevs
|
||||
{
|
||||
lo=filterlo;
|
||||
noise=Mn;
|
||||
|
||||
FineField T0(FineGrid); T0 = noise;
|
||||
FineField T1(FineGrid);
|
||||
FineField T2(FineGrid);
|
||||
FineField y(FineGrid);
|
||||
|
||||
FineField *Tnm = &T0;
|
||||
FineField *Tn = &T1;
|
||||
FineField *Tnp = &T2;
|
||||
|
||||
// Tn=T1 = (xscale M + mscale)in
|
||||
RealD xscale = 2.0/(hi-lo);
|
||||
RealD mscale = -(hi+lo)/(hi-lo);
|
||||
hermop.HermOp(T0,y);
|
||||
T1=y*xscale+noise*mscale;
|
||||
|
||||
for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
|
||||
|
||||
hermop.HermOp(*Tn,y);
|
||||
|
||||
autoView( y_v , y, AcceleratorWrite);
|
||||
autoView( Tn_v , (*Tn), AcceleratorWrite);
|
||||
autoView( Tnp_v , (*Tnp), AcceleratorWrite);
|
||||
autoView( Tnm_v , (*Tnm), AcceleratorWrite);
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
accelerator_for(ss, FineGrid->oSites(), Nsimd, {
|
||||
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
|
||||
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
|
||||
});
|
||||
|
||||
// Possible more fine grained control is needed than a linear sweep,
|
||||
// but huge productivity gain if this is simple algorithm and not a tunable
|
||||
int m =1;
|
||||
if ( n>=ordermin ) m=n-ordermin;
|
||||
if ( (m%orderstep)==0 ) {
|
||||
Mn=*Tnp;
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
b++;
|
||||
}
|
||||
|
||||
// Cycle pointers to avoid copies
|
||||
FineField *swizzle = Tnm;
|
||||
Tnm =Tn;
|
||||
Tn =Tnp;
|
||||
Tnp =swizzle;
|
||||
|
||||
}
|
||||
}
|
||||
assert(b==nn);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
// Fine Object == (per site) type of fine field
|
||||
// nbasis == number of deflation vectors
|
||||
template<class Fobj,class CComplex,int nbasis>
|
619
Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h
Normal file
619
Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h
Normal file
@ -0,0 +1,619 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
|
||||
|
||||
#include <Grid/lattice/PaddedCell.h>
|
||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// Fine Object == (per site) type of fine field
|
||||
// nbasis == number of deflation vectors
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
|
||||
public:
|
||||
|
||||
typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef iMatrix<CComplex,nbasis > siteMatrix;
|
||||
typedef Lattice<iScalar<CComplex> > CoarseComplexField;
|
||||
typedef Lattice<siteVector> CoarseVector;
|
||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||
typedef iMatrix<CComplex,nbasis > Cobj;
|
||||
typedef iVector<CComplex,nbasis > Cvec;
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
typedef Lattice<CComplex > FineComplexField;
|
||||
typedef CoarseVector Field;
|
||||
////////////////////
|
||||
// Data members
|
||||
////////////////////
|
||||
int hermitian;
|
||||
GridBase * _FineGrid;
|
||||
GridCartesian * _CoarseGrid;
|
||||
NonLocalStencilGeometry &geom;
|
||||
PaddedCell Cell;
|
||||
GeneralLocalStencil Stencil;
|
||||
|
||||
std::vector<CoarseMatrix> _A;
|
||||
std::vector<CoarseMatrix> _Adag;
|
||||
std::vector<CoarseVector> MultTemporaries;
|
||||
|
||||
///////////////////////
|
||||
// Interface
|
||||
///////////////////////
|
||||
GridBase * Grid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
|
||||
GridBase * FineGrid(void) { return _FineGrid; }; // this is all the linalg routines need to know
|
||||
GridCartesian * CoarseGrid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
|
||||
|
||||
/* void ShiftMatrix(RealD shift)
|
||||
{
|
||||
int Nd=_FineGrid->Nd();
|
||||
Coordinate zero_shift(Nd,0);
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
if ( zero_shift==geom.shifts[p] ) {
|
||||
_A[p] = _A[p]+shift;
|
||||
// _Adag[p] = _Adag[p]+shift;
|
||||
}
|
||||
}
|
||||
}
|
||||
void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe)
|
||||
{
|
||||
int nfound=0;
|
||||
std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl;
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
for(int pp=0;pp<CopyMe.geom.npoint;pp++){
|
||||
// Search for the same relative shift
|
||||
// Avoids brutal handling of Grid pointers
|
||||
if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
|
||||
_A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
|
||||
// _Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
|
||||
nfound++;
|
||||
}
|
||||
}
|
||||
}
|
||||
assert(nfound==geom.npoint);
|
||||
ExchangeCoarseLinks();
|
||||
}
|
||||
*/
|
||||
|
||||
GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
|
||||
: geom(_geom),
|
||||
_FineGrid(FineGrid),
|
||||
_CoarseGrid(CoarseGrid),
|
||||
hermitian(1),
|
||||
Cell(_geom.Depth(),_CoarseGrid),
|
||||
Stencil(Cell.grids.back(),geom.shifts)
|
||||
{
|
||||
{
|
||||
int npoint = _geom.npoint;
|
||||
}
|
||||
_A.resize(geom.npoint,CoarseGrid);
|
||||
// _Adag.resize(geom.npoint,CoarseGrid);
|
||||
}
|
||||
void M (const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
Mult(_A,in,out);
|
||||
}
|
||||
void Mdag (const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
assert(hermitian);
|
||||
Mult(_A,in,out);
|
||||
// if ( hermitian ) M(in,out);
|
||||
// else Mult(_Adag,in,out);
|
||||
}
|
||||
void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
RealD tviews=0; RealD ttot=0; RealD tmult=0; RealD texch=0; RealD text=0; RealD ttemps=0; RealD tcopy=0;
|
||||
RealD tmult2=0;
|
||||
|
||||
ttot=-usecond();
|
||||
conformable(CoarseGrid(),in.Grid());
|
||||
conformable(in.Grid(),out.Grid());
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
CoarseVector tin=in;
|
||||
|
||||
texch-=usecond();
|
||||
CoarseVector pin = Cell.ExchangePeriodic(tin);
|
||||
texch+=usecond();
|
||||
|
||||
CoarseVector pout(pin.Grid());
|
||||
|
||||
int npoint = geom.npoint;
|
||||
typedef LatticeView<Cobj> Aview;
|
||||
typedef LatticeView<Cvec> Vview;
|
||||
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
|
||||
int64_t osites=pin.Grid()->oSites();
|
||||
|
||||
RealD flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
|
||||
RealD bytes = 1.0*osites*sizeof(siteMatrix)*npoint
|
||||
+ 2.0*osites*sizeof(siteVector)*npoint;
|
||||
|
||||
{
|
||||
tviews-=usecond();
|
||||
autoView( in_v , pin, AcceleratorRead);
|
||||
autoView( out_v , pout, AcceleratorWriteDiscard);
|
||||
autoView( Stencil_v , Stencil, AcceleratorRead);
|
||||
tviews+=usecond();
|
||||
|
||||
// Static and prereserve to keep UVM region live and not resized across multiple calls
|
||||
ttemps-=usecond();
|
||||
MultTemporaries.resize(npoint,pin.Grid());
|
||||
ttemps+=usecond();
|
||||
std::vector<Aview> AcceleratorViewContainer_h;
|
||||
std::vector<Vview> AcceleratorVecViewContainer_h;
|
||||
|
||||
tviews-=usecond();
|
||||
for(int p=0;p<npoint;p++) {
|
||||
AcceleratorViewContainer_h.push_back( A[p].View(AcceleratorRead));
|
||||
AcceleratorVecViewContainer_h.push_back(MultTemporaries[p].View(AcceleratorWrite));
|
||||
}
|
||||
tviews+=usecond();
|
||||
|
||||
static deviceVector<Aview> AcceleratorViewContainer; AcceleratorViewContainer.resize(npoint);
|
||||
static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(npoint);
|
||||
|
||||
auto Aview_p = &AcceleratorViewContainer[0];
|
||||
auto Vview_p = &AcceleratorVecViewContainer[0];
|
||||
tcopy-=usecond();
|
||||
acceleratorCopyToDevice(&AcceleratorViewContainer_h[0],&AcceleratorViewContainer[0],npoint *sizeof(Aview));
|
||||
acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],npoint *sizeof(Vview));
|
||||
tcopy+=usecond();
|
||||
|
||||
tmult-=usecond();
|
||||
accelerator_for(spb, osites*nbasis*npoint, Nsimd, {
|
||||
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
|
||||
int32_t ss = spb/(nbasis*npoint);
|
||||
int32_t bp = spb%(nbasis*npoint);
|
||||
int32_t point= bp/nbasis;
|
||||
int32_t b = bp%nbasis;
|
||||
auto SE = Stencil_v.GetEntry(point,ss);
|
||||
auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd);
|
||||
auto res = coalescedRead(Aview_p[point][ss](0,b))*nbr(0);
|
||||
for(int bb=1;bb<nbasis;bb++) {
|
||||
res = res + coalescedRead(Aview_p[point][ss](bb,b))*nbr(bb);
|
||||
}
|
||||
coalescedWrite(Vview_p[point][ss](b),res);
|
||||
});
|
||||
tmult2-=usecond();
|
||||
accelerator_for(sb, osites*nbasis, Nsimd, {
|
||||
int ss = sb/nbasis;
|
||||
int b = sb%nbasis;
|
||||
auto res = coalescedRead(Vview_p[0][ss](b));
|
||||
for(int point=1;point<npoint;point++){
|
||||
res = res + coalescedRead(Vview_p[point][ss](b));
|
||||
}
|
||||
coalescedWrite(out_v[ss](b),res);
|
||||
});
|
||||
tmult2+=usecond();
|
||||
tmult+=usecond();
|
||||
for(int p=0;p<npoint;p++) {
|
||||
AcceleratorViewContainer_h[p].ViewClose();
|
||||
AcceleratorVecViewContainer_h[p].ViewClose();
|
||||
}
|
||||
}
|
||||
|
||||
text-=usecond();
|
||||
out = Cell.Extract(pout);
|
||||
text+=usecond();
|
||||
ttot+=usecond();
|
||||
|
||||
std::cout << GridLogPerformance<<"Coarse 1rhs Mult Aviews "<<tviews<<" us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<" of which mult2 "<<tmult2<<" us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Mult ext "<<text<<" us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Mult temps "<<ttemps<<" us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Mult copy "<<tcopy<<" us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Mult tot "<<ttot<<" us"<<std::endl;
|
||||
// std::cout << GridLogPerformance<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Kernel flops "<< flops<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Kernel bytes/s "<< bytes/tmult<<" MB/s"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
|
||||
|
||||
};
|
||||
|
||||
void PopulateAdag(void)
|
||||
{
|
||||
for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){
|
||||
Coordinate bcoor;
|
||||
CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor);
|
||||
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
Coordinate scoor = bcoor;
|
||||
for(int mu=0;mu<bcoor.size();mu++){
|
||||
int L = CoarseGrid()->GlobalDimensions()[mu];
|
||||
scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic
|
||||
}
|
||||
// Flip to poke/peekLocalSite and not too bad
|
||||
auto link = peekSite(_A[p],scoor);
|
||||
int pp = geom.Reverse(p);
|
||||
pokeSite(adj(link),_Adag[pp],bcoor);
|
||||
}
|
||||
}
|
||||
}
|
||||
/////////////////////////////////////////////////////////////
|
||||
//
|
||||
// A) Only reduced flops option is to use a padded cell of depth 4
|
||||
// and apply MpcDagMpc in the padded cell.
|
||||
//
|
||||
// Makes for ONE application of MpcDagMpc per vector instead of 30 or 80.
|
||||
// With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio
|
||||
// Cost is 81x more, same as stencil size.
|
||||
//
|
||||
// But: can eliminate comms and do as local dirichlet.
|
||||
//
|
||||
// Local exchange gauge field once.
|
||||
// Apply to all vectors, local only computation.
|
||||
// Must exchange ghost subcells in reverse process of PaddedCell to take inner products
|
||||
//
|
||||
// B) Can reduce cost: pad by 1, apply Deo (4^4+6^4+8^4+8^4 )/ (4x 4^4)
|
||||
// pad by 2, apply Doe
|
||||
// pad by 3, apply Deo
|
||||
// then break out 8x directions; cost is ~10x MpcDagMpc per vector
|
||||
//
|
||||
// => almost factor of 10 in setup cost, excluding data rearrangement
|
||||
//
|
||||
// Intermediates -- ignore the corner terms, leave approximate and force Hermitian
|
||||
// Intermediates -- pad by 2 and apply 1+8+24 = 33 times.
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// BFM HDCG style approach: Solve a system of equations to get Aij
|
||||
//////////////////////////////////////////////////////////
|
||||
/*
|
||||
* Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM.
|
||||
*
|
||||
* conj(phases[block]) proj[k][ block*Nvec+j ] = \sum_ball e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} >
|
||||
* = \sum_ball e^{iqk.delta} A_ji
|
||||
*
|
||||
* Must invert matrix M_k,l = e^[i q_k . delta_l]
|
||||
*
|
||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
||||
*/
|
||||
#if 0
|
||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> & Subspace)
|
||||
{
|
||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
|
||||
GridBase *grid = FineGrid();
|
||||
|
||||
RealD tproj=0.0;
|
||||
RealD teigen=0.0;
|
||||
RealD tmat=0.0;
|
||||
RealD tphase=0.0;
|
||||
RealD tinv=0.0;
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Orthogonalise the subblocks over the basis
|
||||
/////////////////////////////////////////////////////////////
|
||||
CoarseScalar InnerProd(CoarseGrid());
|
||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
||||
|
||||
const int npoint = geom.npoint;
|
||||
|
||||
Coordinate clatt = CoarseGrid()->GlobalDimensions();
|
||||
int Nd = CoarseGrid()->Nd();
|
||||
|
||||
/*
|
||||
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
||||
* Matrix index i is mapped to this shift via
|
||||
* geom.shifts[i]
|
||||
*
|
||||
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
||||
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
||||
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
||||
* = M_{kl} A_ji^{b.b+l}
|
||||
*
|
||||
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
||||
*
|
||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
||||
*
|
||||
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
||||
*/
|
||||
teigen-=usecond();
|
||||
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
ComplexD ci(0.0,1.0);
|
||||
for(int k=0;k<npoint;k++){ // Loop over momenta
|
||||
|
||||
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
||||
ComplexD phase(0.0,0.0);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
|
||||
}
|
||||
phase=exp(phase*ci);
|
||||
Mkl(k,l) = phase;
|
||||
}
|
||||
}
|
||||
invMkl = Mkl.inverse();
|
||||
teigen+=usecond();
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Now compute the matrix elements of linop between the orthonormal
|
||||
// set of vectors.
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
FineField phaV(grid); // Phased block basis vector
|
||||
FineField MphaV(grid);// Matrix applied
|
||||
CoarseVector coarseInner(CoarseGrid());
|
||||
|
||||
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
|
||||
std::vector<CoarseVector> FT(npoint,CoarseGrid());
|
||||
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
/////////////////////////////////////////////////////
|
||||
// Stick a phase on every block
|
||||
/////////////////////////////////////////////////////
|
||||
tphase-=usecond();
|
||||
CoarseComplexField coor(CoarseGrid());
|
||||
CoarseComplexField pha(CoarseGrid()); pha=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
LatticeCoordinate(coor,mu);
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor;
|
||||
}
|
||||
pha =exp(pha*ci);
|
||||
phaV=Zero();
|
||||
blockZAXPY(phaV,pha,Subspace.subspace[i],phaV);
|
||||
tphase+=usecond();
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Multiple phased subspace vector by matrix and project to subspace
|
||||
// Remove local bulk phase to leave relative phases
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
tmat-=usecond();
|
||||
linop.Op(phaV,MphaV);
|
||||
tmat+=usecond();
|
||||
|
||||
tproj-=usecond();
|
||||
blockProject(coarseInner,MphaV,Subspace.subspace);
|
||||
coarseInner = conjugate(pha) * coarseInner;
|
||||
|
||||
ComputeProj[p] = coarseInner;
|
||||
tproj+=usecond();
|
||||
|
||||
}
|
||||
|
||||
tinv-=usecond();
|
||||
for(int k=0;k<npoint;k++){
|
||||
FT[k] = Zero();
|
||||
for(int l=0;l<npoint;l++){
|
||||
FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
|
||||
}
|
||||
|
||||
int osites=CoarseGrid()->oSites();
|
||||
autoView( A_v , _A[k], AcceleratorWrite);
|
||||
autoView( FT_v , FT[k], AcceleratorRead);
|
||||
accelerator_for(sss, osites, 1, {
|
||||
for(int j=0;j<nbasis;j++){
|
||||
A_v[sss](i,j) = FT_v[sss](j);
|
||||
}
|
||||
});
|
||||
}
|
||||
tinv+=usecond();
|
||||
}
|
||||
|
||||
// Only needed if nonhermitian
|
||||
if ( ! hermitian ) {
|
||||
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
||||
// PopulateAdag();
|
||||
}
|
||||
|
||||
// Need to write something to populate Adag from A
|
||||
ExchangeCoarseLinks();
|
||||
std::cout << GridLogMessage<<"CoarsenOperator eigen "<<teigen<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
|
||||
}
|
||||
#else
|
||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> & Subspace)
|
||||
{
|
||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
|
||||
GridBase *grid = FineGrid();
|
||||
|
||||
RealD tproj=0.0;
|
||||
RealD teigen=0.0;
|
||||
RealD tmat=0.0;
|
||||
RealD tphase=0.0;
|
||||
RealD tphaseBZ=0.0;
|
||||
RealD tinv=0.0;
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Orthogonalise the subblocks over the basis
|
||||
/////////////////////////////////////////////////////////////
|
||||
CoarseScalar InnerProd(CoarseGrid());
|
||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
||||
|
||||
// for(int s=0;s<Subspace.subspace.size();s++){
|
||||
// std::cout << " subspace norm "<<norm2(Subspace.subspace[s])<<std::endl;
|
||||
// }
|
||||
const int npoint = geom.npoint;
|
||||
|
||||
Coordinate clatt = CoarseGrid()->GlobalDimensions();
|
||||
int Nd = CoarseGrid()->Nd();
|
||||
|
||||
/*
|
||||
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
||||
* Matrix index i is mapped to this shift via
|
||||
* geom.shifts[i]
|
||||
*
|
||||
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
||||
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
||||
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
||||
* = M_{kl} A_ji^{b.b+l}
|
||||
*
|
||||
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
||||
*
|
||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
||||
*
|
||||
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
||||
*/
|
||||
teigen-=usecond();
|
||||
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
ComplexD ci(0.0,1.0);
|
||||
for(int k=0;k<npoint;k++){ // Loop over momenta
|
||||
|
||||
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
||||
ComplexD phase(0.0,0.0);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
|
||||
}
|
||||
phase=exp(phase*ci);
|
||||
Mkl(k,l) = phase;
|
||||
}
|
||||
}
|
||||
invMkl = Mkl.inverse();
|
||||
teigen+=usecond();
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Now compute the matrix elements of linop between the orthonormal
|
||||
// set of vectors.
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
FineField phaV(grid); // Phased block basis vector
|
||||
FineField MphaV(grid);// Matrix applied
|
||||
std::vector<FineComplexField> phaF(npoint,grid);
|
||||
std::vector<CoarseComplexField> pha(npoint,CoarseGrid());
|
||||
|
||||
CoarseVector coarseInner(CoarseGrid());
|
||||
|
||||
typedef typename CComplex::scalar_type SComplex;
|
||||
FineComplexField one(grid); one=SComplex(1.0);
|
||||
FineComplexField zz(grid); zz = Zero();
|
||||
tphase=-usecond();
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
/////////////////////////////////////////////////////
|
||||
// Stick a phase on every block
|
||||
/////////////////////////////////////////////////////
|
||||
CoarseComplexField coor(CoarseGrid());
|
||||
pha[p]=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
LatticeCoordinate(coor,mu);
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
pha[p] = pha[p] + (TwoPiL * geom.shifts[p][mu]) * coor;
|
||||
}
|
||||
pha[p] =exp(pha[p]*ci);
|
||||
|
||||
blockZAXPY(phaF[p],pha[p],one,zz);
|
||||
|
||||
}
|
||||
tphase+=usecond();
|
||||
|
||||
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
|
||||
std::vector<CoarseVector> FT(npoint,CoarseGrid());
|
||||
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
tphaseBZ-=usecond();
|
||||
phaV = phaF[p]*Subspace.subspace[i];
|
||||
tphaseBZ+=usecond();
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Multiple phased subspace vector by matrix and project to subspace
|
||||
// Remove local bulk phase to leave relative phases
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
tmat-=usecond();
|
||||
linop.Op(phaV,MphaV);
|
||||
tmat+=usecond();
|
||||
// std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl;
|
||||
|
||||
tproj-=usecond();
|
||||
blockProject(coarseInner,MphaV,Subspace.subspace);
|
||||
coarseInner = conjugate(pha[p]) * coarseInner;
|
||||
|
||||
ComputeProj[p] = coarseInner;
|
||||
tproj+=usecond();
|
||||
// std::cout << i << " " <<p << " ComputeProj "<<norm2(ComputeProj[p])<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
tinv-=usecond();
|
||||
for(int k=0;k<npoint;k++){
|
||||
FT[k] = Zero();
|
||||
for(int l=0;l<npoint;l++){
|
||||
FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
|
||||
}
|
||||
|
||||
int osites=CoarseGrid()->oSites();
|
||||
autoView( A_v , _A[k], AcceleratorWrite);
|
||||
autoView( FT_v , FT[k], AcceleratorRead);
|
||||
accelerator_for(sss, osites, 1, {
|
||||
for(int j=0;j<nbasis;j++){
|
||||
A_v[sss](i,j) = FT_v[sss](j);
|
||||
}
|
||||
});
|
||||
}
|
||||
tinv+=usecond();
|
||||
}
|
||||
|
||||
// Only needed if nonhermitian
|
||||
if ( ! hermitian ) {
|
||||
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
||||
// PopulateAdag();
|
||||
}
|
||||
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
std::cout << " _A["<<p<<"] "<<norm2(_A[p])<<std::endl;
|
||||
}
|
||||
|
||||
// Need to write something to populate Adag from A
|
||||
ExchangeCoarseLinks();
|
||||
std::cout << GridLogMessage<<"CoarsenOperator eigen "<<teigen<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
|
||||
}
|
||||
#endif
|
||||
void ExchangeCoarseLinks(void){
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
_A[p] = Cell.ExchangePeriodic(_A[p]);
|
||||
// _Adag[p]= Cell.ExchangePeriodic(_Adag[p]);
|
||||
}
|
||||
}
|
||||
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
|
||||
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
|
||||
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
|
||||
};
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
729
Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h
Normal file
729
Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h
Normal file
@ -0,0 +1,729 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/GeneralCoarsenedMatrixMultiRHS.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
// Fine Object == (per site) type of fine field
|
||||
// nbasis == number of deflation vectors
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class MultiGeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
|
||||
public:
|
||||
typedef typename CComplex::scalar_object SComplex;
|
||||
typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
|
||||
typedef MultiGeneralCoarsenedMatrix<Fobj,CComplex,nbasis> MultiGeneralCoarseOp;
|
||||
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef iMatrix<CComplex,nbasis > siteMatrix;
|
||||
typedef iVector<SComplex,nbasis > calcVector;
|
||||
typedef iMatrix<SComplex,nbasis > calcMatrix;
|
||||
typedef Lattice<iScalar<CComplex> > CoarseComplexField;
|
||||
typedef Lattice<siteVector> CoarseVector;
|
||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||
typedef iMatrix<CComplex,nbasis > Cobj;
|
||||
typedef iVector<CComplex,nbasis > Cvec;
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
typedef Lattice<CComplex > FineComplexField;
|
||||
typedef CoarseVector Field;
|
||||
|
||||
////////////////////
|
||||
// Data members
|
||||
////////////////////
|
||||
GridCartesian * _CoarseGridMulti;
|
||||
NonLocalStencilGeometry geom;
|
||||
NonLocalStencilGeometry geom_srhs;
|
||||
PaddedCell Cell;
|
||||
GeneralLocalStencil Stencil;
|
||||
|
||||
deviceVector<calcVector> BLAS_B;
|
||||
deviceVector<calcVector> BLAS_C;
|
||||
std::vector<deviceVector<calcMatrix> > BLAS_A;
|
||||
|
||||
std::vector<deviceVector<ComplexD *> > BLAS_AP;
|
||||
std::vector<deviceVector<ComplexD *> > BLAS_BP;
|
||||
deviceVector<ComplexD *> BLAS_CP;
|
||||
|
||||
///////////////////////
|
||||
// Interface
|
||||
///////////////////////
|
||||
GridBase * Grid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
|
||||
GridCartesian * CoarseGrid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
|
||||
|
||||
// Can be used to do I/O on the operator matrices externally
|
||||
void SetMatrix (int p,CoarseMatrix & A)
|
||||
{
|
||||
assert(A.size()==geom_srhs.npoint);
|
||||
GridtoBLAS(A[p],BLAS_A[p]);
|
||||
}
|
||||
void GetMatrix (int p,CoarseMatrix & A)
|
||||
{
|
||||
assert(A.size()==geom_srhs.npoint);
|
||||
BLAStoGrid(A[p],BLAS_A[p]);
|
||||
}
|
||||
void CopyMatrix (GeneralCoarseOp &_Op)
|
||||
{
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
auto Aup = _Op.Cell.Extract(_Op._A[p]);
|
||||
//Unpadded
|
||||
GridtoBLAS(Aup,BLAS_A[p]);
|
||||
}
|
||||
}
|
||||
/*
|
||||
void CheckMatrix (GeneralCoarseOp &_Op)
|
||||
{
|
||||
std::cout <<"************* Checking the little direc operator mRHS"<<std::endl;
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
//Unpadded
|
||||
auto Aup = _Op.Cell.Extract(_Op._A[p]);
|
||||
auto Ack = Aup;
|
||||
BLAStoGrid(Ack,BLAS_A[p]);
|
||||
std::cout << p<<" Ack "<<norm2(Ack)<<std::endl;
|
||||
std::cout << p<<" Aup "<<norm2(Aup)<<std::endl;
|
||||
}
|
||||
std::cout <<"************* "<<std::endl;
|
||||
}
|
||||
*/
|
||||
|
||||
MultiGeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridCartesian *CoarseGridMulti) :
|
||||
_CoarseGridMulti(CoarseGridMulti),
|
||||
geom_srhs(_geom),
|
||||
geom(_CoarseGridMulti,_geom.hops,_geom.skip+1),
|
||||
Cell(geom.Depth(),_CoarseGridMulti),
|
||||
Stencil(Cell.grids.back(),geom.shifts) // padded cell stencil
|
||||
{
|
||||
int32_t padded_sites = Cell.grids.back()->lSites();
|
||||
int32_t unpadded_sites = CoarseGridMulti->lSites();
|
||||
|
||||
int32_t nrhs = CoarseGridMulti->FullDimensions()[0]; // # RHS
|
||||
int32_t orhs = nrhs/CComplex::Nsimd();
|
||||
|
||||
padded_sites = padded_sites/nrhs;
|
||||
unpadded_sites = unpadded_sites/nrhs;
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
// Device data vector storage
|
||||
/////////////////////////////////////////////////
|
||||
BLAS_A.resize(geom.npoint);
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
BLAS_A[p].resize (unpadded_sites); // no ghost zone, npoint elements
|
||||
}
|
||||
|
||||
BLAS_B.resize(nrhs *padded_sites); // includes ghost zone
|
||||
BLAS_C.resize(nrhs *unpadded_sites); // no ghost zone
|
||||
BLAS_AP.resize(geom.npoint);
|
||||
BLAS_BP.resize(geom.npoint);
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
BLAS_AP[p].resize(unpadded_sites);
|
||||
BLAS_BP[p].resize(unpadded_sites);
|
||||
}
|
||||
BLAS_CP.resize(unpadded_sites);
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
// Pointers to data
|
||||
/////////////////////////////////////////////////
|
||||
|
||||
// Site identity mapping for A
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
for(int ss=0;ss<unpadded_sites;ss++){
|
||||
ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss];
|
||||
acceleratorPut(BLAS_AP[p][ss],ptr);
|
||||
}
|
||||
}
|
||||
// Site identity mapping for C
|
||||
for(int ss=0;ss<unpadded_sites;ss++){
|
||||
ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs];
|
||||
acceleratorPut(BLAS_CP[ss],ptr);
|
||||
}
|
||||
|
||||
// Neighbour table is more complicated
|
||||
int32_t j=0; // Interior point counter (unpadded)
|
||||
for(int32_t s=0;s<padded_sites;s++){ // 4 volume, padded
|
||||
int ghost_zone=0;
|
||||
for(int32_t point = 0 ; point < geom.npoint; point++){
|
||||
int i=s*orhs*geom.npoint+point;
|
||||
if( Stencil._entries[i]._wrap ) { // stencil is indexed by the oSite of the CoarseGridMulti, hence orhs factor
|
||||
ghost_zone=1; // If general stencil wrapped in any direction, wrap=1
|
||||
}
|
||||
}
|
||||
|
||||
if( ghost_zone==0) {
|
||||
for(int32_t point = 0 ; point < geom.npoint; point++){
|
||||
int i=s*orhs*geom.npoint+point;
|
||||
int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite
|
||||
assert(nbr<BLAS_B.size());
|
||||
ComplexD * ptr = (ComplexD *)&BLAS_B[nbr];
|
||||
acceleratorPut(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume
|
||||
}
|
||||
j++;
|
||||
}
|
||||
}
|
||||
assert(j==unpadded_sites);
|
||||
}
|
||||
template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
GridBase *Fg = from.Grid();
|
||||
assert(!Fg->_isCheckerBoarded);
|
||||
int nd = Fg->_ndimension;
|
||||
|
||||
to.resize(Fg->lSites());
|
||||
|
||||
Coordinate LocalLatt = Fg->LocalDimensions();
|
||||
size_t nsite = 1;
|
||||
for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// do the index calc on the GPU
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
Coordinate f_ostride = Fg->_ostride;
|
||||
Coordinate f_istride = Fg->_istride;
|
||||
Coordinate f_rdimensions = Fg->_rdimensions;
|
||||
|
||||
autoView(from_v,from,AcceleratorRead);
|
||||
auto to_v = &to[0];
|
||||
|
||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
accelerator_for(idx,nsite,1,{
|
||||
|
||||
Coordinate from_coor, base;
|
||||
Lexicographic::CoorFromIndex(base,idx,LocalLatt);
|
||||
for(int i=0;i<nd;i++){
|
||||
from_coor[i] = base[i];
|
||||
}
|
||||
int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
|
||||
int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
|
||||
|
||||
const vector_type* from = (const vector_type *)&from_v[from_oidx];
|
||||
scalar_type* to = (scalar_type *)&to_v[idx];
|
||||
|
||||
scalar_type stmp;
|
||||
for(int w=0;w<words;w++){
|
||||
stmp = getlane(from[w], from_lane);
|
||||
to[w] = stmp;
|
||||
}
|
||||
});
|
||||
}
|
||||
template<class vobj> void BLAStoGrid(Lattice<vobj> &grid,deviceVector<typename vobj::scalar_object> &in)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
GridBase *Tg = grid.Grid();
|
||||
assert(!Tg->_isCheckerBoarded);
|
||||
int nd = Tg->_ndimension;
|
||||
|
||||
assert(in.size()==Tg->lSites());
|
||||
|
||||
Coordinate LocalLatt = Tg->LocalDimensions();
|
||||
size_t nsite = 1;
|
||||
for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// do the index calc on the GPU
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
Coordinate t_ostride = Tg->_ostride;
|
||||
Coordinate t_istride = Tg->_istride;
|
||||
Coordinate t_rdimensions = Tg->_rdimensions;
|
||||
|
||||
autoView(to_v,grid,AcceleratorWrite);
|
||||
auto from_v = &in[0];
|
||||
|
||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
accelerator_for(idx,nsite,1,{
|
||||
|
||||
Coordinate to_coor, base;
|
||||
Lexicographic::CoorFromIndex(base,idx,LocalLatt);
|
||||
for(int i=0;i<nd;i++){
|
||||
to_coor[i] = base[i];
|
||||
}
|
||||
int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
|
||||
int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
|
||||
|
||||
vector_type* to = (vector_type *)&to_v[to_oidx];
|
||||
scalar_type* from = (scalar_type *)&from_v[idx];
|
||||
|
||||
scalar_type stmp;
|
||||
for(int w=0;w<words;w++){
|
||||
stmp=from[w];
|
||||
putlane(to[w], stmp, to_lane);
|
||||
}
|
||||
});
|
||||
}
|
||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> & Subspace,
|
||||
GridBase *CoarseGrid)
|
||||
{
|
||||
#if 0
|
||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
|
||||
|
||||
GridBase *grid = Subspace.FineGrid;
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Orthogonalise the subblocks over the basis
|
||||
/////////////////////////////////////////////////////////////
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
||||
|
||||
const int npoint = geom_srhs.npoint;
|
||||
|
||||
Coordinate clatt = CoarseGrid->GlobalDimensions();
|
||||
int Nd = CoarseGrid->Nd();
|
||||
/*
|
||||
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
||||
* Matrix index i is mapped to this shift via
|
||||
* geom.shifts[i]
|
||||
*
|
||||
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
||||
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
||||
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
||||
* = M_{kl} A_ji^{b.b+l}
|
||||
*
|
||||
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
||||
*
|
||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
||||
*
|
||||
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
||||
*/
|
||||
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
ComplexD ci(0.0,1.0);
|
||||
for(int k=0;k<npoint;k++){ // Loop over momenta
|
||||
|
||||
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
||||
ComplexD phase(0.0,0.0);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
|
||||
}
|
||||
phase=exp(phase*ci);
|
||||
Mkl(k,l) = phase;
|
||||
}
|
||||
}
|
||||
invMkl = Mkl.inverse();
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Now compute the matrix elements of linop between the orthonormal
|
||||
// set of vectors.
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
FineField phaV(grid); // Phased block basis vector
|
||||
FineField MphaV(grid);// Matrix applied
|
||||
std::vector<FineComplexField> phaF(npoint,grid);
|
||||
std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
|
||||
|
||||
CoarseVector coarseInner(CoarseGrid);
|
||||
|
||||
typedef typename CComplex::scalar_type SComplex;
|
||||
FineComplexField one(grid); one=SComplex(1.0);
|
||||
FineComplexField zz(grid); zz = Zero();
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
/////////////////////////////////////////////////////
|
||||
// Stick a phase on every block
|
||||
/////////////////////////////////////////////////////
|
||||
CoarseComplexField coor(CoarseGrid);
|
||||
pha[p]=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
LatticeCoordinate(coor,mu);
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
|
||||
}
|
||||
pha[p] =exp(pha[p]*ci);
|
||||
|
||||
blockZAXPY(phaF[p],pha[p],one,zz);
|
||||
}
|
||||
|
||||
// Could save on temporary storage here
|
||||
std::vector<CoarseMatrix> _A;
|
||||
_A.resize(geom_srhs.npoint,CoarseGrid);
|
||||
|
||||
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
|
||||
CoarseVector FT(CoarseGrid);
|
||||
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
|
||||
phaV = phaF[p]*Subspace.subspace[i];
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Multiple phased subspace vector by matrix and project to subspace
|
||||
// Remove local bulk phase to leave relative phases
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
linop.Op(phaV,MphaV);
|
||||
|
||||
// Fixme, could use batched block projector here
|
||||
blockProject(coarseInner,MphaV,Subspace.subspace);
|
||||
|
||||
coarseInner = conjugate(pha[p]) * coarseInner;
|
||||
|
||||
ComputeProj[p] = coarseInner;
|
||||
}
|
||||
|
||||
// Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
|
||||
for(int k=0;k<npoint;k++){
|
||||
|
||||
FT = Zero();
|
||||
for(int l=0;l<npoint;l++){
|
||||
FT= FT+ invMkl(l,k)*ComputeProj[l];
|
||||
}
|
||||
|
||||
int osites=CoarseGrid->oSites();
|
||||
autoView( A_v , _A[k], AcceleratorWrite);
|
||||
autoView( FT_v , FT, AcceleratorRead);
|
||||
accelerator_for(sss, osites, 1, {
|
||||
for(int j=0;j<nbasis;j++){
|
||||
A_v[sss](i,j) = FT_v[sss](j);
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Only needed if nonhermitian
|
||||
// if ( ! hermitian ) {
|
||||
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
||||
// PopulateAdag();
|
||||
// }
|
||||
// Need to write something to populate Adag from A
|
||||
|
||||
for(int p=0;p<geom_srhs.npoint;p++){
|
||||
GridtoBLAS(_A[p],BLAS_A[p]);
|
||||
}
|
||||
/*
|
||||
Grid : Message : 11698.730546 s : CoarsenOperator eigen 1334 us
|
||||
Grid : Message : 11698.730563 s : CoarsenOperator phase 34729 us
|
||||
Grid : Message : 11698.730565 s : CoarsenOperator phaseBZ 2423814 us
|
||||
Grid : Message : 11698.730566 s : CoarsenOperator mat 127890998 us
|
||||
Grid : Message : 11698.730567 s : CoarsenOperator proj 515840840 us
|
||||
Grid : Message : 11698.730568 s : CoarsenOperator inv 103948313 us
|
||||
Takes 600s to compute matrix elements, DOMINATED by the block project.
|
||||
Easy to speed up with the batched block project.
|
||||
Store npoint vectors, get npoint x Nbasis block projection, and 81 fold faster.
|
||||
|
||||
// Block project below taks to 240s
|
||||
Grid : Message : 328.193418 s : CoarsenOperator phase 38338 us
|
||||
Grid : Message : 328.193434 s : CoarsenOperator phaseBZ 1711226 us
|
||||
Grid : Message : 328.193436 s : CoarsenOperator mat 122213270 us
|
||||
//Grid : Message : 328.193438 s : CoarsenOperator proj 1181154 us <-- this is mistimed
|
||||
//Grid : Message : 11698.730568 s : CoarsenOperator inv 103948313 us <-- Cut this ~10x if lucky by loop fusion
|
||||
*/
|
||||
#else
|
||||
RealD tproj=0.0;
|
||||
RealD tmat=0.0;
|
||||
RealD tphase=0.0;
|
||||
RealD tphaseBZ=0.0;
|
||||
RealD tinv=0.0;
|
||||
|
||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
|
||||
|
||||
GridBase *grid = Subspace.FineGrid;
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Orthogonalise the subblocks over the basis
|
||||
/////////////////////////////////////////////////////////////
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
||||
|
||||
|
||||
MultiRHSBlockProject<Lattice<Fobj> > Projector;
|
||||
Projector.Allocate(nbasis,grid,CoarseGrid);
|
||||
Projector.ImportBasis(Subspace.subspace);
|
||||
|
||||
const int npoint = geom_srhs.npoint;
|
||||
|
||||
Coordinate clatt = CoarseGrid->GlobalDimensions();
|
||||
int Nd = CoarseGrid->Nd();
|
||||
/*
|
||||
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
||||
* Matrix index i is mapped to this shift via
|
||||
* geom.shifts[i]
|
||||
*
|
||||
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
||||
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
||||
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
||||
* = M_{kl} A_ji^{b.b+l}
|
||||
*
|
||||
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
||||
*
|
||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
||||
*
|
||||
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
||||
*/
|
||||
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
ComplexD ci(0.0,1.0);
|
||||
for(int k=0;k<npoint;k++){ // Loop over momenta
|
||||
|
||||
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
||||
ComplexD phase(0.0,0.0);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
|
||||
}
|
||||
phase=exp(phase*ci);
|
||||
Mkl(k,l) = phase;
|
||||
}
|
||||
}
|
||||
invMkl = Mkl.inverse();
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Now compute the matrix elements of linop between the orthonormal
|
||||
// set of vectors.
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
FineField phaV(grid); // Phased block basis vector
|
||||
FineField MphaV(grid);// Matrix applied
|
||||
std::vector<FineComplexField> phaF(npoint,grid);
|
||||
std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
|
||||
|
||||
CoarseVector coarseInner(CoarseGrid);
|
||||
|
||||
tphase=-usecond();
|
||||
typedef typename CComplex::scalar_type SComplex;
|
||||
FineComplexField one(grid); one=SComplex(1.0);
|
||||
FineComplexField zz(grid); zz = Zero();
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
/////////////////////////////////////////////////////
|
||||
// Stick a phase on every block
|
||||
/////////////////////////////////////////////////////
|
||||
CoarseComplexField coor(CoarseGrid);
|
||||
pha[p]=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
LatticeCoordinate(coor,mu);
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
|
||||
}
|
||||
pha[p] =exp(pha[p]*ci);
|
||||
|
||||
blockZAXPY(phaF[p],pha[p],one,zz);
|
||||
}
|
||||
tphase+=usecond();
|
||||
|
||||
// Could save on temporary storage here
|
||||
std::vector<CoarseMatrix> _A;
|
||||
_A.resize(geom_srhs.npoint,CoarseGrid);
|
||||
|
||||
// Count use small chunks than npoint == 81 and save memory
|
||||
int batch = 9;
|
||||
std::vector<FineField> _MphaV(batch,grid);
|
||||
std::vector<CoarseVector> TmpProj(batch,CoarseGrid);
|
||||
|
||||
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
|
||||
CoarseVector FT(CoarseGrid);
|
||||
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
||||
|
||||
// std::cout << GridLogMessage << " phasing the fine vector "<<std::endl;
|
||||
// Fixme : do this in batches
|
||||
for(int p=0;p<npoint;p+=batch){ // Loop over momenta in npoint
|
||||
|
||||
for(int b=0;b<MIN(batch,npoint-p);b++){
|
||||
tphaseBZ-=usecond();
|
||||
phaV = phaF[p+b]*Subspace.subspace[i];
|
||||
tphaseBZ+=usecond();
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Multiple phased subspace vector by matrix and project to subspace
|
||||
// Remove local bulk phase to leave relative phases
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Memory footprint was an issue
|
||||
tmat-=usecond();
|
||||
linop.Op(phaV,MphaV);
|
||||
_MphaV[b] = MphaV;
|
||||
tmat+=usecond();
|
||||
}
|
||||
|
||||
// std::cout << GridLogMessage << " Calling block project "<<std::endl;
|
||||
tproj-=usecond();
|
||||
Projector.blockProject(_MphaV,TmpProj);
|
||||
tproj+=usecond();
|
||||
|
||||
// std::cout << GridLogMessage << " conj phasing the coarse vectors "<<std::endl;
|
||||
for(int b=0;b<MIN(batch,npoint-p);b++){
|
||||
ComputeProj[p+b] = conjugate(pha[p+b])*TmpProj[b];
|
||||
}
|
||||
}
|
||||
|
||||
// Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
|
||||
|
||||
// std::cout << GridLogMessage << " Starting FT inv "<<std::endl;
|
||||
tinv-=usecond();
|
||||
for(int k=0;k<npoint;k++){
|
||||
FT = Zero();
|
||||
// 81 kernel calls as many ComputeProj vectors
|
||||
// Could fuse with a vector of views, but ugly
|
||||
// Could unroll the expression and run fewer kernels -- much more attractive
|
||||
// Could also do non blocking.
|
||||
#if 0
|
||||
for(int l=0;l<npoint;l++){
|
||||
FT= FT+ invMkl(l,k)*ComputeProj[l];
|
||||
}
|
||||
#else
|
||||
const int radix = 9;
|
||||
int ll;
|
||||
for(ll=0;ll+radix-1<npoint;ll+=radix){
|
||||
// When ll = npoint-radix, ll+radix-1 = npoint-1, and we do it all.
|
||||
FT = FT
|
||||
+ invMkl(ll+0,k)*ComputeProj[ll+0]
|
||||
+ invMkl(ll+1,k)*ComputeProj[ll+1]
|
||||
+ invMkl(ll+2,k)*ComputeProj[ll+2]
|
||||
+ invMkl(ll+3,k)*ComputeProj[ll+3]
|
||||
+ invMkl(ll+4,k)*ComputeProj[ll+4]
|
||||
+ invMkl(ll+5,k)*ComputeProj[ll+5]
|
||||
+ invMkl(ll+6,k)*ComputeProj[ll+6]
|
||||
+ invMkl(ll+7,k)*ComputeProj[ll+7]
|
||||
+ invMkl(ll+8,k)*ComputeProj[ll+8];
|
||||
}
|
||||
for(int l=ll;l<npoint;l++){
|
||||
FT= FT+ invMkl(l,k)*ComputeProj[l];
|
||||
}
|
||||
#endif
|
||||
|
||||
// 1 kernel call -- must be cheaper
|
||||
int osites=CoarseGrid->oSites();
|
||||
autoView( A_v , _A[k], AcceleratorWrite);
|
||||
autoView( FT_v , FT, AcceleratorRead);
|
||||
accelerator_for(sss, osites, 1, {
|
||||
for(int j=0;j<nbasis;j++){
|
||||
A_v[sss](i,j) = FT_v[sss](j);
|
||||
}
|
||||
});
|
||||
}
|
||||
tinv+=usecond();
|
||||
}
|
||||
|
||||
// Only needed if nonhermitian
|
||||
// if ( ! hermitian ) {
|
||||
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
||||
// PopulateAdag();
|
||||
// }
|
||||
// Need to write something to populate Adag from A
|
||||
// std::cout << GridLogMessage << " Calling GridtoBLAS "<<std::endl;
|
||||
for(int p=0;p<geom_srhs.npoint;p++){
|
||||
GridtoBLAS(_A[p],BLAS_A[p]);
|
||||
}
|
||||
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
|
||||
#endif
|
||||
}
|
||||
void Mdag(const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
this->M(in,out);
|
||||
}
|
||||
void M (const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
// std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl;
|
||||
conformable(CoarseGrid(),in.Grid());
|
||||
conformable(in.Grid(),out.Grid());
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
|
||||
RealD t_tot;
|
||||
RealD t_exch;
|
||||
RealD t_GtoB;
|
||||
RealD t_BtoG;
|
||||
RealD t_mult;
|
||||
|
||||
t_tot=-usecond();
|
||||
CoarseVector tin=in;
|
||||
t_exch=-usecond();
|
||||
CoarseVector pin = Cell.ExchangePeriodic(tin); //padded input
|
||||
t_exch+=usecond();
|
||||
|
||||
CoarseVector pout(pin.Grid());
|
||||
|
||||
int npoint = geom.npoint;
|
||||
typedef calcMatrix* Aview;
|
||||
typedef LatticeView<Cvec> Vview;
|
||||
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
|
||||
int64_t nrhs =pin.Grid()->GlobalDimensions()[0];
|
||||
assert(nrhs>=1);
|
||||
|
||||
RealD flops,bytes;
|
||||
int64_t osites=in.Grid()->oSites(); // unpadded
|
||||
int64_t unpadded_vol = CoarseGrid()->lSites()/nrhs;
|
||||
|
||||
flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
|
||||
bytes = 1.0*osites*sizeof(siteMatrix)*npoint/pin.Grid()->GlobalDimensions()[0]
|
||||
+ 2.0*osites*sizeof(siteVector)*npoint;
|
||||
|
||||
|
||||
t_GtoB=-usecond();
|
||||
GridtoBLAS(pin,BLAS_B);
|
||||
t_GtoB+=usecond();
|
||||
|
||||
GridBLAS BLAS;
|
||||
|
||||
t_mult=-usecond();
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
RealD c = 1.0;
|
||||
if (p==0) c = 0.0;
|
||||
ComplexD beta(c);
|
||||
|
||||
BLAS.gemmBatched(nbasis,nrhs,nbasis,
|
||||
ComplexD(1.0),
|
||||
BLAS_AP[p],
|
||||
BLAS_BP[p],
|
||||
ComplexD(c),
|
||||
BLAS_CP);
|
||||
}
|
||||
BLAS.synchronise();
|
||||
t_mult+=usecond();
|
||||
|
||||
t_BtoG=-usecond();
|
||||
BLAStoGrid(out,BLAS_C);
|
||||
t_BtoG+=usecond();
|
||||
t_tot+=usecond();
|
||||
/*
|
||||
std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Mult GtoB "<<t_GtoB<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Mult BtoG "<<t_BtoG<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Mult tot "<<t_tot<<" us"<<std::endl;
|
||||
*/
|
||||
// std::cout << GridLogMessage<<std::endl;
|
||||
// std::cout << GridLogMessage<<"Coarse Kernel flops "<< flops<<std::endl;
|
||||
// std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl;
|
||||
// std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl;
|
||||
// std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl;
|
||||
// std::cout << GridLogMessage<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
|
||||
};
|
||||
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
|
||||
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
|
||||
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
238
Grid/algorithms/multigrid/Geometry.h
Normal file
238
Grid/algorithms/multigrid/Geometry.h
Normal file
@ -0,0 +1,238 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
// Geometry class in cartesian case
|
||||
/////////////////////////////////////////////////////////////////
|
||||
|
||||
class Geometry {
|
||||
public:
|
||||
int npoint;
|
||||
int base;
|
||||
std::vector<int> directions ;
|
||||
std::vector<int> displacements;
|
||||
std::vector<int> points_dagger;
|
||||
|
||||
Geometry(int _d) {
|
||||
|
||||
base = (_d==5) ? 1:0;
|
||||
|
||||
// make coarse grid stencil for 4d , not 5d
|
||||
if ( _d==5 ) _d=4;
|
||||
|
||||
npoint = 2*_d+1;
|
||||
directions.resize(npoint);
|
||||
displacements.resize(npoint);
|
||||
points_dagger.resize(npoint);
|
||||
for(int d=0;d<_d;d++){
|
||||
directions[d ] = d+base;
|
||||
directions[d+_d] = d+base;
|
||||
displacements[d ] = +1;
|
||||
displacements[d+_d]= -1;
|
||||
points_dagger[d ] = d+_d;
|
||||
points_dagger[d+_d] = d;
|
||||
}
|
||||
directions [2*_d]=0;
|
||||
displacements[2*_d]=0;
|
||||
points_dagger[2*_d]=2*_d;
|
||||
}
|
||||
|
||||
int point(int dir, int disp) {
|
||||
assert(disp == -1 || disp == 0 || disp == 1);
|
||||
assert(base+0 <= dir && dir < base+4);
|
||||
|
||||
// directions faster index = new indexing
|
||||
// 4d (base = 0):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 0 1 2 3 0 1 2 3 0
|
||||
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
|
||||
// 5d (base = 1):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 1 2 3 4 1 2 3 4 0
|
||||
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
|
||||
|
||||
// displacements faster index = old indexing
|
||||
// 4d (base = 0):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 0 0 1 1 2 2 3 3 0
|
||||
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
|
||||
// 5d (base = 1):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 1 1 2 2 3 3 4 4 0
|
||||
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
|
||||
|
||||
if(dir == 0 and disp == 0)
|
||||
return 8;
|
||||
else // New indexing
|
||||
return (1 - disp) / 2 * 4 + dir - base;
|
||||
// else // Old indexing
|
||||
// return (4 * (dir - base) + 1 - disp) / 2;
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
// Less local equivalent of Geometry class in cartesian case
|
||||
/////////////////////////////////////////////////////////////////
|
||||
class NonLocalStencilGeometry {
|
||||
public:
|
||||
// int depth;
|
||||
int skip;
|
||||
int hops;
|
||||
int npoint;
|
||||
std::vector<Coordinate> shifts;
|
||||
Coordinate stencil_size;
|
||||
Coordinate stencil_lo;
|
||||
Coordinate stencil_hi;
|
||||
GridCartesian *grid;
|
||||
GridCartesian *Grid() {return grid;};
|
||||
int Depth(void){return 1;}; // Ghost zone depth
|
||||
int Hops(void){return hops;}; // # of hops=> level of corner fill in in stencil
|
||||
int DimSkip(void){return skip;};
|
||||
|
||||
virtual ~NonLocalStencilGeometry() {};
|
||||
|
||||
int Reverse(int point)
|
||||
{
|
||||
int Nd = Grid()->Nd();
|
||||
Coordinate shft = shifts[point];
|
||||
Coordinate rev(Nd);
|
||||
for(int mu=0;mu<Nd;mu++) rev[mu]= -shft[mu];
|
||||
for(int p=0;p<npoint;p++){
|
||||
if(rev==shifts[p]){
|
||||
return p;
|
||||
}
|
||||
}
|
||||
assert(0);
|
||||
return -1;
|
||||
}
|
||||
void BuildShifts(void)
|
||||
{
|
||||
this->shifts.resize(0);
|
||||
int Nd = this->grid->Nd();
|
||||
|
||||
int dd = this->DimSkip();
|
||||
for(int s0=this->stencil_lo[dd+0];s0<=this->stencil_hi[dd+0];s0++){
|
||||
for(int s1=this->stencil_lo[dd+1];s1<=this->stencil_hi[dd+1];s1++){
|
||||
for(int s2=this->stencil_lo[dd+2];s2<=this->stencil_hi[dd+2];s2++){
|
||||
for(int s3=this->stencil_lo[dd+3];s3<=this->stencil_hi[dd+3];s3++){
|
||||
Coordinate sft(Nd,0);
|
||||
sft[dd+0] = s0;
|
||||
sft[dd+1] = s1;
|
||||
sft[dd+2] = s2;
|
||||
sft[dd+3] = s3;
|
||||
int nhops = abs(s0)+abs(s1)+abs(s2)+abs(s3);
|
||||
if(nhops<=this->hops) this->shifts.push_back(sft);
|
||||
}}}}
|
||||
this->npoint = this->shifts.size();
|
||||
std::cout << GridLogMessage << "NonLocalStencilGeometry has "<< this->npoint << " terms in stencil "<<std::endl;
|
||||
}
|
||||
|
||||
NonLocalStencilGeometry(GridCartesian *_coarse_grid,int _hops,int _skip) : grid(_coarse_grid), hops(_hops), skip(_skip)
|
||||
{
|
||||
Coordinate latt = grid->GlobalDimensions();
|
||||
stencil_size.resize(grid->Nd());
|
||||
stencil_lo.resize(grid->Nd());
|
||||
stencil_hi.resize(grid->Nd());
|
||||
for(int d=0;d<grid->Nd();d++){
|
||||
if ( latt[d] == 1 ) {
|
||||
stencil_lo[d] = 0;
|
||||
stencil_hi[d] = 0;
|
||||
stencil_size[d]= 1;
|
||||
} else if ( latt[d] == 2 ) {
|
||||
stencil_lo[d] = -1;
|
||||
stencil_hi[d] = 0;
|
||||
stencil_size[d]= 2;
|
||||
} else if ( latt[d] > 2 ) {
|
||||
stencil_lo[d] = -1;
|
||||
stencil_hi[d] = 1;
|
||||
stencil_size[d]= 3;
|
||||
}
|
||||
}
|
||||
this->BuildShifts();
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
// Need to worry about red-black now
|
||||
class NonLocalStencilGeometry4D : public NonLocalStencilGeometry {
|
||||
public:
|
||||
virtual int DerivedDimSkip(void) { return 0;};
|
||||
NonLocalStencilGeometry4D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,0) { };
|
||||
virtual ~NonLocalStencilGeometry4D() {};
|
||||
};
|
||||
class NonLocalStencilGeometry5D : public NonLocalStencilGeometry {
|
||||
public:
|
||||
virtual int DerivedDimSkip(void) { return 1; };
|
||||
NonLocalStencilGeometry5D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,1) { };
|
||||
virtual ~NonLocalStencilGeometry5D() {};
|
||||
};
|
||||
/*
|
||||
* Bunch of different options classes
|
||||
*/
|
||||
class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
|
||||
public:
|
||||
NextToNextToNextToNearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,4)
|
||||
{
|
||||
};
|
||||
};
|
||||
class NextToNextToNextToNearestStencilGeometry5D : public NonLocalStencilGeometry5D {
|
||||
public:
|
||||
NextToNextToNextToNearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,4)
|
||||
{
|
||||
};
|
||||
};
|
||||
class NextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
|
||||
public:
|
||||
NextToNearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,2)
|
||||
{
|
||||
};
|
||||
};
|
||||
class NextToNearestStencilGeometry5D : public NonLocalStencilGeometry5D {
|
||||
public:
|
||||
NextToNearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,2)
|
||||
{
|
||||
};
|
||||
};
|
||||
class NearestStencilGeometry4D : public NonLocalStencilGeometry4D {
|
||||
public:
|
||||
NearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,1)
|
||||
{
|
||||
};
|
||||
};
|
||||
class NearestStencilGeometry5D : public NonLocalStencilGeometry5D {
|
||||
public:
|
||||
NearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,1)
|
||||
{
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
34
Grid/algorithms/multigrid/MultiGrid.h
Normal file
34
Grid/algorithms/multigrid/MultiGrid.h
Normal file
@ -0,0 +1,34 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: Grid/algorithms/multigrid/MultiGrid.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#include <Grid/algorithms/multigrid/Aggregates.h>
|
||||
#include <Grid/algorithms/multigrid/Geometry.h>
|
||||
#include <Grid/algorithms/multigrid/CoarsenedMatrix.h>
|
||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h>
|
||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h>
|
@ -175,8 +175,56 @@ template<class T> using cshiftAllocator = std::allocator<T>;
|
||||
|
||||
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
|
||||
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;
|
||||
template<class T> using commVector = std::vector<T,devAllocator<T> >;
|
||||
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
|
||||
template<class T> using commVector = std::vector<T,devAllocator<T> >;
|
||||
template<class T> using deviceVector = std::vector<T,devAllocator<T> >;
|
||||
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
|
||||
|
||||
/*
|
||||
template<class T> class vecView
|
||||
{
|
||||
protected:
|
||||
T * data;
|
||||
uint64_t size;
|
||||
ViewMode mode;
|
||||
void * cpu_ptr;
|
||||
public:
|
||||
accelerator_inline T & operator[](size_t i) const { return this->data[i]; };
|
||||
vecView(std::vector<T> &refer_to_me,ViewMode _mode)
|
||||
{
|
||||
cpu_ptr = &refer_to_me[0];
|
||||
size = refer_to_me.size();
|
||||
mode = _mode;
|
||||
data =(T *) MemoryManager::ViewOpen(cpu_ptr,
|
||||
size*sizeof(T),
|
||||
mode,
|
||||
AdviseDefault);
|
||||
}
|
||||
void ViewClose(void)
|
||||
{ // Inform the manager
|
||||
MemoryManager::ViewClose(this->cpu_ptr,this->mode);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> vecView<T> VectorView(std::vector<T> &vec,ViewMode _mode)
|
||||
{
|
||||
vecView<T> ret(vec,_mode); // does the open
|
||||
return ret; // must be closed
|
||||
}
|
||||
|
||||
// Little autoscope assister
|
||||
template<class View>
|
||||
class VectorViewCloser
|
||||
{
|
||||
View v; // Take a copy of view and call view close when I go out of scope automatically
|
||||
public:
|
||||
VectorViewCloser(View &_v) : v(_v) {};
|
||||
~VectorViewCloser() { auto ptr = v.cpu_ptr; v.ViewClose(); MemoryManager::NotifyDeletion(ptr);}
|
||||
};
|
||||
|
||||
#define autoVecView(v_v,v,mode) \
|
||||
auto v_v = VectorView(v,mode); \
|
||||
ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
|
||||
*/
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -209,9 +209,9 @@ private:
|
||||
static void CpuViewClose(uint64_t Ptr);
|
||||
static uint64_t CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
|
||||
#endif
|
||||
static void NotifyDeletion(void * CpuPtr);
|
||||
|
||||
public:
|
||||
static void NotifyDeletion(void * CpuPtr);
|
||||
static void Print(void);
|
||||
static void PrintAll(void);
|
||||
static void PrintState( void* CpuPtr);
|
||||
|
@ -8,7 +8,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
static char print_buffer [ MAXLINE ];
|
||||
|
||||
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
|
||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
|
||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer;
|
||||
//#define dprintf(...)
|
||||
|
||||
|
||||
@ -111,7 +111,7 @@ void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
|
||||
///////////////////////////////////////////////////////////
|
||||
assert(AccCache.state!=Empty);
|
||||
|
||||
mprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
|
||||
dprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
|
||||
assert(AccCache.accLock==0);
|
||||
assert(AccCache.cpuLock==0);
|
||||
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||
@ -141,7 +141,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
assert(AccCache.state!=Empty);
|
||||
|
||||
mprintf("MemoryManager: Evict cpu %lx acc %lx cpuLock %ld accLock %ld\n",
|
||||
mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld\n",
|
||||
(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
|
||||
(uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);
|
||||
if (AccCache.accLock!=0) return;
|
||||
@ -155,7 +155,7 @@ void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
|
||||
AccCache.AccPtr=(uint64_t)NULL;
|
||||
AccCache.state=CpuDirty; // CPU primary now
|
||||
DeviceBytes -=AccCache.bytes;
|
||||
dprintf("MemoryManager: Free(%lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
|
||||
dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
|
||||
}
|
||||
// uint64_t CpuPtr = AccCache.CpuPtr;
|
||||
DeviceEvictions++;
|
||||
@ -169,7 +169,7 @@ void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
|
||||
assert(AccCache.AccPtr!=(uint64_t)NULL);
|
||||
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
|
||||
mprintf("MemoryManager: Flush %lx -> %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
||||
mprintf("MemoryManager: acceleratorCopyFromDevice Flush AccPtr %lx -> CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
||||
DeviceToHostBytes+=AccCache.bytes;
|
||||
DeviceToHostXfer++;
|
||||
AccCache.state=Consistent;
|
||||
@ -184,7 +184,7 @@ void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
|
||||
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
|
||||
DeviceBytes+=AccCache.bytes;
|
||||
}
|
||||
mprintf("MemoryManager: Clone %lx <- %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
||||
mprintf("MemoryManager: acceleratorCopyToDevice Clone AccPtr %lx <- CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
||||
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
|
||||
HostToDeviceBytes+=AccCache.bytes;
|
||||
HostToDeviceXfer++;
|
||||
@ -474,6 +474,7 @@ void MemoryManager::Print(void)
|
||||
std::cout << GridLogMessage << DeviceEvictions << " Evictions from device " << std::endl;
|
||||
std::cout << GridLogMessage << DeviceDestroy << " Destroyed vectors on device " << std::endl;
|
||||
std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
|
||||
acceleratorMem();
|
||||
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
|
||||
}
|
||||
void MemoryManager::PrintAll(void)
|
||||
@ -519,7 +520,6 @@ void MemoryManager::Audit(std::string s)
|
||||
uint64_t LruBytes1=0;
|
||||
uint64_t LruBytes2=0;
|
||||
uint64_t LruCnt=0;
|
||||
uint64_t LockedBytes=0;
|
||||
|
||||
std::cout << " Memory Manager::Audit() from "<<s<<std::endl;
|
||||
for(auto it=LRU.begin();it!=LRU.end();it++){
|
||||
|
@ -70,8 +70,8 @@ public:
|
||||
Coordinate _istride; // Inner stride i.e. within simd lane
|
||||
int _osites; // _isites*_osites = product(dimensions).
|
||||
int _isites;
|
||||
int _fsites; // _isites*_osites = product(dimensions).
|
||||
int _gsites;
|
||||
int64_t _fsites; // _isites*_osites = product(dimensions).
|
||||
int64_t _gsites;
|
||||
Coordinate _slice_block;// subslice information
|
||||
Coordinate _slice_stride;
|
||||
Coordinate _slice_nblock;
|
||||
@ -183,7 +183,7 @@ public:
|
||||
inline int Nsimd(void) const { return _isites; };// Synonymous with iSites
|
||||
inline int oSites(void) const { return _osites; };
|
||||
inline int lSites(void) const { return _isites*_osites; };
|
||||
inline int gSites(void) const { return _isites*_osites*_Nprocessors; };
|
||||
inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; };
|
||||
inline int Nd (void) const { return _ndimension;};
|
||||
|
||||
inline const Coordinate LocalStarts(void) { return _lstart; };
|
||||
@ -214,7 +214,7 @@ public:
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Global addressing
|
||||
////////////////////////////////////////////////////////////////
|
||||
void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){
|
||||
void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){
|
||||
assert(gidx< gSites());
|
||||
Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
|
||||
}
|
||||
@ -222,7 +222,7 @@ public:
|
||||
assert(lidx<lSites());
|
||||
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
|
||||
}
|
||||
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){
|
||||
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){
|
||||
gidx=0;
|
||||
int mult=1;
|
||||
for(int mu=0;mu<_ndimension;mu++) {
|
||||
|
@ -138,6 +138,14 @@ public:
|
||||
////////////////////////////////////////////////////////////
|
||||
// Face exchange, buffer swap in translational invariant way
|
||||
////////////////////////////////////////////////////////////
|
||||
void CommsComplete(std::vector<CommsRequest_t> &list);
|
||||
void SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes,int dir);
|
||||
|
||||
void SendToRecvFrom(void *xmit,
|
||||
int xmit_to_rank,
|
||||
void *recv,
|
||||
|
@ -306,6 +306,44 @@ void CartesianCommunicator::GlobalSumVector(double *d,int N)
|
||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes,int dir)
|
||||
{
|
||||
MPI_Request xrq;
|
||||
MPI_Request rrq;
|
||||
|
||||
assert(dest != _processor);
|
||||
assert(from != _processor);
|
||||
|
||||
int tag;
|
||||
|
||||
tag= dir+from*32;
|
||||
int ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator,&rrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(rrq);
|
||||
|
||||
tag= dir+_processor*32;
|
||||
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator,&xrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(xrq);
|
||||
}
|
||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list)
|
||||
{
|
||||
int nreq=list.size();
|
||||
|
||||
if (nreq==0) return;
|
||||
|
||||
std::vector<MPI_Status> status(nreq);
|
||||
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
|
||||
assert(ierr==0);
|
||||
list.resize(0);
|
||||
}
|
||||
|
||||
// Basic Halo comms primitive
|
||||
void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
||||
int dest,
|
||||
@ -348,6 +386,7 @@ double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
|
||||
return offbytes;
|
||||
}
|
||||
|
||||
#undef NVLINK_GET // Define to use get instead of put DMA
|
||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,int dox,
|
||||
@ -380,9 +419,15 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
list.push_back(rrq);
|
||||
off_node_bytes+=rbytes;
|
||||
}
|
||||
#ifdef NVLINK_GET
|
||||
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
|
||||
assert(shm!=NULL);
|
||||
acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (dox) {
|
||||
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
|
||||
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
|
||||
tag= dir+_processor*32;
|
||||
ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
|
||||
@ -390,9 +435,12 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
list.push_back(xrq);
|
||||
off_node_bytes+=xbytes;
|
||||
} else {
|
||||
#ifndef NVLINK_GET
|
||||
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
|
||||
assert(shm!=NULL);
|
||||
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
|
||||
#endif
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
@ -402,6 +450,8 @@ void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsReque
|
||||
{
|
||||
int nreq=list.size();
|
||||
|
||||
acceleratorCopySynchronise();
|
||||
|
||||
if (nreq==0) return;
|
||||
|
||||
std::vector<MPI_Status> status(nreq);
|
||||
|
@ -91,6 +91,17 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(0);}
|
||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes,int dir)
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
|
||||
{
|
||||
bcopy(in,out,bytes*words);
|
||||
@ -128,7 +139,7 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
int recv_from_rank,int dor,
|
||||
int xbytes,int rbytes, int dir)
|
||||
{
|
||||
return 2.0*bytes;
|
||||
return xbytes+rbytes;
|
||||
}
|
||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
|
||||
{
|
||||
|
@ -40,6 +40,9 @@ int GlobalSharedMemory::_ShmAlloc;
|
||||
uint64_t GlobalSharedMemory::_ShmAllocBytes;
|
||||
|
||||
std::vector<void *> GlobalSharedMemory::WorldShmCommBufs;
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
void * GlobalSharedMemory::HostCommBuf;
|
||||
#endif
|
||||
|
||||
Grid_MPI_Comm GlobalSharedMemory::WorldShmComm;
|
||||
int GlobalSharedMemory::WorldShmRank;
|
||||
@ -66,6 +69,26 @@ void GlobalSharedMemory::SharedMemoryFree(void)
|
||||
/////////////////////////////////
|
||||
// Alloc, free shmem region
|
||||
/////////////////////////////////
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
void *SharedMemory::HostBufferMalloc(size_t bytes){
|
||||
void *ptr = (void *)host_heap_top;
|
||||
host_heap_top += bytes;
|
||||
host_heap_bytes+= bytes;
|
||||
if (host_heap_bytes >= host_heap_size) {
|
||||
std::cout<< " HostBufferMalloc exceeded heap size -- try increasing with --shm <MB> flag" <<std::endl;
|
||||
std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
|
||||
std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
|
||||
std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl;
|
||||
std::cout<< " Current heap is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl;
|
||||
assert(host_heap_bytes<host_heap_size);
|
||||
}
|
||||
return ptr;
|
||||
}
|
||||
void SharedMemory::HostBufferFreeAll(void) {
|
||||
host_heap_top =(size_t)HostCommBuf;
|
||||
host_heap_bytes=0;
|
||||
}
|
||||
#endif
|
||||
void *SharedMemory::ShmBufferMalloc(size_t bytes){
|
||||
// bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
|
||||
void *ptr = (void *)heap_top;
|
||||
@ -91,6 +114,59 @@ void *SharedMemory::ShmBufferSelf(void)
|
||||
//std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl;
|
||||
return ShmCommBufs[ShmRank];
|
||||
}
|
||||
static inline int divides(int a,int b)
|
||||
{
|
||||
return ( b == ( (b/a)*a ) );
|
||||
}
|
||||
void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
|
||||
{
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Allow user to configure through environment variable
|
||||
////////////////////////////////////////////////////////////////
|
||||
char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str());
|
||||
if ( str ) {
|
||||
std::vector<int> IntShmDims;
|
||||
GridCmdOptionIntVector(std::string(str),IntShmDims);
|
||||
assert(IntShmDims.size() == WorldDims.size());
|
||||
long ShmSize = 1;
|
||||
for (int dim=0;dim<WorldDims.size();dim++) {
|
||||
ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
|
||||
assert(divides(ShmDims[dim],WorldDims[dim]));
|
||||
}
|
||||
assert(ShmSize == WorldShmSize);
|
||||
return;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Powers of 2,3,5 only in prime decomposition for now
|
||||
////////////////////////////////////////////////////////////////
|
||||
int ndimension = WorldDims.size();
|
||||
ShmDims=Coordinate(ndimension,1);
|
||||
|
||||
std::vector<int> primes({2,3,5});
|
||||
|
||||
int dim = 0;
|
||||
int last_dim = ndimension - 1;
|
||||
int AutoShmSize = 1;
|
||||
while(AutoShmSize != WorldShmSize) {
|
||||
int p;
|
||||
for(p=0;p<primes.size();p++) {
|
||||
int prime=primes[p];
|
||||
if ( divides(prime,WorldDims[dim]/ShmDims[dim])
|
||||
&& divides(prime,WorldShmSize/AutoShmSize) ) {
|
||||
AutoShmSize*=prime;
|
||||
ShmDims[dim]*=prime;
|
||||
last_dim = dim;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (p == primes.size() && last_dim == dim) {
|
||||
std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
dim=(dim+1) %ndimension;
|
||||
}
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -75,7 +75,9 @@ public:
|
||||
static int Hugepages;
|
||||
|
||||
static std::vector<void *> WorldShmCommBufs;
|
||||
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
static void *HostCommBuf;
|
||||
#endif
|
||||
static Grid_MPI_Comm WorldComm;
|
||||
static int WorldRank;
|
||||
static int WorldSize;
|
||||
@ -120,6 +122,13 @@ private:
|
||||
size_t heap_bytes;
|
||||
size_t heap_size;
|
||||
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
size_t host_heap_top; // set in free all
|
||||
size_t host_heap_bytes;// set in free all
|
||||
void *HostCommBuf; // set in SetCommunicator
|
||||
size_t host_heap_size; // set in SetCommunicator
|
||||
#endif
|
||||
|
||||
protected:
|
||||
|
||||
Grid_MPI_Comm ShmComm; // for barriers
|
||||
@ -151,7 +160,10 @@ public:
|
||||
void *ShmBufferTranslate(int rank,void * local_p);
|
||||
void *ShmBufferMalloc(size_t bytes);
|
||||
void ShmBufferFreeAll(void) ;
|
||||
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
void *HostBufferMalloc(size_t bytes);
|
||||
void HostBufferFreeAll(void);
|
||||
#endif
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Make info on Nodes & ranks and Shared memory available
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
|
@ -27,9 +27,10 @@ Author: Christoph Lehner <christoph@lhnr.de>
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#define Mheader "SharedMemoryMpi: "
|
||||
|
||||
#include <Grid/GridCore.h>
|
||||
#include <pwd.h>
|
||||
#include <syscall.h>
|
||||
|
||||
#ifdef GRID_CUDA
|
||||
#include <cuda_runtime_api.h>
|
||||
@ -38,12 +39,121 @@ Author: Christoph Lehner <christoph@lhnr.de>
|
||||
#include <hip/hip_runtime_api.h>
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
#ifdef ACCELERATOR_AWARE_MPI
|
||||
#define GRID_SYCL_LEVEL_ZERO_IPC
|
||||
#define SHM_SOCKETS
|
||||
#endif
|
||||
#include <syscall.h>
|
||||
#endif
|
||||
|
||||
#include <sys/socket.h>
|
||||
#include <sys/un.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#ifdef SHM_SOCKETS
|
||||
|
||||
/*
|
||||
* Barbaric extra intranode communication route in case we need sockets to pass FDs
|
||||
* Forced by level_zero not being nicely designed
|
||||
*/
|
||||
static int sock;
|
||||
static const char *sock_path_fmt = "/tmp/GridUnixSocket.%d";
|
||||
static char sock_path[256];
|
||||
class UnixSockets {
|
||||
public:
|
||||
static void Open(int rank)
|
||||
{
|
||||
int errnum;
|
||||
|
||||
sock = socket(AF_UNIX, SOCK_DGRAM, 0); assert(sock>0);
|
||||
|
||||
struct sockaddr_un sa_un = { 0 };
|
||||
sa_un.sun_family = AF_UNIX;
|
||||
snprintf(sa_un.sun_path, sizeof(sa_un.sun_path),sock_path_fmt,rank);
|
||||
unlink(sa_un.sun_path);
|
||||
if (bind(sock, (struct sockaddr *)&sa_un, sizeof(sa_un))) {
|
||||
perror("bind failure");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
|
||||
static int RecvFileDescriptor(void)
|
||||
{
|
||||
int n;
|
||||
int fd;
|
||||
char buf[1];
|
||||
struct iovec iov;
|
||||
struct msghdr msg;
|
||||
struct cmsghdr *cmsg;
|
||||
char cms[CMSG_SPACE(sizeof(int))];
|
||||
|
||||
iov.iov_base = buf;
|
||||
iov.iov_len = 1;
|
||||
|
||||
memset(&msg, 0, sizeof msg);
|
||||
msg.msg_name = 0;
|
||||
msg.msg_namelen = 0;
|
||||
msg.msg_iov = &iov;
|
||||
msg.msg_iovlen = 1;
|
||||
|
||||
msg.msg_control = (caddr_t)cms;
|
||||
msg.msg_controllen = sizeof cms;
|
||||
|
||||
if((n=recvmsg(sock, &msg, 0)) < 0) {
|
||||
perror("recvmsg failed");
|
||||
return -1;
|
||||
}
|
||||
if(n == 0){
|
||||
perror("recvmsg returned 0");
|
||||
return -1;
|
||||
}
|
||||
cmsg = CMSG_FIRSTHDR(&msg);
|
||||
|
||||
memmove(&fd, CMSG_DATA(cmsg), sizeof(int));
|
||||
|
||||
return fd;
|
||||
}
|
||||
|
||||
static void SendFileDescriptor(int fildes,int xmit_to_rank)
|
||||
{
|
||||
struct msghdr msg;
|
||||
struct iovec iov;
|
||||
struct cmsghdr *cmsg = NULL;
|
||||
char ctrl[CMSG_SPACE(sizeof(int))];
|
||||
char data = ' ';
|
||||
|
||||
memset(&msg, 0, sizeof(struct msghdr));
|
||||
memset(ctrl, 0, CMSG_SPACE(sizeof(int)));
|
||||
iov.iov_base = &data;
|
||||
iov.iov_len = sizeof(data);
|
||||
|
||||
sprintf(sock_path,sock_path_fmt,xmit_to_rank);
|
||||
|
||||
struct sockaddr_un sa_un = { 0 };
|
||||
sa_un.sun_family = AF_UNIX;
|
||||
snprintf(sa_un.sun_path, sizeof(sa_un.sun_path),sock_path_fmt,xmit_to_rank);
|
||||
|
||||
msg.msg_name = (void *)&sa_un;
|
||||
msg.msg_namelen = sizeof(sa_un);
|
||||
msg.msg_iov = &iov;
|
||||
msg.msg_iovlen = 1;
|
||||
msg.msg_controllen = CMSG_SPACE(sizeof(int));
|
||||
msg.msg_control = ctrl;
|
||||
|
||||
cmsg = CMSG_FIRSTHDR(&msg);
|
||||
cmsg->cmsg_level = SOL_SOCKET;
|
||||
cmsg->cmsg_type = SCM_RIGHTS;
|
||||
cmsg->cmsg_len = CMSG_LEN(sizeof(int));
|
||||
|
||||
*((int *) CMSG_DATA(cmsg)) = fildes;
|
||||
|
||||
sendmsg(sock, &msg, 0);
|
||||
};
|
||||
};
|
||||
#endif
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
#define header "SharedMemoryMpi: "
|
||||
/*Construct from an MPI communicator*/
|
||||
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
||||
{
|
||||
@ -66,8 +176,8 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
||||
MPI_Comm_size(WorldShmComm ,&WorldShmSize);
|
||||
|
||||
if ( WorldRank == 0) {
|
||||
std::cout << header " World communicator of size " <<WorldSize << std::endl;
|
||||
std::cout << header " Node communicator of size " <<WorldShmSize << std::endl;
|
||||
std::cout << Mheader " World communicator of size " <<WorldSize << std::endl;
|
||||
std::cout << Mheader " Node communicator of size " <<WorldShmSize << std::endl;
|
||||
}
|
||||
// WorldShmComm, WorldShmSize, WorldShmRank
|
||||
|
||||
@ -170,59 +280,7 @@ void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_M
|
||||
if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm,SHM);
|
||||
else OptimalCommunicatorSharedMemory(processors,optimal_comm,SHM);
|
||||
}
|
||||
static inline int divides(int a,int b)
|
||||
{
|
||||
return ( b == ( (b/a)*a ) );
|
||||
}
|
||||
void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
|
||||
{
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Allow user to configure through environment variable
|
||||
////////////////////////////////////////////////////////////////
|
||||
char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str());
|
||||
if ( str ) {
|
||||
std::vector<int> IntShmDims;
|
||||
GridCmdOptionIntVector(std::string(str),IntShmDims);
|
||||
assert(IntShmDims.size() == WorldDims.size());
|
||||
long ShmSize = 1;
|
||||
for (int dim=0;dim<WorldDims.size();dim++) {
|
||||
ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
|
||||
assert(divides(ShmDims[dim],WorldDims[dim]));
|
||||
}
|
||||
assert(ShmSize == WorldShmSize);
|
||||
return;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Powers of 2,3,5 only in prime decomposition for now
|
||||
////////////////////////////////////////////////////////////////
|
||||
int ndimension = WorldDims.size();
|
||||
ShmDims=Coordinate(ndimension,1);
|
||||
|
||||
std::vector<int> primes({2,3,5});
|
||||
|
||||
int dim = 0;
|
||||
int last_dim = ndimension - 1;
|
||||
int AutoShmSize = 1;
|
||||
while(AutoShmSize != WorldShmSize) {
|
||||
int p;
|
||||
for(p=0;p<primes.size();p++) {
|
||||
int prime=primes[p];
|
||||
if ( divides(prime,WorldDims[dim]/ShmDims[dim])
|
||||
&& divides(prime,WorldShmSize/AutoShmSize) ) {
|
||||
AutoShmSize*=prime;
|
||||
ShmDims[dim]*=prime;
|
||||
last_dim = dim;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (p == primes.size() && last_dim == dim) {
|
||||
std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
dim=(dim+1) %ndimension;
|
||||
}
|
||||
}
|
||||
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
|
||||
{
|
||||
////////////////////////////////////////////////////////////////
|
||||
@ -396,7 +454,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
|
||||
#ifdef GRID_MPI3_SHMGET
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
std::cout << header "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
|
||||
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
|
||||
@ -456,46 +514,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
// Hugetlbfs mapping intended
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#if defined(GRID_CUDA) ||defined(GRID_HIP) || defined(GRID_SYCL)
|
||||
|
||||
//if defined(GRID_SYCL)
|
||||
#if 0
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
void * ShmCommBuf ;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// allocate the pointer array for shared windows for our group
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
MPI_Barrier(WorldShmComm);
|
||||
WorldShmCommBufs.resize(WorldShmSize);
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Each MPI rank should allocate our own buffer
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
ShmCommBuf = acceleratorAllocDevice(bytes);
|
||||
|
||||
if (ShmCommBuf == (void *)NULL ) {
|
||||
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
|
||||
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
|
||||
|
||||
SharedMemoryZero(ShmCommBuf,bytes);
|
||||
|
||||
assert(WorldShmSize == 1);
|
||||
for(int r=0;r<WorldShmSize;r++){
|
||||
WorldShmCommBufs[r] = ShmCommBuf;
|
||||
}
|
||||
_ShmAllocBytes=bytes;
|
||||
_ShmAlloc=1;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(GRID_CUDA) ||defined(GRID_HIP) ||defined(GRID_SYCL)
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
void * ShmCommBuf ;
|
||||
@ -518,13 +536,16 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Each MPI rank should allocate our own buffer
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
HostCommBuf= malloc(bytes);
|
||||
#endif
|
||||
ShmCommBuf = acceleratorAllocDevice(bytes);
|
||||
if (ShmCommBuf == (void *)NULL ) {
|
||||
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if ( WorldRank == 0 ){
|
||||
std::cout << WorldRank << header " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
|
||||
std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
|
||||
<< "bytes at "<< std::hex<< ShmCommBuf << " - "<<(bytes-1+(uint64_t)ShmCommBuf) <<std::dec<<" for comms buffers " <<std::endl;
|
||||
}
|
||||
SharedMemoryZero(ShmCommBuf,bytes);
|
||||
@ -532,8 +553,13 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Loop over ranks/gpu's on our node
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#ifdef SHM_SOCKETS
|
||||
UnixSockets::Open(WorldShmRank);
|
||||
#endif
|
||||
for(int r=0;r<WorldShmSize;r++){
|
||||
|
||||
MPI_Barrier(WorldShmComm);
|
||||
|
||||
#ifndef GRID_MPI3_SHM_NONE
|
||||
//////////////////////////////////////////////////
|
||||
// If it is me, pass around the IPC access key
|
||||
@ -541,24 +567,32 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
void * thisBuf = ShmCommBuf;
|
||||
if(!Stencil_force_mpi) {
|
||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
|
||||
typedef struct { int fd; pid_t pid ; } clone_mem_t;
|
||||
typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
|
||||
|
||||
auto zeDevice = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_device());
|
||||
auto zeContext = cl::sycl::get_native<cl::sycl::backend::level_zero>(theGridAccelerator->get_context());
|
||||
auto zeDevice = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
|
||||
auto zeContext = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
|
||||
|
||||
ze_ipc_mem_handle_t ihandle;
|
||||
clone_mem_t handle;
|
||||
|
||||
|
||||
if ( r==WorldShmRank ) {
|
||||
auto err = zeMemGetIpcHandle(zeContext,ShmCommBuf,&ihandle);
|
||||
if ( err != ZE_RESULT_SUCCESS ) {
|
||||
std::cout << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
|
||||
std::cerr << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
} else {
|
||||
std::cout << "SharedMemoryMPI.cc zeMemGetIpcHandle succeeded for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
|
||||
}
|
||||
memcpy((void *)&handle.fd,(void *)&ihandle,sizeof(int));
|
||||
handle.pid = getpid();
|
||||
memcpy((void *)&handle.ze,(void *)&ihandle,sizeof(ihandle));
|
||||
#ifdef SHM_SOCKETS
|
||||
for(int rr=0;rr<WorldShmSize;rr++){
|
||||
if(rr!=r){
|
||||
UnixSockets::SendFileDescriptor(handle.fd,rr);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
@ -586,6 +620,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
// Share this IPC handle across the Shm Comm
|
||||
//////////////////////////////////////////////////
|
||||
{
|
||||
MPI_Barrier(WorldShmComm);
|
||||
int ierr=MPI_Bcast(&handle,
|
||||
sizeof(handle),
|
||||
MPI_BYTE,
|
||||
@ -601,6 +636,10 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
|
||||
if ( r!=WorldShmRank ) {
|
||||
thisBuf = nullptr;
|
||||
int myfd;
|
||||
#ifdef SHM_SOCKETS
|
||||
myfd=UnixSockets::RecvFileDescriptor();
|
||||
#else
|
||||
std::cout<<"mapping seeking remote pid/fd "
|
||||
<<handle.pid<<"/"
|
||||
<<handle.fd<<std::endl;
|
||||
@ -608,16 +647,22 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
int pidfd = syscall(SYS_pidfd_open,handle.pid,0);
|
||||
std::cout<<"Using IpcHandle pidfd "<<pidfd<<"\n";
|
||||
// int myfd = syscall(SYS_pidfd_getfd,pidfd,handle.fd,0);
|
||||
int myfd = syscall(438,pidfd,handle.fd,0);
|
||||
|
||||
std::cout<<"Using IpcHandle myfd "<<myfd<<"\n";
|
||||
|
||||
myfd = syscall(438,pidfd,handle.fd,0);
|
||||
int err_t = errno;
|
||||
if (myfd < 0) {
|
||||
fprintf(stderr,"pidfd_getfd returned %d errno was %d\n", myfd,err_t); fflush(stderr);
|
||||
perror("pidfd_getfd failed ");
|
||||
assert(0);
|
||||
}
|
||||
#endif
|
||||
std::cout<<"Using IpcHandle mapped remote pid "<<handle.pid <<" FD "<<handle.fd <<" to myfd "<<myfd<<"\n";
|
||||
memcpy((void *)&ihandle,(void *)&handle.ze,sizeof(ihandle));
|
||||
memcpy((void *)&ihandle,(void *)&myfd,sizeof(int));
|
||||
|
||||
auto err = zeMemOpenIpcHandle(zeContext,zeDevice,ihandle,0,&thisBuf);
|
||||
if ( err != ZE_RESULT_SUCCESS ) {
|
||||
std::cout << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl;
|
||||
std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
|
||||
std::cerr << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl;
|
||||
std::cerr << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
} else {
|
||||
std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle succeeded for rank "<<r<<std::endl;
|
||||
@ -652,18 +697,18 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
#else
|
||||
WorldShmCommBufs[r] = ShmCommBuf;
|
||||
#endif
|
||||
MPI_Barrier(WorldShmComm);
|
||||
}
|
||||
|
||||
_ShmAllocBytes=bytes;
|
||||
_ShmAlloc=1;
|
||||
}
|
||||
#endif
|
||||
|
||||
#else
|
||||
#ifdef GRID_MPI3_SHMMMAP
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
|
||||
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -700,7 +745,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
assert(((uint64_t)ptr&0x3F)==0);
|
||||
close(fd);
|
||||
WorldShmCommBufs[r] =ptr;
|
||||
// std::cout << header "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
|
||||
// std::cout << Mheader "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
|
||||
}
|
||||
_ShmAlloc=1;
|
||||
_ShmAllocBytes = bytes;
|
||||
@ -710,7 +755,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
#ifdef GRID_MPI3_SHM_NONE
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
|
||||
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -757,7 +802,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
std::cout << header "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
|
||||
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
MPI_Barrier(WorldShmComm);
|
||||
@ -881,6 +926,12 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
|
||||
}
|
||||
ShmBufferFreeAll();
|
||||
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
host_heap_size = heap_size;
|
||||
HostCommBuf= GlobalSharedMemory::HostCommBuf;
|
||||
HostBufferFreeAll();
|
||||
#endif
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// find comm ranks in our SHM group (i.e. which ranks are on our node)
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
|
@ -29,8 +29,27 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
extern Vector<std::pair<int,int> > Cshift_table;
|
||||
extern std::vector<std::pair<int,int> > Cshift_table;
|
||||
extern commVector<std::pair<int,int> > Cshift_table_device;
|
||||
|
||||
inline std::pair<int,int> *MapCshiftTable(void)
|
||||
{
|
||||
// GPU version
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
uint64_t sz=Cshift_table.size();
|
||||
if (Cshift_table_device.size()!=sz ) {
|
||||
Cshift_table_device.resize(sz);
|
||||
}
|
||||
acceleratorCopyToDevice((void *)&Cshift_table[0],
|
||||
(void *)&Cshift_table_device[0],
|
||||
sizeof(Cshift_table[0])*sz);
|
||||
|
||||
return &Cshift_table_device[0];
|
||||
#else
|
||||
return &Cshift_table[0];
|
||||
#endif
|
||||
// CPU version use identify map
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// Gather for when there is no need to SIMD split
|
||||
///////////////////////////////////////////////////////////////////
|
||||
@ -74,8 +93,8 @@ Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dim
|
||||
}
|
||||
{
|
||||
auto buffer_p = & buffer[0];
|
||||
auto table = &Cshift_table[0];
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
auto table = MapCshiftTable();
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView(rhs_v , rhs, AcceleratorRead);
|
||||
accelerator_for(i,ent,vobj::Nsimd(),{
|
||||
coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
|
||||
@ -225,7 +244,7 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<
|
||||
|
||||
{
|
||||
auto buffer_p = & buffer[0];
|
||||
auto table = &Cshift_table[0];
|
||||
auto table = MapCshiftTable();
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView( rhs_v, rhs, AcceleratorWrite);
|
||||
accelerator_for(i,ent,vobj::Nsimd(),{
|
||||
@ -297,30 +316,6 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
|
||||
}
|
||||
}
|
||||
|
||||
#if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT)
|
||||
|
||||
template <typename T>
|
||||
T iDivUp(T a, T b) // Round a / b to nearest higher integer value
|
||||
{ return (a % b != 0) ? (a / b + 1) : (a / b); }
|
||||
|
||||
template <typename T>
|
||||
__global__ void populate_Cshift_table(T* vector, T lo, T ro, T e1, T e2, T stride)
|
||||
{
|
||||
int idx = blockIdx.x*blockDim.x + threadIdx.x;
|
||||
if (idx >= e1*e2) return;
|
||||
|
||||
int n, b, o;
|
||||
|
||||
n = idx / e2;
|
||||
b = idx % e2;
|
||||
o = n*stride + b;
|
||||
|
||||
vector[2*idx + 0] = lo + o;
|
||||
vector[2*idx + 1] = ro + o;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// local to node block strided copies
|
||||
//////////////////////////////////////////////////////
|
||||
@ -345,20 +340,12 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
|
||||
int ent=0;
|
||||
|
||||
if(cbmask == 0x3 ){
|
||||
#if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT)
|
||||
ent = e1*e2;
|
||||
dim3 blockSize(acceleratorThreads());
|
||||
dim3 gridSize(iDivUp((unsigned int)ent, blockSize.x));
|
||||
populate_Cshift_table<<<gridSize, blockSize>>>(&Cshift_table[0].first, lo, ro, e1, e2, stride);
|
||||
accelerator_barrier();
|
||||
#else
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
int o =n*stride+b;
|
||||
Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
@ -372,7 +359,7 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
|
||||
}
|
||||
|
||||
{
|
||||
auto table = &Cshift_table[0];
|
||||
auto table = MapCshiftTable();
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView(rhs_v , rhs, AcceleratorRead);
|
||||
autoView(lhs_v , lhs, AcceleratorWrite);
|
||||
@ -409,19 +396,11 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
|
||||
int ent=0;
|
||||
|
||||
if ( cbmask == 0x3 ) {
|
||||
#if (defined(GRID_CUDA) || defined(GRID_HIP)) && defined(ACCELERATOR_CSHIFT)
|
||||
ent = e1*e2;
|
||||
dim3 blockSize(acceleratorThreads());
|
||||
dim3 gridSize(iDivUp((unsigned int)ent, blockSize.x));
|
||||
populate_Cshift_table<<<gridSize, blockSize>>>(&Cshift_table[0].first, lo, ro, e1, e2, stride);
|
||||
accelerator_barrier();
|
||||
#else
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
int o =n*stride;
|
||||
Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
|
||||
}}
|
||||
#endif
|
||||
} else {
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
@ -432,7 +411,7 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
|
||||
}
|
||||
|
||||
{
|
||||
auto table = &Cshift_table[0];
|
||||
auto table = MapCshiftTable();
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView( rhs_v, rhs, AcceleratorRead);
|
||||
autoView( lhs_v, lhs, AcceleratorWrite);
|
||||
|
@ -52,7 +52,8 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
|
||||
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
|
||||
int splice_dim = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim);
|
||||
|
||||
|
||||
RealD t1,t0;
|
||||
t0=usecond();
|
||||
if ( !comm_dim ) {
|
||||
//std::cout << "CSHIFT: Cshift_local" <<std::endl;
|
||||
Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
|
||||
@ -63,6 +64,8 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
|
||||
//std::cout << "CSHIFT: Cshift_comms" <<std::endl;
|
||||
Cshift_comms(ret,rhs,dimension,shift);
|
||||
}
|
||||
t1=usecond();
|
||||
// std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
|
||||
return ret;
|
||||
}
|
||||
|
||||
@ -127,16 +130,20 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
|
||||
int cb= (cbmask==0x2)? Odd : Even;
|
||||
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
|
||||
|
||||
RealD tcopy=0.0;
|
||||
RealD tgather=0.0;
|
||||
RealD tscatter=0.0;
|
||||
RealD tcomms=0.0;
|
||||
uint64_t xbytes=0;
|
||||
for(int x=0;x<rd;x++){
|
||||
|
||||
int sx = (x+sshift)%rd;
|
||||
int comm_proc = ((x+sshift)/rd)%pd;
|
||||
|
||||
if (comm_proc==0) {
|
||||
|
||||
tcopy-=usecond();
|
||||
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
|
||||
|
||||
tcopy+=usecond();
|
||||
} else {
|
||||
|
||||
int words = buffer_size;
|
||||
@ -144,26 +151,39 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
|
||||
int bytes = words * sizeof(vobj);
|
||||
|
||||
tgather-=usecond();
|
||||
Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
|
||||
tgather+=usecond();
|
||||
|
||||
// int rank = grid->_processor;
|
||||
int recv_from_rank;
|
||||
int xmit_to_rank;
|
||||
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
grid->Barrier();
|
||||
|
||||
tcomms-=usecond();
|
||||
// grid->Barrier();
|
||||
|
||||
grid->SendToRecvFrom((void *)&send_buf[0],
|
||||
xmit_to_rank,
|
||||
(void *)&recv_buf[0],
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
xbytes+=bytes;
|
||||
// grid->Barrier();
|
||||
tcomms+=usecond();
|
||||
|
||||
grid->Barrier();
|
||||
|
||||
tscatter-=usecond();
|
||||
Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
|
||||
tscatter+=usecond();
|
||||
}
|
||||
}
|
||||
/*
|
||||
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
|
||||
*/
|
||||
}
|
||||
|
||||
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
||||
@ -190,6 +210,12 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
assert(shift>=0);
|
||||
assert(shift<fd);
|
||||
|
||||
RealD tcopy=0.0;
|
||||
RealD tgather=0.0;
|
||||
RealD tscatter=0.0;
|
||||
RealD tcomms=0.0;
|
||||
uint64_t xbytes=0;
|
||||
|
||||
int permute_type=grid->PermuteType(dimension);
|
||||
|
||||
///////////////////////////////////////////////
|
||||
@ -227,7 +253,9 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
pointers[i] = &send_buf_extract[i][0];
|
||||
}
|
||||
int sx = (x+sshift)%rd;
|
||||
tgather-=usecond();
|
||||
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
|
||||
tgather+=usecond();
|
||||
|
||||
for(int i=0;i<Nsimd;i++){
|
||||
|
||||
@ -252,7 +280,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
if(nbr_proc){
|
||||
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
grid->Barrier();
|
||||
tcomms-=usecond();
|
||||
// grid->Barrier();
|
||||
|
||||
send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
|
||||
recv_buf_extract_mpi = &recv_buf_extract[i][0];
|
||||
@ -262,7 +291,9 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
|
||||
grid->Barrier();
|
||||
xbytes+=bytes;
|
||||
// grid->Barrier();
|
||||
tcomms+=usecond();
|
||||
|
||||
rpointers[i] = &recv_buf_extract[i][0];
|
||||
} else {
|
||||
@ -270,9 +301,17 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
}
|
||||
|
||||
}
|
||||
tscatter-=usecond();
|
||||
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
|
||||
tscatter+=usecond();
|
||||
}
|
||||
|
||||
/*
|
||||
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
|
||||
*/
|
||||
}
|
||||
#else
|
||||
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
||||
@ -292,6 +331,11 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
assert(comm_dim==1);
|
||||
assert(shift>=0);
|
||||
assert(shift<fd);
|
||||
RealD tcopy=0.0;
|
||||
RealD tgather=0.0;
|
||||
RealD tscatter=0.0;
|
||||
RealD tcomms=0.0;
|
||||
uint64_t xbytes=0;
|
||||
|
||||
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
|
||||
static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
|
||||
@ -315,7 +359,9 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
|
||||
if (comm_proc==0) {
|
||||
|
||||
tcopy-=usecond();
|
||||
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
|
||||
tcopy+=usecond();
|
||||
|
||||
} else {
|
||||
|
||||
@ -324,7 +370,9 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
|
||||
int bytes = words * sizeof(vobj);
|
||||
|
||||
tgather-=usecond();
|
||||
Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
|
||||
tgather+=usecond();
|
||||
|
||||
// int rank = grid->_processor;
|
||||
int recv_from_rank;
|
||||
@ -332,7 +380,8 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
|
||||
grid->Barrier();
|
||||
tcomms-=usecond();
|
||||
// grid->Barrier();
|
||||
|
||||
acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
|
||||
grid->SendToRecvFrom((void *)&send_buf[0],
|
||||
@ -340,13 +389,24 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
(void *)&recv_buf[0],
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
xbytes+=bytes;
|
||||
acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
|
||||
|
||||
grid->Barrier();
|
||||
// grid->Barrier();
|
||||
tcomms+=usecond();
|
||||
|
||||
tscatter-=usecond();
|
||||
Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
|
||||
tscatter+=usecond();
|
||||
}
|
||||
}
|
||||
/*
|
||||
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
|
||||
*/
|
||||
}
|
||||
|
||||
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
||||
@ -372,6 +432,11 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
assert(simd_layout==2);
|
||||
assert(shift>=0);
|
||||
assert(shift<fd);
|
||||
RealD tcopy=0.0;
|
||||
RealD tgather=0.0;
|
||||
RealD tscatter=0.0;
|
||||
RealD tcomms=0.0;
|
||||
uint64_t xbytes=0;
|
||||
|
||||
int permute_type=grid->PermuteType(dimension);
|
||||
|
||||
@ -414,8 +479,10 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
for(int i=0;i<Nsimd;i++){
|
||||
pointers[i] = &send_buf_extract[i][0];
|
||||
}
|
||||
tgather-=usecond();
|
||||
int sx = (x+sshift)%rd;
|
||||
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
|
||||
tgather+=usecond();
|
||||
|
||||
for(int i=0;i<Nsimd;i++){
|
||||
|
||||
@ -440,7 +507,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
if(nbr_proc){
|
||||
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
grid->Barrier();
|
||||
tcomms-=usecond();
|
||||
// grid->Barrier();
|
||||
|
||||
acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
|
||||
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
|
||||
@ -449,17 +517,28 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
|
||||
xbytes+=bytes;
|
||||
|
||||
grid->Barrier();
|
||||
// grid->Barrier();
|
||||
tcomms+=usecond();
|
||||
rpointers[i] = &recv_buf_extract[i][0];
|
||||
} else {
|
||||
rpointers[i] = &send_buf_extract[nbr_lane][0];
|
||||
}
|
||||
|
||||
}
|
||||
tscatter-=usecond();
|
||||
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
|
||||
}
|
||||
tscatter+=usecond();
|
||||
|
||||
}
|
||||
/*
|
||||
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl;
|
||||
*/
|
||||
}
|
||||
#endif
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -1,4 +1,5 @@
|
||||
#include <Grid/GridCore.h>
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
Vector<std::pair<int,int> > Cshift_table;
|
||||
std::vector<std::pair<int,int> > Cshift_table;
|
||||
commVector<std::pair<int,int> > Cshift_table_device;
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -35,6 +35,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/lattice/Lattice_transpose.h>
|
||||
#include <Grid/lattice/Lattice_local.h>
|
||||
#include <Grid/lattice/Lattice_reduction.h>
|
||||
#include <Grid/lattice/Lattice_crc.h>
|
||||
#include <Grid/lattice/Lattice_peekpoke.h>
|
||||
#include <Grid/lattice/Lattice_reality.h>
|
||||
#include <Grid/lattice/Lattice_real_imag.h>
|
||||
@ -46,4 +47,4 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/lattice/Lattice_unary.h>
|
||||
#include <Grid/lattice/Lattice_transfer.h>
|
||||
#include <Grid/lattice/Lattice_basis.h>
|
||||
#include <Grid/lattice/Lattice_crc.h>
|
||||
#include <Grid/lattice/PaddedCell.h>
|
||||
|
@ -345,7 +345,9 @@ GridUnopClass(UnaryNot, Not(a));
|
||||
GridUnopClass(UnaryTrace, trace(a));
|
||||
GridUnopClass(UnaryTranspose, transpose(a));
|
||||
GridUnopClass(UnaryTa, Ta(a));
|
||||
GridUnopClass(UnarySpTa, SpTa(a));
|
||||
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
|
||||
GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a));
|
||||
GridUnopClass(UnaryTimesI, timesI(a));
|
||||
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
|
||||
GridUnopClass(UnaryAbs, abs(a));
|
||||
@ -456,7 +458,9 @@ GRID_DEF_UNOP(operator!, UnaryNot);
|
||||
GRID_DEF_UNOP(trace, UnaryTrace);
|
||||
GRID_DEF_UNOP(transpose, UnaryTranspose);
|
||||
GRID_DEF_UNOP(Ta, UnaryTa);
|
||||
GRID_DEF_UNOP(SpTa, UnarySpTa);
|
||||
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
|
||||
GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup);
|
||||
GRID_DEF_UNOP(timesI, UnaryTimesI);
|
||||
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
|
||||
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the
|
||||
|
@ -270,5 +270,42 @@ RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const L
|
||||
return axpby_norm_fast(ret,a,b,x,y);
|
||||
}
|
||||
|
||||
/// Trace product
|
||||
template<class obj> auto traceProduct(const Lattice<obj> &rhs_1,const Lattice<obj> &rhs_2)
|
||||
-> Lattice<decltype(trace(obj()))>
|
||||
{
|
||||
typedef decltype(trace(obj())) robj;
|
||||
Lattice<robj> ret_i(rhs_1.Grid());
|
||||
autoView( rhs1 , rhs_1, AcceleratorRead);
|
||||
autoView( rhs2 , rhs_2, AcceleratorRead);
|
||||
autoView( ret , ret_i, AcceleratorWrite);
|
||||
ret.Checkerboard() = rhs_1.Checkerboard();
|
||||
accelerator_for(ss,rhs1.size(),obj::Nsimd(),{
|
||||
coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2(ss)));
|
||||
});
|
||||
return ret_i;
|
||||
}
|
||||
|
||||
template<class obj1,class obj2> auto traceProduct(const Lattice<obj1> &rhs_1,const obj2 &rhs2)
|
||||
-> Lattice<decltype(trace(obj1()))>
|
||||
{
|
||||
typedef decltype(trace(obj1())) robj;
|
||||
Lattice<robj> ret_i(rhs_1.Grid());
|
||||
autoView( rhs1 , rhs_1, AcceleratorRead);
|
||||
autoView( ret , ret_i, AcceleratorWrite);
|
||||
ret.Checkerboard() = rhs_1.Checkerboard();
|
||||
accelerator_for(ss,rhs1.size(),obj1::Nsimd(),{
|
||||
coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2));
|
||||
});
|
||||
return ret_i;
|
||||
}
|
||||
template<class obj1,class obj2> auto traceProduct(const obj2 &rhs_2,const Lattice<obj1> &rhs_1)
|
||||
-> Lattice<decltype(trace(obj1()))>
|
||||
{
|
||||
return traceProduct(rhs_1,rhs_2);
|
||||
}
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
||||
|
@ -234,9 +234,12 @@ public:
|
||||
}
|
||||
|
||||
template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
|
||||
auto me = View(CpuWrite);
|
||||
thread_for(ss,me.size(),{
|
||||
me[ss]= r;
|
||||
vobj vtmp;
|
||||
vtmp = r;
|
||||
auto me = View(AcceleratorWrite);
|
||||
accelerator_for(ss,me.size(),vobj::Nsimd(),{
|
||||
auto stmp=coalescedRead(vtmp);
|
||||
coalescedWrite(me[ss],stmp);
|
||||
});
|
||||
me.ViewClose();
|
||||
return *this;
|
||||
@ -360,7 +363,7 @@ public:
|
||||
|
||||
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
for(int g=0;g<o.Grid()->_gsites;g++){
|
||||
for(int64_t g=0;g<o.Grid()->_gsites;g++){
|
||||
|
||||
Coordinate gcoor;
|
||||
o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
|
||||
|
@ -62,7 +62,7 @@ void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
|
||||
basis_v.push_back(basis[k].View(AcceleratorWrite));
|
||||
}
|
||||
|
||||
#if ( (!defined(GRID_CUDA)) )
|
||||
#if ( !(defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)) )
|
||||
int max_threads = thread_max();
|
||||
Vector < vobj > Bt(Nm * max_threads);
|
||||
thread_region
|
||||
|
@ -29,7 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1)
|
||||
template<class vobj> void DumpSliceNorm(std::string s,const Lattice<vobj> &f,int mu=-1)
|
||||
{
|
||||
auto ff = localNorm2(f);
|
||||
if ( mu==-1 ) mu = f.Grid()->Nd()-1;
|
||||
@ -42,13 +42,13 @@ template<class vobj> void DumpSliceNorm(std::string s,Lattice<vobj> &f,int mu=-1
|
||||
}
|
||||
}
|
||||
|
||||
template<class vobj> uint32_t crc(Lattice<vobj> & buf)
|
||||
template<class vobj> uint32_t crc(const Lattice<vobj> & buf)
|
||||
{
|
||||
autoView( buf_v , buf, CpuRead);
|
||||
return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
|
||||
}
|
||||
|
||||
#define CRC(U) std::cout << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
|
||||
#define CRC(U) std::cerr << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -31,6 +31,7 @@ Author: Christoph Lehner <christoph@lhnr.de>
|
||||
#if defined(GRID_SYCL)
|
||||
#include <Grid/lattice/Lattice_reduction_sycl.h>
|
||||
#endif
|
||||
#include <Grid/lattice/Lattice_slicesum_core.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
@ -203,6 +204,27 @@ template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
|
||||
return real(nrm);
|
||||
}
|
||||
|
||||
|
||||
template<class Op,class T1>
|
||||
inline auto norm2(const LatticeUnaryExpression<Op,T1> & expr) ->RealD
|
||||
{
|
||||
return norm2(closure(expr));
|
||||
}
|
||||
|
||||
template<class Op,class T1,class T2>
|
||||
inline auto norm2(const LatticeBinaryExpression<Op,T1,T2> & expr) ->RealD
|
||||
{
|
||||
return norm2(closure(expr));
|
||||
}
|
||||
|
||||
|
||||
template<class Op,class T1,class T2,class T3>
|
||||
inline auto norm2(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) ->RealD
|
||||
{
|
||||
return norm2(closure(expr));
|
||||
}
|
||||
|
||||
|
||||
//The global maximum of the site norm2
|
||||
template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
|
||||
{
|
||||
@ -280,11 +302,29 @@ inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &
|
||||
return nrm;
|
||||
}
|
||||
|
||||
|
||||
template<class vobj>
|
||||
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
|
||||
GridBase *grid = left.Grid();
|
||||
|
||||
#ifdef GRID_SYCL
|
||||
uint64_t csum=0;
|
||||
if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
|
||||
{
|
||||
// Hack
|
||||
// Fast integer xor checksum. Can also be used in comms now.
|
||||
autoView(l_v,left,AcceleratorRead);
|
||||
Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t);
|
||||
uint64_t *base= (uint64_t *)&l_v[0];
|
||||
csum=svm_xor(base,words);
|
||||
}
|
||||
FlightRecorder::CsumLog(csum);
|
||||
#endif
|
||||
ComplexD nrm = rankInnerProduct(left,right);
|
||||
RealD local = real(nrm);
|
||||
FlightRecorder::NormLog(real(nrm));
|
||||
grid->GlobalSum(nrm);
|
||||
FlightRecorder::ReductionLog(local,real(nrm));
|
||||
return nrm;
|
||||
}
|
||||
|
||||
@ -448,19 +488,10 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
|
||||
int e1= grid->_slice_nblock[orthogdim];
|
||||
int e2= grid->_slice_block [orthogdim];
|
||||
int stride=grid->_slice_stride[orthogdim];
|
||||
|
||||
// sum over reduced dimension planes, breaking out orthog dir
|
||||
// Parallel over orthog direction
|
||||
autoView( Data_v, Data, CpuRead);
|
||||
thread_for( r,rd, {
|
||||
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
int ss= so+n*stride+b;
|
||||
lvSum[r]=lvSum[r]+Data_v[ss];
|
||||
}
|
||||
}
|
||||
});
|
||||
int ostride=grid->_ostride[orthogdim];
|
||||
|
||||
//Reduce Data down to lvSum
|
||||
sliceSumReduction(Data,lvSum,rd, e1,e2,stride,ostride,Nsimd);
|
||||
|
||||
// Sum across simd lanes in the plane, breaking out orthog dir.
|
||||
Coordinate icoor(Nd);
|
||||
@ -504,6 +535,7 @@ sliceSum(const Lattice<vobj> &Data,int orthogdim)
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
template<class vobj>
|
||||
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
|
||||
{
|
||||
|
@ -30,7 +30,7 @@ int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &
|
||||
cudaGetDevice(&device);
|
||||
#endif
|
||||
#ifdef GRID_HIP
|
||||
hipGetDevice(&device);
|
||||
auto r=hipGetDevice(&device);
|
||||
#endif
|
||||
|
||||
Iterator warpSize = gpu_props[device].warpSize;
|
||||
|
@ -69,29 +69,30 @@ inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osite
|
||||
return result;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
/*
|
||||
template<class Double> Double svm_reduce(Double *vec,uint64_t L)
|
||||
template<class Word> Word svm_xor(Word *vec,uint64_t L)
|
||||
{
|
||||
Double sumResult; zeroit(sumResult);
|
||||
Double *d_sum =(Double *)cl::sycl::malloc_shared(sizeof(Double),*theGridAccelerator);
|
||||
Double identity; zeroit(identity);
|
||||
Word xorResult; xorResult = 0;
|
||||
Word *d_sum =(Word *)cl::sycl::malloc_shared(sizeof(Word),*theGridAccelerator);
|
||||
Word identity; identity=0;
|
||||
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
|
||||
auto Reduction = cl::sycl::reduction(d_sum,identity,std::plus<>());
|
||||
auto Reduction = cl::sycl::reduction(d_sum,identity,std::bit_xor<>());
|
||||
cgh.parallel_for(cl::sycl::range<1>{L},
|
||||
Reduction,
|
||||
[=] (cl::sycl::id<1> index, auto &sum) {
|
||||
sum +=vec[index];
|
||||
sum ^=vec[index];
|
||||
});
|
||||
});
|
||||
theGridAccelerator->wait();
|
||||
Double ret = d_sum[0];
|
||||
Word ret = d_sum[0];
|
||||
free(d_sum,*theGridAccelerator);
|
||||
std::cout << " svm_reduce finished "<<L<<" sites sum = " << ret <<std::endl;
|
||||
return ret;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
/*
|
||||
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites)
|
||||
{
|
||||
|
@ -152,6 +152,7 @@ public:
|
||||
#ifdef RNG_FAST_DISCARD
|
||||
static void Skip(RngEngine &eng,uint64_t site)
|
||||
{
|
||||
#if 0
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// Skip by 2^40 elements between successive lattice sites
|
||||
// This goes by 10^12.
|
||||
@ -162,9 +163,9 @@ public:
|
||||
// tens of seconds per trajectory so this is clean in all reasonable cases,
|
||||
// and margin of safety is orders of magnitude.
|
||||
// We could hack Sitmo to skip in the higher order words of state if necessary
|
||||
//
|
||||
// Replace with 2^30 ; avoid problem on large volumes
|
||||
//
|
||||
//
|
||||
// Replace with 2^30 ; avoid problem on large volumes
|
||||
//
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// uint64_t skip = site+1; // Old init Skipped then drew. Checked compat with faster init
|
||||
const int shift = 30;
|
||||
@ -179,6 +180,9 @@ public:
|
||||
assert((skip >> shift)==site); // check for overflow
|
||||
|
||||
eng.discard(skip);
|
||||
#else
|
||||
eng.discardhi(site);
|
||||
#endif
|
||||
// std::cout << " Engine " <<site << " state " <<eng<<std::endl;
|
||||
}
|
||||
#endif
|
||||
@ -361,9 +365,14 @@ public:
|
||||
_bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
|
||||
_uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
|
||||
}
|
||||
|
||||
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){
|
||||
|
||||
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist)
|
||||
{
|
||||
if ( l.Grid()->_isCheckerBoarded ) {
|
||||
Lattice<vobj> tmp(_grid);
|
||||
fill(tmp,dist);
|
||||
pickCheckerboard(l.Checkerboard(),l,tmp);
|
||||
return;
|
||||
}
|
||||
typedef typename vobj::scalar_object scalar_object;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
@ -407,7 +416,7 @@ public:
|
||||
std::cout << GridLogMessage << "Seed SHA256: " << GridChecksum::sha256_string(seeds) << std::endl;
|
||||
SeedFixedIntegers(seeds);
|
||||
}
|
||||
void SeedFixedIntegers(const std::vector<int> &seeds){
|
||||
void SeedFixedIntegers(const std::vector<int> &seeds, int britney=0){
|
||||
|
||||
// Everyone generates the same seed_seq based on input seeds
|
||||
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
|
||||
@ -424,10 +433,9 @@ public:
|
||||
// MT implementation does not implement fast discard even though
|
||||
// in principle this is possible
|
||||
////////////////////////////////////////////////
|
||||
#if 1
|
||||
thread_for( lidx, _grid->lSites(), {
|
||||
|
||||
int gidx;
|
||||
int64_t gidx;
|
||||
int o_idx;
|
||||
int i_idx;
|
||||
int rank;
|
||||
@ -445,29 +453,12 @@ public:
|
||||
|
||||
int l_idx=generator_idx(o_idx,i_idx);
|
||||
_generators[l_idx] = master_engine;
|
||||
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
|
||||
});
|
||||
#else
|
||||
// Everybody loops over global volume.
|
||||
thread_for( gidx, _grid->_gsites, {
|
||||
|
||||
// Where is it?
|
||||
int rank;
|
||||
int o_idx;
|
||||
int i_idx;
|
||||
|
||||
Coordinate gcoor;
|
||||
_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
|
||||
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
|
||||
|
||||
// If this is one of mine we take it
|
||||
if( rank == _grid->ThisRank() ){
|
||||
int l_idx=generator_idx(o_idx,i_idx);
|
||||
_generators[l_idx] = master_engine;
|
||||
if ( britney ) {
|
||||
Skip(_generators[l_idx],l_idx); // Skip to next RNG sequence
|
||||
} else {
|
||||
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
|
||||
}
|
||||
});
|
||||
#endif
|
||||
#else
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Machine and thread decomposition dependent seeding is efficient
|
||||
|
213
Grid/lattice/Lattice_slicesum_core.h
Normal file
213
Grid/lattice/Lattice_slicesum_core.h
Normal file
@ -0,0 +1,213 @@
|
||||
#pragma once
|
||||
#include <type_traits>
|
||||
#if defined(GRID_CUDA)
|
||||
|
||||
#include <cub/cub.cuh>
|
||||
#define gpucub cub
|
||||
#define gpuError_t cudaError_t
|
||||
#define gpuSuccess cudaSuccess
|
||||
|
||||
#elif defined(GRID_HIP)
|
||||
|
||||
#include <hipcub/hipcub.hpp>
|
||||
#define gpucub hipcub
|
||||
#define gpuError_t hipError_t
|
||||
#define gpuSuccess hipSuccess
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
|
||||
template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
|
||||
size_t subvol_size = e1*e2;
|
||||
commVector<vobj> reduction_buffer(rd*subvol_size);
|
||||
auto rb_p = &reduction_buffer[0];
|
||||
vobj zero_init;
|
||||
zeroit(zero_init);
|
||||
|
||||
|
||||
void *temp_storage_array = NULL;
|
||||
size_t temp_storage_bytes = 0;
|
||||
vobj *d_out;
|
||||
int* d_offsets;
|
||||
|
||||
std::vector<int> offsets(rd+1,0);
|
||||
|
||||
for (int i = 0; i < offsets.size(); i++) {
|
||||
offsets[i] = i*subvol_size;
|
||||
}
|
||||
|
||||
//Allocate memory for output and offset arrays on device
|
||||
d_out = static_cast<vobj*>(acceleratorAllocDevice(rd*sizeof(vobj)));
|
||||
|
||||
d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int)));
|
||||
|
||||
//copy offsets to device
|
||||
acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
|
||||
|
||||
|
||||
gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream);
|
||||
if (gpuErr!=gpuSuccess) {
|
||||
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce (setup)! Error: " << gpuErr <<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
//allocate memory for temp_storage_array
|
||||
temp_storage_array = acceleratorAllocDevice(temp_storage_bytes);
|
||||
|
||||
//prepare buffer for reduction
|
||||
//use non-blocking accelerator_for to avoid syncs (ok because we submit to same computeStream)
|
||||
//use 2d accelerator_for to avoid launch latencies found when serially looping over rd
|
||||
accelerator_for2dNB( s,subvol_size, r,rd, Nsimd,{
|
||||
|
||||
int n = s / e2;
|
||||
int b = s % e2;
|
||||
int so=r*ostride; // base offset for start of plane
|
||||
int ss= so+n*stride+b;
|
||||
|
||||
coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss]));
|
||||
|
||||
});
|
||||
|
||||
//issue segmented reductions in computeStream
|
||||
gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p, d_out, rd, d_offsets, d_offsets+1,::gpucub::Sum(), zero_init, computeStream);
|
||||
if (gpuErr!=gpuSuccess) {
|
||||
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce! Error: " << gpuErr <<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
|
||||
|
||||
//sync after copy
|
||||
accelerator_barrier();
|
||||
|
||||
acceleratorFreeDevice(temp_storage_array);
|
||||
acceleratorFreeDevice(d_out);
|
||||
acceleratorFreeDevice(d_offsets);
|
||||
|
||||
|
||||
}
|
||||
|
||||
template<class vobj> inline void sliceSumReduction_cub_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
|
||||
typedef typename vobj::vector_type vector;
|
||||
const int words = sizeof(vobj)/sizeof(vector);
|
||||
const int osites = rd*e1*e2;
|
||||
commVector<vector>buffer(osites);
|
||||
vector *dat = (vector *)Data;
|
||||
vector *buf = &buffer[0];
|
||||
Vector<vector> lvSum_small(rd);
|
||||
vector *lvSum_ptr = (vector *)&lvSum[0];
|
||||
|
||||
for (int w = 0; w < words; w++) {
|
||||
accelerator_for(ss,osites,1,{
|
||||
buf[ss] = dat[ss*words+w];
|
||||
});
|
||||
|
||||
sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
|
||||
|
||||
for (int r = 0; r < rd; r++) {
|
||||
lvSum_ptr[w+words*r]=lvSum_small[r];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
template<class vobj> inline void sliceSumReduction_cub(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd)
|
||||
{
|
||||
autoView(Data_v, Data, AcceleratorRead); //hipcub/cub cannot deal with large vobjs so we split into small/large case.
|
||||
if constexpr (sizeof(vobj) <= 256) {
|
||||
sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
}
|
||||
else {
|
||||
sliceSumReduction_cub_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#if defined(GRID_SYCL)
|
||||
template<class vobj> inline void sliceSumReduction_sycl(const Lattice<vobj> &Data, Vector <vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
size_t subvol_size = e1*e2;
|
||||
|
||||
vobj *mysum = (vobj *) malloc_shared(sizeof(vobj),*theGridAccelerator);
|
||||
vobj vobj_zero;
|
||||
zeroit(vobj_zero);
|
||||
|
||||
commVector<vobj> reduction_buffer(rd*subvol_size);
|
||||
|
||||
auto rb_p = &reduction_buffer[0];
|
||||
|
||||
autoView(Data_v, Data, AcceleratorRead);
|
||||
|
||||
//prepare reduction buffer
|
||||
accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{
|
||||
|
||||
int n = s / e2;
|
||||
int b = s % e2;
|
||||
int so=r*ostride; // base offset for start of plane
|
||||
int ss= so+n*stride+b;
|
||||
|
||||
coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data_v[ss]));
|
||||
|
||||
});
|
||||
|
||||
for (int r = 0; r < rd; r++) {
|
||||
mysum[0] = vobj_zero; //dirty hack: cannot pass vobj_zero as identity to sycl::reduction as its not device_copyable
|
||||
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
|
||||
auto Reduction = cl::sycl::reduction(mysum,std::plus<>());
|
||||
cgh.parallel_for(cl::sycl::range<1>{subvol_size},
|
||||
Reduction,
|
||||
[=](cl::sycl::id<1> item, auto &sum) {
|
||||
auto s = item[0];
|
||||
sum += rb_p[r*subvol_size+s];
|
||||
});
|
||||
});
|
||||
theGridAccelerator->wait();
|
||||
lvSum[r] = mysum[0];
|
||||
}
|
||||
|
||||
free(mysum,*theGridAccelerator);
|
||||
}
|
||||
#endif
|
||||
|
||||
template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
|
||||
{
|
||||
// sum over reduced dimension planes, breaking out orthog dir
|
||||
// Parallel over orthog direction
|
||||
autoView( Data_v, Data, CpuRead);
|
||||
thread_for( r,rd, {
|
||||
int so=r*ostride; // base offset for start of plane
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
int ss= so+n*stride+b;
|
||||
lvSum[r]=lvSum[r]+Data_v[ss];
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
|
||||
{
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
|
||||
|
||||
sliceSumReduction_cub(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
|
||||
#elif defined(GRID_SYCL)
|
||||
|
||||
sliceSumReduction_sycl(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
|
||||
#else
|
||||
sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -66,6 +66,65 @@ inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<
|
||||
return ret;
|
||||
};
|
||||
|
||||
template<int N, class Vec>
|
||||
Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
|
||||
{
|
||||
GridBase *grid=Umu.Grid();
|
||||
auto lvol = grid->lSites();
|
||||
Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid);
|
||||
typedef typename Vec::scalar_type scalar;
|
||||
autoView(Umu_v,Umu,CpuRead);
|
||||
autoView(ret_v,ret,CpuWrite);
|
||||
thread_for(site,lvol,{
|
||||
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
|
||||
Coordinate lcoor;
|
||||
grid->LocalIndexToLocalCoor(site, lcoor);
|
||||
iScalar<iScalar<iMatrix<scalar, N> > > Us;
|
||||
peekLocalSite(Us, Umu_v, lcoor);
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
scalar tmp= Us()()(i,j);
|
||||
ComplexD ztmp(real(tmp),imag(tmp));
|
||||
EigenU(i,j)=ztmp;
|
||||
}}
|
||||
ComplexD detD = EigenU.determinant();
|
||||
typename Vec::scalar_type det(detD.real(),detD.imag());
|
||||
pokeLocalSite(det,ret_v,lcoor);
|
||||
});
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<int N>
|
||||
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
|
||||
{
|
||||
GridBase *grid=Umu.Grid();
|
||||
auto lvol = grid->lSites();
|
||||
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
|
||||
|
||||
autoView(Umu_v,Umu,CpuRead);
|
||||
autoView(ret_v,ret,CpuWrite);
|
||||
thread_for(site,lvol,{
|
||||
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
|
||||
Coordinate lcoor;
|
||||
grid->LocalIndexToLocalCoor(site, lcoor);
|
||||
iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
|
||||
iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
|
||||
peekLocalSite(Us, Umu_v, lcoor);
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
EigenU(i,j) = Us()()(i,j);
|
||||
}}
|
||||
Eigen::MatrixXcd EigenUinv = EigenU.inverse();
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
Ui()()(i,j) = EigenUinv(i,j);
|
||||
}}
|
||||
pokeLocalSite(Ui,ret_v,lcoor);
|
||||
});
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
||||
|
||||
|
@ -276,18 +276,33 @@ inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||
|
||||
autoView( coarseData_ , coarseData, AcceleratorWrite);
|
||||
autoView( ip_ , ip, AcceleratorWrite);
|
||||
RealD t_IP=0;
|
||||
RealD t_co=0;
|
||||
RealD t_za=0;
|
||||
for(int v=0;v<nbasis;v++) {
|
||||
t_IP-=usecond();
|
||||
blockInnerProductD(ip,Basis[v],fineDataRed); // ip = <basis|fine>
|
||||
t_IP+=usecond();
|
||||
t_co-=usecond();
|
||||
accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
|
||||
convertType(coarseData_[sc](v),ip_[sc]);
|
||||
});
|
||||
t_co+=usecond();
|
||||
|
||||
// improve numerical stability of projection
|
||||
// |fine> = |fine> - <basis|fine> |basis>
|
||||
ip=-ip;
|
||||
t_za-=usecond();
|
||||
blockZAXPY(fineDataRed,ip,Basis[v],fineDataRed);
|
||||
t_za+=usecond();
|
||||
}
|
||||
// std::cout << GridLogPerformance << " blockProject : blockInnerProduct : "<<t_IP<<" us"<<std::endl;
|
||||
// std::cout << GridLogPerformance << " blockProject : conv : "<<t_co<<" us"<<std::endl;
|
||||
// std::cout << GridLogPerformance << " blockProject : blockZaxpy : "<<t_za<<" us"<<std::endl;
|
||||
}
|
||||
// This only minimises data motion from CPU to GPU
|
||||
// there is chance of better implementation that does a vxk loop of inner products to data share
|
||||
// at the GPU thread level
|
||||
template<class vobj,class CComplex,int nbasis,class VLattice>
|
||||
inline void batchBlockProject(std::vector<Lattice<iVector<CComplex,nbasis>>> &coarseData,
|
||||
const std::vector<Lattice<vobj>> &fineData,
|
||||
@ -393,8 +408,15 @@ template<class vobj,class CComplex>
|
||||
Lattice<dotp> coarse_inner(coarse);
|
||||
|
||||
// Precision promotion
|
||||
RealD t;
|
||||
t=-usecond();
|
||||
fine_inner = localInnerProductD<vobj>(fineX,fineY);
|
||||
// t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : localInnerProductD "<<t<<" us"<<std::endl;
|
||||
|
||||
t=-usecond();
|
||||
blockSum(coarse_inner,fine_inner);
|
||||
// t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : blockSum "<<t<<" us"<<std::endl;
|
||||
t=-usecond();
|
||||
{
|
||||
autoView( CoarseInner_ , CoarseInner,AcceleratorWrite);
|
||||
autoView( coarse_inner_ , coarse_inner,AcceleratorRead);
|
||||
@ -402,6 +424,7 @@ template<class vobj,class CComplex>
|
||||
convertType(CoarseInner_[ss], TensorRemove(coarse_inner_[ss]));
|
||||
});
|
||||
}
|
||||
// t+=usecond(); std::cout << GridLogPerformance << " blockInnerProduct : convertType "<<t<<" us"<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
@ -444,6 +467,9 @@ inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX)
|
||||
template<class vobj>
|
||||
inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
|
||||
{
|
||||
const int maxsubsec=256;
|
||||
typedef iVector<vobj,maxsubsec> vSubsec;
|
||||
|
||||
GridBase * fine = fineData.Grid();
|
||||
GridBase * coarse= coarseData.Grid();
|
||||
|
||||
@ -463,37 +489,62 @@ inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
|
||||
autoView( coarseData_ , coarseData, AcceleratorWrite);
|
||||
autoView( fineData_ , fineData, AcceleratorRead);
|
||||
|
||||
auto coarseData_p = &coarseData_[0];
|
||||
auto fineData_p = &fineData_[0];
|
||||
auto coarseData_p = &coarseData_[0];
|
||||
auto fineData_p = &fineData_[0];
|
||||
|
||||
Coordinate fine_rdimensions = fine->_rdimensions;
|
||||
Coordinate coarse_rdimensions = coarse->_rdimensions;
|
||||
|
||||
vobj zz = Zero();
|
||||
|
||||
accelerator_for(sc,coarse->oSites(),1,{
|
||||
|
||||
// Somewhat lazy calculation
|
||||
// Find the biggest power of two subsection divisor less than or equal to maxsubsec
|
||||
int subsec=maxsubsec;
|
||||
int subvol;
|
||||
subvol=blockVol/subsec;
|
||||
while(subvol*subsec!=blockVol){
|
||||
subsec = subsec/2;
|
||||
subvol=blockVol/subsec;
|
||||
};
|
||||
|
||||
Lattice<vSubsec> coarseTmp(coarse);
|
||||
autoView( coarseTmp_, coarseTmp, AcceleratorWriteDiscard);
|
||||
auto coarseTmp_p= &coarseTmp_[0];
|
||||
|
||||
// Sum within subsecs in a first kernel
|
||||
accelerator_for(sce,subsec*coarse->oSites(),vobj::Nsimd(),{
|
||||
|
||||
int sc=sce/subsec;
|
||||
int e=sce%subsec;
|
||||
|
||||
// One thread per sub block
|
||||
Coordinate coor_c(_ndimension);
|
||||
Lexicographic::CoorFromIndex(coor_c,sc,coarse_rdimensions); // Block coordinate
|
||||
|
||||
vobj cd = zz;
|
||||
|
||||
for(int sb=0;sb<blockVol;sb++){
|
||||
|
||||
auto cd = coalescedRead(zz);
|
||||
for(int sb=e*subvol;sb<MIN((e+1)*subvol,blockVol);sb++){
|
||||
int sf;
|
||||
Coordinate coor_b(_ndimension);
|
||||
Coordinate coor_f(_ndimension);
|
||||
Lexicographic::CoorFromIndex(coor_b,sb,block_r); // Block sub coordinate
|
||||
for(int d=0;d<_ndimension;d++) coor_f[d]=coor_c[d]*block_r[d] + coor_b[d];
|
||||
Lexicographic::IndexFromCoor(coor_f,sf,fine_rdimensions);
|
||||
|
||||
cd=cd+fineData_p[sf];
|
||||
|
||||
cd=cd+coalescedRead(fineData_p[sf]);
|
||||
}
|
||||
|
||||
coarseData_p[sc] = cd;
|
||||
coalescedWrite(coarseTmp_[sc](e),cd);
|
||||
|
||||
});
|
||||
// Sum across subsecs in a second kernel
|
||||
accelerator_for(sc,coarse->oSites(),vobj::Nsimd(),{
|
||||
auto cd = coalescedRead(coarseTmp_p[sc](0));
|
||||
for(int e=1;e<subsec;e++){
|
||||
cd=cd+coalescedRead(coarseTmp_p[sc](e));
|
||||
}
|
||||
coalescedWrite(coarseData_p[sc],cd);
|
||||
});
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
@ -550,7 +601,7 @@ inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> >
|
||||
blockOrthonormalize(ip,Basis);
|
||||
}
|
||||
|
||||
#if 0
|
||||
#ifdef GRID_ACCELERATED
|
||||
// TODO: CPU optimized version here
|
||||
template<class vobj,class CComplex,int nbasis>
|
||||
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||
@ -576,26 +627,37 @@ inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||
autoView( fineData_ , fineData, AcceleratorWrite);
|
||||
autoView( coarseData_ , coarseData, AcceleratorRead);
|
||||
|
||||
typedef LatticeView<vobj> Vview;
|
||||
std::vector<Vview> AcceleratorVecViewContainer_h;
|
||||
for(int v=0;v<nbasis;v++) {
|
||||
AcceleratorVecViewContainer_h.push_back(Basis[v].View(AcceleratorRead));
|
||||
}
|
||||
static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(nbasis);
|
||||
acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],nbasis *sizeof(Vview));
|
||||
auto Basis_p = &AcceleratorVecViewContainer[0];
|
||||
// Loop with a cache friendly loop ordering
|
||||
accelerator_for(sf,fine->oSites(),1,{
|
||||
Coordinate frdimensions=fine->_rdimensions;
|
||||
Coordinate crdimensions=coarse->_rdimensions;
|
||||
accelerator_for(sf,fine->oSites(),vobj::Nsimd(),{
|
||||
int sc;
|
||||
Coordinate coor_c(_ndimension);
|
||||
Coordinate coor_f(_ndimension);
|
||||
|
||||
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
|
||||
Lexicographic::CoorFromIndex(coor_f,sf,frdimensions);
|
||||
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
|
||||
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
|
||||
Lexicographic::IndexFromCoor(coor_c,sc,crdimensions);
|
||||
|
||||
for(int i=0;i<nbasis;i++) {
|
||||
/* auto basis_ = Basis[i], );*/
|
||||
if(i==0) fineData_[sf]=coarseData_[sc](i) *basis_[sf]);
|
||||
else fineData_[sf]=fineData_[sf]+coarseData_[sc](i)*basis_[sf]);
|
||||
}
|
||||
auto sum= coarseData_(sc)(0) *Basis_p[0](sf);
|
||||
for(int i=1;i<nbasis;i++) sum = sum + coarseData_(sc)(i)*Basis_p[i](sf);
|
||||
coalescedWrite(fineData_[sf],sum);
|
||||
});
|
||||
for(int v=0;v<nbasis;v++) {
|
||||
AcceleratorVecViewContainer_h[v].ViewClose();
|
||||
}
|
||||
return;
|
||||
|
||||
}
|
||||
#else
|
||||
// CPU version
|
||||
template<class vobj,class CComplex,int nbasis,class VLattice>
|
||||
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||
Lattice<vobj> &fineData,
|
||||
@ -682,7 +744,11 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
static const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// checks should guarantee that the operations are local
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
GridBase *Fg = From.Grid();
|
||||
GridBase *Tg = To.Grid();
|
||||
@ -698,43 +764,186 @@ void localCopyRegion(const Lattice<vobj> &From,Lattice<vobj> & To,Coordinate Fro
|
||||
assert(Fg->_processors[d] == Tg->_processors[d]);
|
||||
}
|
||||
|
||||
// the above should guarantee that the operations are local
|
||||
Coordinate ldf = Fg->_ldimensions;
|
||||
Coordinate rdf = Fg->_rdimensions;
|
||||
Coordinate isf = Fg->_istride;
|
||||
Coordinate osf = Fg->_ostride;
|
||||
Coordinate rdt = Tg->_rdimensions;
|
||||
Coordinate ist = Tg->_istride;
|
||||
Coordinate ost = Tg->_ostride;
|
||||
///////////////////////////////////////////////////////////
|
||||
// do the index calc on the GPU
|
||||
///////////////////////////////////////////////////////////
|
||||
Coordinate f_ostride = Fg->_ostride;
|
||||
Coordinate f_istride = Fg->_istride;
|
||||
Coordinate f_rdimensions = Fg->_rdimensions;
|
||||
Coordinate t_ostride = Tg->_ostride;
|
||||
Coordinate t_istride = Tg->_istride;
|
||||
Coordinate t_rdimensions = Tg->_rdimensions;
|
||||
|
||||
autoView( t_v , To, AcceleratorWrite);
|
||||
autoView( f_v , From, AcceleratorRead);
|
||||
accelerator_for(idx,Fg->lSites(),1,{
|
||||
sobj s;
|
||||
Coordinate Fcoor(nd);
|
||||
Coordinate Tcoor(nd);
|
||||
Lexicographic::CoorFromIndex(Fcoor,idx,ldf);
|
||||
int in_region=1;
|
||||
for(int d=0;d<nd;d++){
|
||||
if ( (Fcoor[d] < FromLowerLeft[d]) || (Fcoor[d]>=FromLowerLeft[d]+RegionSize[d]) ){
|
||||
in_region=0;
|
||||
size_t nsite = 1;
|
||||
for(int i=0;i<nd;i++) nsite *= RegionSize[i];
|
||||
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
|
||||
autoView(from_v,From,AcceleratorRead);
|
||||
autoView(to_v,To,AcceleratorWrite);
|
||||
|
||||
accelerator_for(idx,nsite,1,{
|
||||
|
||||
Coordinate from_coor, to_coor, base;
|
||||
Lexicographic::CoorFromIndex(base,idx,RegionSize);
|
||||
for(int i=0;i<nd;i++){
|
||||
from_coor[i] = base[i] + FromLowerLeft[i];
|
||||
to_coor[i] = base[i] + ToLowerLeft[i];
|
||||
}
|
||||
Tcoor[d] = ToLowerLeft[d]+ Fcoor[d]-FromLowerLeft[d];
|
||||
}
|
||||
if (in_region) {
|
||||
Integer idx_f = 0; for(int d=0;d<nd;d++) idx_f+=isf[d]*(Fcoor[d]/rdf[d]);
|
||||
Integer idx_t = 0; for(int d=0;d<nd;d++) idx_t+=ist[d]*(Tcoor[d]/rdt[d]);
|
||||
Integer odx_f = 0; for(int d=0;d<nd;d++) odx_f+=osf[d]*(Fcoor[d]%rdf[d]);
|
||||
Integer odx_t = 0; for(int d=0;d<nd;d++) odx_t+=ost[d]*(Tcoor[d]%rdt[d]);
|
||||
vector_type * fp = (vector_type *)&f_v[odx_f];
|
||||
vector_type * tp = (vector_type *)&t_v[odx_t];
|
||||
int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
|
||||
int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
|
||||
int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
|
||||
int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
|
||||
|
||||
const vector_type* from = (const vector_type *)&from_v[from_oidx];
|
||||
vector_type* to = (vector_type *)&to_v[to_oidx];
|
||||
|
||||
scalar_type stmp;
|
||||
for(int w=0;w<words;w++){
|
||||
tp[w].putlane(fp[w].getlane(idx_f),idx_t);
|
||||
stmp = getlane(from[w], from_lane);
|
||||
putlane(to[w], stmp, to_lane);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
void InsertSliceFast(const Lattice<vobj> &From,Lattice<vobj> & To,int slice, int orthog)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// checks should guarantee that the operations are local
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
GridBase *Fg = From.Grid();
|
||||
GridBase *Tg = To.Grid();
|
||||
assert(!Fg->_isCheckerBoarded);
|
||||
assert(!Tg->_isCheckerBoarded);
|
||||
int Nsimd = Fg->Nsimd();
|
||||
int nF = Fg->_ndimension;
|
||||
int nT = Tg->_ndimension;
|
||||
assert(nF+1 == nT);
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// do the index calc on the GPU
|
||||
///////////////////////////////////////////////////////////
|
||||
Coordinate f_ostride = Fg->_ostride;
|
||||
Coordinate f_istride = Fg->_istride;
|
||||
Coordinate f_rdimensions = Fg->_rdimensions;
|
||||
Coordinate t_ostride = Tg->_ostride;
|
||||
Coordinate t_istride = Tg->_istride;
|
||||
Coordinate t_rdimensions = Tg->_rdimensions;
|
||||
Coordinate RegionSize = Fg->_ldimensions;
|
||||
size_t nsite = 1;
|
||||
for(int i=0;i<nF;i++) nsite *= RegionSize[i]; // whole volume of lower dim grid
|
||||
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
|
||||
autoView(from_v,From,AcceleratorRead);
|
||||
autoView(to_v,To,AcceleratorWrite);
|
||||
|
||||
accelerator_for(idx,nsite,1,{
|
||||
|
||||
Coordinate from_coor(nF), to_coor(nT);
|
||||
Lexicographic::CoorFromIndex(from_coor,idx,RegionSize);
|
||||
int j=0;
|
||||
for(int i=0;i<nT;i++){
|
||||
if ( i!=orthog ) {
|
||||
to_coor[i] = from_coor[j];
|
||||
j++;
|
||||
} else {
|
||||
to_coor[i] = slice;
|
||||
}
|
||||
}
|
||||
int from_oidx = 0; for(int d=0;d<nF;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
|
||||
int from_lane = 0; for(int d=0;d<nF;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
|
||||
int to_oidx = 0; for(int d=0;d<nT;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
|
||||
int to_lane = 0; for(int d=0;d<nT;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
|
||||
|
||||
const vector_type* from = (const vector_type *)&from_v[from_oidx];
|
||||
vector_type* to = (vector_type *)&to_v[to_oidx];
|
||||
|
||||
scalar_type stmp;
|
||||
for(int w=0;w<words;w++){
|
||||
stmp = getlane(from[w], from_lane);
|
||||
putlane(to[w], stmp, to_lane);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
void ExtractSliceFast(Lattice<vobj> &To,const Lattice<vobj> & From,int slice, int orthog)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// checks should guarantee that the operations are local
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
GridBase *Fg = From.Grid();
|
||||
GridBase *Tg = To.Grid();
|
||||
assert(!Fg->_isCheckerBoarded);
|
||||
assert(!Tg->_isCheckerBoarded);
|
||||
int Nsimd = Fg->Nsimd();
|
||||
int nF = Fg->_ndimension;
|
||||
int nT = Tg->_ndimension;
|
||||
assert(nT+1 == nF);
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// do the index calc on the GPU
|
||||
///////////////////////////////////////////////////////////
|
||||
Coordinate f_ostride = Fg->_ostride;
|
||||
Coordinate f_istride = Fg->_istride;
|
||||
Coordinate f_rdimensions = Fg->_rdimensions;
|
||||
Coordinate t_ostride = Tg->_ostride;
|
||||
Coordinate t_istride = Tg->_istride;
|
||||
Coordinate t_rdimensions = Tg->_rdimensions;
|
||||
Coordinate RegionSize = Tg->_ldimensions;
|
||||
size_t nsite = 1;
|
||||
for(int i=0;i<nT;i++) nsite *= RegionSize[i]; // whole volume of lower dim grid
|
||||
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
|
||||
autoView(from_v,From,AcceleratorRead);
|
||||
autoView(to_v,To,AcceleratorWrite);
|
||||
|
||||
accelerator_for(idx,nsite,1,{
|
||||
|
||||
Coordinate from_coor(nF), to_coor(nT);
|
||||
Lexicographic::CoorFromIndex(to_coor,idx,RegionSize);
|
||||
int j=0;
|
||||
for(int i=0;i<nF;i++){
|
||||
if ( i!=orthog ) {
|
||||
from_coor[i] = to_coor[j];
|
||||
j++;
|
||||
} else {
|
||||
from_coor[i] = slice;
|
||||
}
|
||||
}
|
||||
int from_oidx = 0; for(int d=0;d<nF;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
|
||||
int from_lane = 0; for(int d=0;d<nF;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
|
||||
int to_oidx = 0; for(int d=0;d<nT;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
|
||||
int to_lane = 0; for(int d=0;d<nT;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
|
||||
|
||||
const vector_type* from = (const vector_type *)&from_v[from_oidx];
|
||||
vector_type* to = (vector_type *)&to_v[to_oidx];
|
||||
|
||||
scalar_type stmp;
|
||||
for(int w=0;w<words;w++){
|
||||
stmp = getlane(from[w], from_lane);
|
||||
putlane(to[w], stmp, to_lane);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog)
|
||||
@ -824,7 +1033,7 @@ void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slic
|
||||
|
||||
}
|
||||
|
||||
|
||||
//Can I implement with local copyregion??
|
||||
template<class vobj>
|
||||
void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
|
||||
{
|
||||
@ -841,65 +1050,22 @@ void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int
|
||||
|
||||
for(int d=0;d<nh;d++){
|
||||
if ( d!=orthog ) {
|
||||
assert(lg->_processors[d] == hg->_processors[d]);
|
||||
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
|
||||
}
|
||||
}
|
||||
|
||||
// the above should guarantee that the operations are local
|
||||
autoView(lowDimv,lowDim,CpuRead);
|
||||
autoView(higherDimv,higherDim,CpuWrite);
|
||||
thread_for(idx,lg->lSites(),{
|
||||
sobj s;
|
||||
Coordinate lcoor(nl);
|
||||
Coordinate hcoor(nh);
|
||||
lg->LocalIndexToLocalCoor(idx,lcoor);
|
||||
if( lcoor[orthog] == slice_lo ) {
|
||||
hcoor=lcoor;
|
||||
hcoor[orthog] = slice_hi;
|
||||
peekLocalSite(s,lowDimv,lcoor);
|
||||
pokeLocalSite(s,higherDimv,hcoor);
|
||||
assert(lg->_processors[d] == hg->_processors[d]);
|
||||
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
|
||||
}
|
||||
});
|
||||
}
|
||||
Coordinate sz = lg->_ldimensions;
|
||||
sz[orthog]=1;
|
||||
Coordinate f_ll(nl,0); f_ll[orthog]=slice_lo;
|
||||
Coordinate t_ll(nh,0); t_ll[orthog]=slice_hi;
|
||||
localCopyRegion(lowDim,higherDim,f_ll,t_ll,sz);
|
||||
}
|
||||
|
||||
|
||||
template<class vobj>
|
||||
void ExtractSliceLocal(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
|
||||
GridBase *lg = lowDim.Grid();
|
||||
GridBase *hg = higherDim.Grid();
|
||||
int nl = lg->_ndimension;
|
||||
int nh = hg->_ndimension;
|
||||
|
||||
assert(nl == nh);
|
||||
assert(orthog<nh);
|
||||
assert(orthog>=0);
|
||||
|
||||
for(int d=0;d<nh;d++){
|
||||
if ( d!=orthog ) {
|
||||
assert(lg->_processors[d] == hg->_processors[d]);
|
||||
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
|
||||
}
|
||||
}
|
||||
|
||||
// the above should guarantee that the operations are local
|
||||
autoView(lowDimv,lowDim,CpuWrite);
|
||||
autoView(higherDimv,higherDim,CpuRead);
|
||||
thread_for(idx,lg->lSites(),{
|
||||
sobj s;
|
||||
Coordinate lcoor(nl);
|
||||
Coordinate hcoor(nh);
|
||||
lg->LocalIndexToLocalCoor(idx,lcoor);
|
||||
if( lcoor[orthog] == slice_lo ) {
|
||||
hcoor=lcoor;
|
||||
hcoor[orthog] = slice_hi;
|
||||
peekLocalSite(s,higherDimv,hcoor);
|
||||
pokeLocalSite(s,lowDimv,lcoor);
|
||||
}
|
||||
});
|
||||
InsertSliceLocal(higherDim,lowDim,slice_hi,slice_lo,orthog);
|
||||
}
|
||||
|
||||
|
||||
@ -925,7 +1091,7 @@ void Replicate(const Lattice<vobj> &coarse,Lattice<vobj> & fine)
|
||||
|
||||
Coordinate fcoor(nd);
|
||||
Coordinate ccoor(nd);
|
||||
for(int g=0;g<fg->gSites();g++){
|
||||
for(int64_t g=0;g<fg->gSites();g++){
|
||||
|
||||
fg->GlobalIndexToGlobalCoor(g,fcoor);
|
||||
for(int d=0;d<nd;d++){
|
||||
@ -1611,5 +1777,35 @@ void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Faster but less accurate blockProject
|
||||
//////////////////////////////////////////////////////
|
||||
template<class vobj,class CComplex,int nbasis,class VLattice>
|
||||
inline void blockProjectFast(Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||
const Lattice<vobj> &fineData,
|
||||
const VLattice &Basis)
|
||||
{
|
||||
GridBase * fine = fineData.Grid();
|
||||
GridBase * coarse= coarseData.Grid();
|
||||
|
||||
Lattice<iScalar<CComplex> > ip(coarse);
|
||||
|
||||
autoView( coarseData_ , coarseData, AcceleratorWrite);
|
||||
autoView( ip_ , ip, AcceleratorWrite);
|
||||
RealD t_IP=0;
|
||||
RealD t_co=0;
|
||||
for(int v=0;v<nbasis;v++) {
|
||||
t_IP-=usecond();
|
||||
blockInnerProductD(ip,Basis[v],fineData);
|
||||
t_IP+=usecond();
|
||||
t_co-=usecond();
|
||||
accelerator_for( sc, coarse->oSites(), vobj::Nsimd(), {
|
||||
convertType(coarseData_[sc](v),ip_[sc]);
|
||||
});
|
||||
t_co+=usecond();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -45,6 +45,7 @@ public:
|
||||
};
|
||||
// Host only
|
||||
GridBase * getGrid(void) const { return _grid; };
|
||||
vobj* getHostPointer(void) const { return _odata; };
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
571
Grid/lattice/PaddedCell.h
Normal file
571
Grid/lattice/PaddedCell.h
Normal file
@ -0,0 +1,571 @@
|
||||
/*************************************************************************************
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/lattice/PaddedCell.h
|
||||
|
||||
Copyright (C) 2019
|
||||
|
||||
Author: Peter Boyle pboyle@bnl.gov
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#include<Grid/cshift/Cshift.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
//Allow the user to specify how the C-shift is performed, e.g. to respect the appropriate boundary conditions
|
||||
template<typename vobj>
|
||||
struct CshiftImplBase{
|
||||
virtual Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const = 0;
|
||||
virtual ~CshiftImplBase(){}
|
||||
};
|
||||
template<typename vobj>
|
||||
struct CshiftImplDefault: public CshiftImplBase<vobj>{
|
||||
Lattice<vobj> Cshift(const Lattice<vobj> &in, int dir, int shift) const override{ return Grid::Cshift(in,dir,shift); }
|
||||
};
|
||||
template<typename Gimpl>
|
||||
struct CshiftImplGauge: public CshiftImplBase<typename Gimpl::GaugeLinkField::vector_object>{
|
||||
typename Gimpl::GaugeLinkField Cshift(const typename Gimpl::GaugeLinkField &in, int dir, int shift) const override{ return Gimpl::CshiftLink(in,dir,shift); }
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
*
|
||||
* TODO:
|
||||
* -- address elementsof vobj via thread block in Scatter/Gather
|
||||
* -- overlap comms with motion in Face_exchange
|
||||
*
|
||||
*/
|
||||
|
||||
template<class vobj> inline void ScatterSlice(const cshiftVector<vobj> &buf,
|
||||
Lattice<vobj> &lat,
|
||||
int x,
|
||||
int dim,
|
||||
int offset=0)
|
||||
{
|
||||
const int Nsimd=vobj::Nsimd();
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
GridBase *grid = lat.Grid();
|
||||
Coordinate simd = grid->_simd_layout;
|
||||
int Nd = grid->Nd();
|
||||
int block = grid->_slice_block[dim];
|
||||
int stride = grid->_slice_stride[dim];
|
||||
int nblock = grid->_slice_nblock[dim];
|
||||
int rd = grid->_rdimensions[dim];
|
||||
|
||||
int ox = x%rd;
|
||||
int ix = x/rd;
|
||||
|
||||
int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d];
|
||||
|
||||
Coordinate rsimd= simd; rsimd[dim]=1; // maybe reduce Nsimd
|
||||
|
||||
int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d];
|
||||
int rNsimda= Nsimd/simd[dim]; // should be equal
|
||||
assert(rNsimda==rNsimd);
|
||||
int face_ovol=block*nblock;
|
||||
|
||||
// assert(buf.size()==face_ovol*rNsimd);
|
||||
|
||||
/*This will work GPU ONLY unless rNsimd is put in the lexico index*/
|
||||
//Let's make it work on GPU and then make a special accelerator_for that
|
||||
//doesn't hide the SIMD direction and keeps explicit in the threadIdx
|
||||
//for cross platform
|
||||
// FIXME -- can put internal indices into thread loop
|
||||
auto buf_p = & buf[0];
|
||||
autoView(lat_v, lat, AcceleratorWrite);
|
||||
accelerator_for(ss, face_ovol/simd[dim],Nsimd,{
|
||||
|
||||
// scalar layout won't coalesce
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
int blane=acceleratorSIMTlane(Nsimd); // buffer lane
|
||||
#else
|
||||
for(int blane=0;blane<Nsimd;blane++) {
|
||||
#endif
|
||||
int olane=blane%rNsimd; // reduced lattice lane
|
||||
int obit =blane/rNsimd;
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// osite -- potentially one bit from simd in the buffer: (ss<<1)|obit
|
||||
///////////////////////////////////////////////////////////////
|
||||
int ssp = ss*simd[dim]+obit;
|
||||
int b = ssp%block;
|
||||
int n = ssp/block;
|
||||
int osite= b+n*stride + ox*block;
|
||||
|
||||
////////////////////////////////////////////
|
||||
// isite -- map lane within buffer to lane within lattice
|
||||
////////////////////////////////////////////
|
||||
Coordinate icoor;
|
||||
int lane;
|
||||
Lexicographic::CoorFromIndex(icoor,olane,rsimd);
|
||||
icoor[dim]=ix;
|
||||
Lexicographic::IndexFromCoor(icoor,lane,simd);
|
||||
|
||||
///////////////////////////////////////////
|
||||
// Transfer into lattice - will coalesce
|
||||
///////////////////////////////////////////
|
||||
// sobj obj = extractLane(blane,buf_p[ss+offset]);
|
||||
// insertLane(lane,lat_v[osite],obj);
|
||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
vector_type * from = (vector_type *)&buf_p[ss+offset];
|
||||
vector_type * to = (vector_type *)&lat_v[osite];
|
||||
scalar_type stmp;
|
||||
for(int w=0;w<words;w++){
|
||||
stmp = getlane(from[w], blane);
|
||||
putlane(to[w], stmp, lane);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
template<class vobj> inline void GatherSlice(cshiftVector<vobj> &buf,
|
||||
const Lattice<vobj> &lat,
|
||||
int x,
|
||||
int dim,
|
||||
int offset=0)
|
||||
{
|
||||
const int Nsimd=vobj::Nsimd();
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
autoView(lat_v, lat, AcceleratorRead);
|
||||
|
||||
GridBase *grid = lat.Grid();
|
||||
Coordinate simd = grid->_simd_layout;
|
||||
int Nd = grid->Nd();
|
||||
int block = grid->_slice_block[dim];
|
||||
int stride = grid->_slice_stride[dim];
|
||||
int nblock = grid->_slice_nblock[dim];
|
||||
int rd = grid->_rdimensions[dim];
|
||||
|
||||
int ox = x%rd;
|
||||
int ix = x/rd;
|
||||
|
||||
int isites = 1; for(int d=0;d<Nd;d++) if( d!=dim) isites*=simd[d];
|
||||
|
||||
Coordinate rsimd= simd; rsimd[dim]=1; // maybe reduce Nsimd
|
||||
|
||||
int rNsimd = 1; for(int d=0;d<Nd;d++) rNsimd*=rsimd[d];
|
||||
|
||||
int face_ovol=block*nblock;
|
||||
|
||||
// assert(buf.size()==face_ovol*rNsimd);
|
||||
|
||||
/*This will work GPU ONLY unless rNsimd is put in the lexico index*/
|
||||
//Let's make it work on GPU and then make a special accelerator_for that
|
||||
//doesn't hide the SIMD direction and keeps explicit in the threadIdx
|
||||
//for cross platform
|
||||
//For CPU perhaps just run a loop over Nsimd
|
||||
auto buf_p = & buf[0];
|
||||
accelerator_for(ss, face_ovol/simd[dim],Nsimd,{
|
||||
|
||||
// scalar layout won't coalesce
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
int blane=acceleratorSIMTlane(Nsimd); // buffer lane
|
||||
#else
|
||||
for(int blane=0;blane<Nsimd;blane++) {
|
||||
#endif
|
||||
int olane=blane%rNsimd; // reduced lattice lane
|
||||
int obit =blane/rNsimd;
|
||||
|
||||
////////////////////////////////////////////
|
||||
// osite
|
||||
////////////////////////////////////////////
|
||||
int ssp = ss*simd[dim]+obit;
|
||||
int b = ssp%block;
|
||||
int n = ssp/block;
|
||||
int osite= b+n*stride + ox*block;
|
||||
|
||||
////////////////////////////////////////////
|
||||
// isite -- map lane within buffer to lane within lattice
|
||||
////////////////////////////////////////////
|
||||
Coordinate icoor;
|
||||
int lane;
|
||||
Lexicographic::CoorFromIndex(icoor,olane,rsimd);
|
||||
icoor[dim]=ix;
|
||||
Lexicographic::IndexFromCoor(icoor,lane,simd);
|
||||
|
||||
///////////////////////////////////////////
|
||||
// Take out of lattice
|
||||
///////////////////////////////////////////
|
||||
// sobj obj = extractLane(lane,lat_v[osite]);
|
||||
// insertLane(blane,buf_p[ss+offset],obj);
|
||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
vector_type * to = (vector_type *)&buf_p[ss+offset];
|
||||
vector_type * from = (vector_type *)&lat_v[osite];
|
||||
scalar_type stmp;
|
||||
for(int w=0;w<words;w++){
|
||||
stmp = getlane(from[w], lane);
|
||||
putlane(to[w], stmp, blane);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
class PaddedCell {
|
||||
public:
|
||||
GridCartesian * unpadded_grid;
|
||||
int dims;
|
||||
int depth;
|
||||
std::vector<GridCartesian *> grids;
|
||||
|
||||
~PaddedCell()
|
||||
{
|
||||
DeleteGrids();
|
||||
}
|
||||
PaddedCell(int _depth,GridCartesian *_grid)
|
||||
{
|
||||
unpadded_grid = _grid;
|
||||
depth=_depth;
|
||||
dims=_grid->Nd();
|
||||
AllocateGrids();
|
||||
Coordinate local =unpadded_grid->LocalDimensions();
|
||||
Coordinate procs =unpadded_grid->ProcessorGrid();
|
||||
for(int d=0;d<dims;d++){
|
||||
if ( procs[d] > 1 ) assert(local[d]>=depth);
|
||||
}
|
||||
}
|
||||
void DeleteGrids(void)
|
||||
{
|
||||
Coordinate processors=unpadded_grid->_processors;
|
||||
for(int d=0;d<grids.size();d++){
|
||||
if ( processors[d] > 1 ) {
|
||||
delete grids[d];
|
||||
}
|
||||
}
|
||||
grids.resize(0);
|
||||
};
|
||||
void AllocateGrids(void)
|
||||
{
|
||||
Coordinate local =unpadded_grid->LocalDimensions();
|
||||
Coordinate simd =unpadded_grid->_simd_layout;
|
||||
Coordinate processors=unpadded_grid->_processors;
|
||||
Coordinate plocal =unpadded_grid->LocalDimensions();
|
||||
Coordinate global(dims);
|
||||
GridCartesian *old_grid = unpadded_grid;
|
||||
// expand up one dim at a time
|
||||
for(int d=0;d<dims;d++){
|
||||
|
||||
if ( processors[d] > 1 ) {
|
||||
plocal[d] += 2*depth;
|
||||
|
||||
for(int d=0;d<dims;d++){
|
||||
global[d] = plocal[d]*processors[d];
|
||||
}
|
||||
|
||||
old_grid = new GridCartesian(global,simd,processors);
|
||||
}
|
||||
grids.push_back(old_grid);
|
||||
}
|
||||
};
|
||||
template<class vobj>
|
||||
inline Lattice<vobj> Extract(const Lattice<vobj> &in) const
|
||||
{
|
||||
Coordinate processors=unpadded_grid->_processors;
|
||||
|
||||
Lattice<vobj> out(unpadded_grid);
|
||||
|
||||
Coordinate local =unpadded_grid->LocalDimensions();
|
||||
// depends on the MPI spread
|
||||
Coordinate fll(dims,depth);
|
||||
Coordinate tll(dims,0); // depends on the MPI spread
|
||||
for(int d=0;d<dims;d++){
|
||||
if( processors[d]==1 ) fll[d]=0;
|
||||
}
|
||||
localCopyRegion(in,out,fll,tll,local);
|
||||
return out;
|
||||
}
|
||||
template<class vobj>
|
||||
inline Lattice<vobj> Exchange(const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
|
||||
{
|
||||
GridBase *old_grid = in.Grid();
|
||||
int dims = old_grid->Nd();
|
||||
Lattice<vobj> tmp = in;
|
||||
for(int d=0;d<dims;d++){
|
||||
tmp = Expand(d,tmp,cshift); // rvalue && assignment
|
||||
}
|
||||
return tmp;
|
||||
}
|
||||
template<class vobj>
|
||||
inline Lattice<vobj> ExchangePeriodic(const Lattice<vobj> &in) const
|
||||
{
|
||||
GridBase *old_grid = in.Grid();
|
||||
int dims = old_grid->Nd();
|
||||
Lattice<vobj> tmp = in;
|
||||
for(int d=0;d<dims;d++){
|
||||
tmp = ExpandPeriodic(d,tmp); // rvalue && assignment
|
||||
}
|
||||
return tmp;
|
||||
}
|
||||
// expand up one dim at a time
|
||||
template<class vobj>
|
||||
inline Lattice<vobj> Expand(int dim, const Lattice<vobj> &in, const CshiftImplBase<vobj> &cshift = CshiftImplDefault<vobj>()) const
|
||||
{
|
||||
Coordinate processors=unpadded_grid->_processors;
|
||||
GridBase *old_grid = in.Grid();
|
||||
GridCartesian *new_grid = grids[dim];//These are new grids
|
||||
Lattice<vobj> padded(new_grid);
|
||||
Lattice<vobj> shifted(old_grid);
|
||||
Coordinate local =old_grid->LocalDimensions();
|
||||
Coordinate plocal =new_grid->LocalDimensions();
|
||||
if(dim==0) conformable(old_grid,unpadded_grid);
|
||||
else conformable(old_grid,grids[dim-1]);
|
||||
|
||||
double tins=0, tshift=0;
|
||||
|
||||
int islocal = 0 ;
|
||||
if ( processors[dim] == 1 ) islocal = 1;
|
||||
|
||||
if ( islocal ) {
|
||||
|
||||
// replace with a copy and maybe grid swizzle
|
||||
// return in;??
|
||||
double t = usecond();
|
||||
padded = in;
|
||||
tins += usecond() - t;
|
||||
|
||||
} else {
|
||||
|
||||
//////////////////////////////////////////////
|
||||
// Replace sequence with
|
||||
// ---------------------
|
||||
// (i) Gather high face(s); start comms
|
||||
// (ii) Gather low face(s); start comms
|
||||
// (iii) Copy middle bit with localCopyRegion
|
||||
// (iv) Complete high face(s), insert slice(s)
|
||||
// (iv) Complete low face(s), insert slice(s)
|
||||
//////////////////////////////////////////////
|
||||
// Middle bit
|
||||
double t = usecond();
|
||||
for(int x=0;x<local[dim];x++){
|
||||
InsertSliceLocal(in,padded,x,depth+x,dim);
|
||||
}
|
||||
tins += usecond() - t;
|
||||
|
||||
// High bit
|
||||
t = usecond();
|
||||
shifted = cshift.Cshift(in,dim,depth);
|
||||
tshift += usecond() - t;
|
||||
|
||||
t=usecond();
|
||||
for(int x=0;x<depth;x++){
|
||||
InsertSliceLocal(shifted,padded,local[dim]-depth+x,depth+local[dim]+x,dim);
|
||||
}
|
||||
tins += usecond() - t;
|
||||
|
||||
// Low bit
|
||||
t = usecond();
|
||||
shifted = cshift.Cshift(in,dim,-depth);
|
||||
tshift += usecond() - t;
|
||||
|
||||
t = usecond();
|
||||
for(int x=0;x<depth;x++){
|
||||
InsertSliceLocal(shifted,padded,x,x,dim);
|
||||
}
|
||||
tins += usecond() - t;
|
||||
|
||||
}
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand timings: cshift:" << tshift/1000 << "ms, insert-slice:" << tins/1000 << "ms" << std::endl;
|
||||
|
||||
return padded;
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
inline Lattice<vobj> ExpandPeriodic(int dim, const Lattice<vobj> &in) const
|
||||
{
|
||||
Coordinate processors=unpadded_grid->_processors;
|
||||
GridBase *old_grid = in.Grid();
|
||||
GridCartesian *new_grid = grids[dim];//These are new grids
|
||||
Lattice<vobj> padded(new_grid);
|
||||
// Lattice<vobj> shifted(old_grid);
|
||||
Coordinate local =old_grid->LocalDimensions();
|
||||
Coordinate plocal =new_grid->LocalDimensions();
|
||||
if(dim==0) conformable(old_grid,unpadded_grid);
|
||||
else conformable(old_grid,grids[dim-1]);
|
||||
|
||||
// std::cout << " dim "<<dim<<" local "<<local << " padding to "<<plocal<<std::endl;
|
||||
double tins=0, tshift=0;
|
||||
|
||||
int islocal = 0 ;
|
||||
if ( processors[dim] == 1 ) islocal = 1;
|
||||
|
||||
if ( islocal ) {
|
||||
padded=in; // slightly different interface could avoid a copy operation
|
||||
} else {
|
||||
Face_exchange(in,padded,dim,depth);
|
||||
return padded;
|
||||
}
|
||||
return padded;
|
||||
}
|
||||
template<class vobj>
|
||||
void Face_exchange(const Lattice<vobj> &from,
|
||||
Lattice<vobj> &to,
|
||||
int dimension,int depth) const
|
||||
{
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
|
||||
RealD t_gather=0.0;
|
||||
RealD t_scatter=0.0;
|
||||
RealD t_comms=0.0;
|
||||
RealD t_copy=0.0;
|
||||
|
||||
// std::cout << GridLogMessage << "dimension " <<dimension<<std::endl;
|
||||
// DumpSliceNorm(std::string("Face_exchange from"),from,dimension);
|
||||
GridBase *grid=from.Grid();
|
||||
GridBase *new_grid=to.Grid();
|
||||
|
||||
Coordinate lds = from.Grid()->_ldimensions;
|
||||
Coordinate nlds= to.Grid()->_ldimensions;
|
||||
Coordinate simd= from.Grid()->_simd_layout;
|
||||
int ld = lds[dimension];
|
||||
int nld = to.Grid()->_ldimensions[dimension];
|
||||
const int Nsimd = vobj::Nsimd();
|
||||
|
||||
assert(depth<=lds[dimension]); // A must be on neighbouring node
|
||||
assert(depth>0); // A caller bug if zero
|
||||
assert(ld+2*depth==nld);
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Face size and byte calculations
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
int buffer_size = 1;
|
||||
for(int d=0;d<lds.size();d++){
|
||||
if ( d!= dimension) buffer_size=buffer_size*lds[d];
|
||||
}
|
||||
buffer_size = buffer_size / Nsimd;
|
||||
int rNsimd = Nsimd / simd[dimension];
|
||||
assert( buffer_size == from.Grid()->_slice_nblock[dimension]*from.Grid()->_slice_block[dimension] / simd[dimension]);
|
||||
|
||||
static cshiftVector<vobj> send_buf;
|
||||
static cshiftVector<vobj> recv_buf;
|
||||
send_buf.resize(buffer_size*2*depth);
|
||||
recv_buf.resize(buffer_size*2*depth);
|
||||
|
||||
std::vector<CommsRequest_t> fwd_req;
|
||||
std::vector<CommsRequest_t> bwd_req;
|
||||
|
||||
int words = buffer_size;
|
||||
int bytes = words * sizeof(vobj);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Communication coords
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
int comm_proc = 1;
|
||||
int xmit_to_rank;
|
||||
int recv_from_rank;
|
||||
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Gather all surface terms up to depth "d"
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
RealD t;
|
||||
RealD t_tot=-usecond();
|
||||
int plane=0;
|
||||
for ( int d=0;d < depth ; d ++ ) {
|
||||
int tag = d*1024 + dimension*2+0;
|
||||
|
||||
t=usecond();
|
||||
GatherSlice(send_buf,from,d,dimension,plane*buffer_size); plane++;
|
||||
t_gather+=usecond()-t;
|
||||
|
||||
t=usecond();
|
||||
grid->SendToRecvFromBegin(fwd_req,
|
||||
(void *)&send_buf[d*buffer_size], xmit_to_rank,
|
||||
(void *)&recv_buf[d*buffer_size], recv_from_rank, bytes, tag);
|
||||
t_comms+=usecond()-t;
|
||||
}
|
||||
for ( int d=0;d < depth ; d ++ ) {
|
||||
int tag = d*1024 + dimension*2+1;
|
||||
|
||||
t=usecond();
|
||||
GatherSlice(send_buf,from,ld-depth+d,dimension,plane*buffer_size); plane++;
|
||||
t_gather+= usecond() - t;
|
||||
|
||||
t=usecond();
|
||||
grid->SendToRecvFromBegin(bwd_req,
|
||||
(void *)&send_buf[(d+depth)*buffer_size], recv_from_rank,
|
||||
(void *)&recv_buf[(d+depth)*buffer_size], xmit_to_rank, bytes,tag);
|
||||
t_comms+=usecond()-t;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Copy interior -- overlap this with comms
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
int Nd = new_grid->Nd();
|
||||
Coordinate LL(Nd,0);
|
||||
Coordinate sz = grid->_ldimensions;
|
||||
Coordinate toLL(Nd,0);
|
||||
toLL[dimension]=depth;
|
||||
t=usecond();
|
||||
localCopyRegion(from,to,LL,toLL,sz);
|
||||
t_copy= usecond() - t;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Scatter all faces
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
plane=0;
|
||||
|
||||
t=usecond();
|
||||
grid->CommsComplete(fwd_req);
|
||||
t_comms+= usecond() - t;
|
||||
|
||||
t=usecond();
|
||||
for ( int d=0;d < depth ; d ++ ) {
|
||||
ScatterSlice(recv_buf,to,nld-depth+d,dimension,plane*buffer_size); plane++;
|
||||
}
|
||||
t_scatter= usecond() - t;
|
||||
|
||||
t=usecond();
|
||||
grid->CommsComplete(bwd_req);
|
||||
t_comms+= usecond() - t;
|
||||
|
||||
t=usecond();
|
||||
for ( int d=0;d < depth ; d ++ ) {
|
||||
ScatterSlice(recv_buf,to,d,dimension,plane*buffer_size); plane++;
|
||||
}
|
||||
t_scatter+= usecond() - t;
|
||||
t_tot+=usecond();
|
||||
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << t_gather/1000 << "ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << t_scatter/1000 << "ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: copy :" << t_copy/1000 << "ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms :" << t_comms/1000 << "ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: total :" << t_tot/1000 << "ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: gather :" << depth*4.0*bytes/t_gather << "MB/s"<<std::endl;
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: scatter:" << depth*4.0*bytes/t_scatter<< "MB/s"<<std::endl;
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: comms :" << (RealD)4.0*bytes/t_comms << "MB/s"<<std::endl;
|
||||
std::cout << GridLogPerformance << "PaddedCell::Expand new timings: face bytes :" << depth*bytes/1e6 << "MB"<<std::endl;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -179,11 +179,11 @@ extern GridLogger GridLogSolver;
|
||||
extern GridLogger GridLogError;
|
||||
extern GridLogger GridLogWarning;
|
||||
extern GridLogger GridLogMessage;
|
||||
extern GridLogger GridLogDebug ;
|
||||
extern GridLogger GridLogDebug;
|
||||
extern GridLogger GridLogPerformance;
|
||||
extern GridLogger GridLogDslash;
|
||||
extern GridLogger GridLogIterative ;
|
||||
extern GridLogger GridLogIntegrator ;
|
||||
extern GridLogger GridLogIterative;
|
||||
extern GridLogger GridLogIntegrator;
|
||||
extern GridLogger GridLogHMC;
|
||||
extern GridLogger GridLogMemory;
|
||||
extern GridLogger GridLogTracing;
|
||||
@ -191,6 +191,41 @@ extern Colours GridLogColours;
|
||||
|
||||
std::string demangle(const char* name) ;
|
||||
|
||||
template<typename... Args>
|
||||
inline std::string sjoin(Args&&... args) noexcept {
|
||||
std::ostringstream msg;
|
||||
(msg << ... << args);
|
||||
return msg.str();
|
||||
}
|
||||
|
||||
/*! @brief make log messages work like python print */
|
||||
template <typename... Args>
|
||||
inline void Grid_log(Args&&... args) {
|
||||
std::string msg = sjoin(std::forward<Args>(args)...);
|
||||
std::cout << GridLogMessage << msg << std::endl;
|
||||
}
|
||||
|
||||
/*! @brief make warning messages work like python print */
|
||||
template <typename... Args>
|
||||
inline void Grid_warn(Args&&... args) {
|
||||
std::string msg = sjoin(std::forward<Args>(args)...);
|
||||
std::cout << "\033[33m" << GridLogWarning << msg << "\033[0m" << std::endl;
|
||||
}
|
||||
|
||||
/*! @brief make error messages work like python print */
|
||||
template <typename... Args>
|
||||
inline void Grid_error(Args&&... args) {
|
||||
std::string msg = sjoin(std::forward<Args>(args)...);
|
||||
std::cout << "\033[31m" << GridLogError << msg << "\033[0m" << std::endl;
|
||||
}
|
||||
|
||||
/*! @brief make pass messages work like python print */
|
||||
template <typename... Args>
|
||||
inline void Grid_pass(Args&&... args) {
|
||||
std::string msg = sjoin(std::forward<Args>(args)...);
|
||||
std::cout << "\033[32m" << GridLogMessage << msg << "\033[0m" << std::endl;
|
||||
}
|
||||
|
||||
#define _NBACKTRACE (256)
|
||||
extern void * Grid_backtrace_buffer[_NBACKTRACE];
|
||||
|
||||
|
@ -165,7 +165,7 @@ class BinaryIO {
|
||||
* FIXME -- 128^3 x 256 x 16 will overflow.
|
||||
*/
|
||||
|
||||
int global_site;
|
||||
int64_t global_site;
|
||||
|
||||
Lexicographic::CoorFromIndex(coor,local_site,local_vol);
|
||||
|
||||
@ -175,8 +175,8 @@ class BinaryIO {
|
||||
|
||||
Lexicographic::IndexFromCoor(coor,global_site,global_vol);
|
||||
|
||||
uint32_t gsite29 = global_site%29;
|
||||
uint32_t gsite31 = global_site%31;
|
||||
uint64_t gsite29 = global_site%29;
|
||||
uint64_t gsite31 = global_site%31;
|
||||
|
||||
site_crc = crc32(0,(unsigned char *)site_buf,sizeof(fobj));
|
||||
// std::cout << "Site "<<local_site << " crc "<<std::hex<<site_crc<<std::dec<<std::endl;
|
||||
@ -545,7 +545,9 @@ class BinaryIO {
|
||||
const std::string &format,
|
||||
uint32_t &nersc_csum,
|
||||
uint32_t &scidac_csuma,
|
||||
uint32_t &scidac_csumb)
|
||||
uint32_t &scidac_csumb,
|
||||
int control=BINARYIO_LEXICOGRAPHIC
|
||||
)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::Realified::scalar_type word; word w=0;
|
||||
@ -556,7 +558,7 @@ class BinaryIO {
|
||||
std::vector<sobj> scalardata(lsites);
|
||||
std::vector<fobj> iodata(lsites); // Munge, checksum, byte order in here
|
||||
|
||||
IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC,
|
||||
IOobject(w,grid,iodata,file,offset,format,BINARYIO_READ|control,
|
||||
nersc_csum,scidac_csuma,scidac_csumb);
|
||||
|
||||
GridStopWatch timer;
|
||||
@ -582,7 +584,8 @@ class BinaryIO {
|
||||
const std::string &format,
|
||||
uint32_t &nersc_csum,
|
||||
uint32_t &scidac_csuma,
|
||||
uint32_t &scidac_csumb)
|
||||
uint32_t &scidac_csumb,
|
||||
int control=BINARYIO_LEXICOGRAPHIC)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::Realified::scalar_type word; word w=0;
|
||||
@ -607,7 +610,7 @@ class BinaryIO {
|
||||
while (attemptsLeft >= 0)
|
||||
{
|
||||
grid->Barrier();
|
||||
IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|BINARYIO_LEXICOGRAPHIC,
|
||||
IOobject(w,grid,iodata,file,offset,format,BINARYIO_WRITE|control,
|
||||
nersc_csum,scidac_csuma,scidac_csumb);
|
||||
if (checkWrite)
|
||||
{
|
||||
@ -617,7 +620,7 @@ class BinaryIO {
|
||||
|
||||
std::cout << GridLogMessage << "writeLatticeObject: read back object" << std::endl;
|
||||
grid->Barrier();
|
||||
IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|BINARYIO_LEXICOGRAPHIC,
|
||||
IOobject(w,grid,ckiodata,file,ckoffset,format,BINARYIO_READ|control,
|
||||
cknersc_csum,ckscidac_csuma,ckscidac_csumb);
|
||||
if ((cknersc_csum != nersc_csum) or (ckscidac_csuma != scidac_csuma) or (ckscidac_csumb != scidac_csumb))
|
||||
{
|
||||
|
@ -162,8 +162,14 @@ template<class vobj> void ScidacMetaData(Lattice<vobj> & field,
|
||||
{
|
||||
uint32_t scidac_checksuma = stoull(scidacChecksum_.suma,0,16);
|
||||
uint32_t scidac_checksumb = stoull(scidacChecksum_.sumb,0,16);
|
||||
if ( scidac_csuma !=scidac_checksuma) return 0;
|
||||
if ( scidac_csumb !=scidac_checksumb) return 0;
|
||||
std::cout << GridLogMessage << " scidacChecksumVerify computed "<<scidac_csuma<<" expected "<<scidac_checksuma <<std::endl;
|
||||
std::cout << GridLogMessage << " scidacChecksumVerify computed "<<scidac_csumb<<" expected "<<scidac_checksumb <<std::endl;
|
||||
if ( scidac_csuma !=scidac_checksuma) {
|
||||
return 0;
|
||||
};
|
||||
if ( scidac_csumb !=scidac_checksumb) {
|
||||
return 0;
|
||||
};
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -206,7 +212,7 @@ class GridLimeReader : public BinaryIO {
|
||||
// Read a generic lattice field and verify checksum
|
||||
////////////////////////////////////////////
|
||||
template<class vobj>
|
||||
void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
|
||||
void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
scidacChecksum scidacChecksum_;
|
||||
@ -238,7 +244,7 @@ class GridLimeReader : public BinaryIO {
|
||||
uint64_t offset= ftello(File);
|
||||
// std::cout << " ReadLatticeObject from offset "<<offset << std::endl;
|
||||
BinarySimpleMunger<sobj,sobj> munge;
|
||||
BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
|
||||
BinaryIO::readLatticeObject< vobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb,control);
|
||||
std::cout << GridLogMessage << "SciDAC checksum A " << std::hex << scidac_csuma << std::dec << std::endl;
|
||||
std::cout << GridLogMessage << "SciDAC checksum B " << std::hex << scidac_csumb << std::dec << std::endl;
|
||||
/////////////////////////////////////////////
|
||||
@ -408,7 +414,7 @@ class GridLimeWriter : public BinaryIO
|
||||
// in communicator used by the field.Grid()
|
||||
////////////////////////////////////////////////////
|
||||
template<class vobj>
|
||||
void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
|
||||
void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name,int control=BINARYIO_LEXICOGRAPHIC)
|
||||
{
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// NB: FILE and iostream are jointly writing disjoint sequences in the
|
||||
@ -459,7 +465,7 @@ class GridLimeWriter : public BinaryIO
|
||||
///////////////////////////////////////////
|
||||
std::string format = getFormatString<vobj>();
|
||||
BinarySimpleMunger<sobj,sobj> munge;
|
||||
BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb);
|
||||
BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset1, format,nersc_csum,scidac_csuma,scidac_csumb,control);
|
||||
|
||||
///////////////////////////////////////////
|
||||
// Wind forward and close the record
|
||||
@ -512,7 +518,8 @@ class ScidacWriter : public GridLimeWriter {
|
||||
////////////////////////////////////////////////
|
||||
template <class vobj, class userRecord>
|
||||
void writeScidacFieldRecord(Lattice<vobj> &field,userRecord _userRecord,
|
||||
const unsigned int recordScientificPrec = 0)
|
||||
const unsigned int recordScientificPrec = 0,
|
||||
int control=BINARYIO_LEXICOGRAPHIC)
|
||||
{
|
||||
GridBase * grid = field.Grid();
|
||||
|
||||
@ -534,7 +541,7 @@ class ScidacWriter : public GridLimeWriter {
|
||||
writeLimeObject(0,0,_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
|
||||
}
|
||||
// Collective call
|
||||
writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA)); // Closes message with checksum
|
||||
writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control); // Closes message with checksum
|
||||
}
|
||||
};
|
||||
|
||||
@ -553,7 +560,8 @@ class ScidacReader : public GridLimeReader {
|
||||
// Write generic lattice field in scidac format
|
||||
////////////////////////////////////////////////
|
||||
template <class vobj, class userRecord>
|
||||
void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord)
|
||||
void readScidacFieldRecord(Lattice<vobj> &field,userRecord &_userRecord,
|
||||
int control=BINARYIO_LEXICOGRAPHIC)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
GridBase * grid = field.Grid();
|
||||
@ -571,7 +579,7 @@ class ScidacReader : public GridLimeReader {
|
||||
readLimeObject(header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message
|
||||
readLimeObject(_userRecord,_userRecord.SerialisableClassName(),std::string(SCIDAC_RECORD_XML));
|
||||
readLimeObject(_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
|
||||
readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA));
|
||||
readLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA),control);
|
||||
}
|
||||
void skipPastBinaryRecord(void) {
|
||||
std::string rec_name(ILDG_BINARY_DATA);
|
||||
|
@ -34,7 +34,7 @@ class GridTracer {
|
||||
};
|
||||
inline void tracePush(const char *name) { roctxRangePushA(name); }
|
||||
inline void tracePop(const char *name) { roctxRangePop(); }
|
||||
inline int traceStart(const char *name) { roctxRangeStart(name); }
|
||||
inline int traceStart(const char *name) { return roctxRangeStart(name); }
|
||||
inline void traceStop(int ID) { roctxRangeStop(ID); }
|
||||
#endif
|
||||
|
||||
|
@ -104,6 +104,7 @@ template<typename vtype> using iSpinMatrix = iScalar<iMatrix<iSca
|
||||
template<typename vtype> using iColourMatrix = iScalar<iScalar<iMatrix<vtype, Nc> > > ;
|
||||
template<typename vtype> using iSpinColourMatrix = iScalar<iMatrix<iMatrix<vtype, Nc>, Ns> >;
|
||||
template<typename vtype> using iLorentzColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nd > ;
|
||||
template<typename vtype> using iLorentzComplex = iVector<iScalar<iScalar<vtype> >, Nd > ;
|
||||
template<typename vtype> using iDoubleStoredColourMatrix = iVector<iScalar<iMatrix<vtype, Nc> >, Nds > ;
|
||||
template<typename vtype> using iSpinVector = iScalar<iVector<iScalar<vtype>, Ns> >;
|
||||
template<typename vtype> using iColourVector = iScalar<iScalar<iVector<vtype, Nc> > >;
|
||||
@ -178,6 +179,15 @@ typedef iLorentzColourMatrix<vComplexF> vLorentzColourMatrixF;
|
||||
typedef iLorentzColourMatrix<vComplexD> vLorentzColourMatrixD;
|
||||
typedef iLorentzColourMatrix<vComplexD2> vLorentzColourMatrixD2;
|
||||
|
||||
// LorentzComplex
|
||||
typedef iLorentzComplex<Complex > LorentzComplex;
|
||||
typedef iLorentzComplex<ComplexF > LorentzComplexF;
|
||||
typedef iLorentzComplex<ComplexD > LorentzComplexD;
|
||||
|
||||
typedef iLorentzComplex<vComplex > vLorentzComplex;
|
||||
typedef iLorentzComplex<vComplexF> vLorentzComplexF;
|
||||
typedef iLorentzComplex<vComplexD> vLorentzComplexD;
|
||||
|
||||
// DoubleStored gauge field
|
||||
typedef iDoubleStoredColourMatrix<Complex > DoubleStoredColourMatrix;
|
||||
typedef iDoubleStoredColourMatrix<ComplexF > DoubleStoredColourMatrixF;
|
||||
@ -307,6 +317,10 @@ typedef Lattice<vLorentzColourMatrixF> LatticeLorentzColourMatrixF;
|
||||
typedef Lattice<vLorentzColourMatrixD> LatticeLorentzColourMatrixD;
|
||||
typedef Lattice<vLorentzColourMatrixD2> LatticeLorentzColourMatrixD2;
|
||||
|
||||
typedef Lattice<vLorentzComplex> LatticeLorentzComplex;
|
||||
typedef Lattice<vLorentzComplexF> LatticeLorentzComplexF;
|
||||
typedef Lattice<vLorentzComplexD> LatticeLorentzComplexD;
|
||||
|
||||
// DoubleStored gauge field
|
||||
typedef Lattice<vDoubleStoredColourMatrix> LatticeDoubleStoredColourMatrix;
|
||||
typedef Lattice<vDoubleStoredColourMatrixF> LatticeDoubleStoredColourMatrixF;
|
||||
|
@ -34,10 +34,24 @@ directory
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
///////////////////////////////////
|
||||
// Smart configuration base class
|
||||
///////////////////////////////////
|
||||
template< class Field >
|
||||
class ConfigurationBase
|
||||
{
|
||||
public:
|
||||
ConfigurationBase() {}
|
||||
virtual ~ConfigurationBase() {}
|
||||
virtual void set_Field(Field& U) =0;
|
||||
virtual void smeared_force(Field&) = 0;
|
||||
virtual Field& get_SmearedU() =0;
|
||||
virtual Field &get_U(bool smeared = false) = 0;
|
||||
};
|
||||
|
||||
template <class GaugeField >
|
||||
class Action
|
||||
{
|
||||
|
||||
public:
|
||||
bool is_smeared = false;
|
||||
RealD deriv_norm_sum;
|
||||
@ -77,16 +91,60 @@ public:
|
||||
void refresh_timer_stop(void) { refresh_us+=usecond(); }
|
||||
void S_timer_start(void) { S_us-=usecond(); }
|
||||
void S_timer_stop(void) { S_us+=usecond(); }
|
||||
/////////////////////////////
|
||||
// Heatbath?
|
||||
/////////////////////////////
|
||||
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) = 0; // refresh pseudofermions
|
||||
virtual RealD S(const GaugeField& U) = 0; // evaluate the action
|
||||
virtual RealD Sinitial(const GaugeField& U) { return this->S(U); } ; // if the refresh computes the action, can cache it. Alternately refreshAndAction() ?
|
||||
virtual void deriv(const GaugeField& U, GaugeField& dSdU) = 0; // evaluate the action derivative
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// virtual smeared interface through configuration container
|
||||
/////////////////////////////////////////////////////////////
|
||||
virtual void refresh(ConfigurationBase<GaugeField> & U, GridSerialRNG &sRNG, GridParallelRNG& pRNG)
|
||||
{
|
||||
refresh(U.get_U(is_smeared),sRNG,pRNG);
|
||||
}
|
||||
virtual RealD S(ConfigurationBase<GaugeField>& U)
|
||||
{
|
||||
return S(U.get_U(is_smeared));
|
||||
}
|
||||
virtual RealD Sinitial(ConfigurationBase<GaugeField>& U)
|
||||
{
|
||||
return Sinitial(U.get_U(is_smeared));
|
||||
}
|
||||
virtual void deriv(ConfigurationBase<GaugeField>& U, GaugeField& dSdU)
|
||||
{
|
||||
deriv(U.get_U(is_smeared),dSdU);
|
||||
if ( is_smeared ) {
|
||||
U.smeared_force(dSdU);
|
||||
}
|
||||
}
|
||||
///////////////////////////////
|
||||
// Logging
|
||||
///////////////////////////////
|
||||
virtual std::string action_name() = 0; // return the action name
|
||||
virtual std::string LogParameters() = 0; // prints action parameters
|
||||
virtual ~Action(){}
|
||||
};
|
||||
|
||||
template <class GaugeField >
|
||||
class EmptyAction : public Action <GaugeField>
|
||||
{
|
||||
virtual void refresh(const GaugeField& U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) { assert(0);}; // refresh pseudofermions
|
||||
virtual RealD S(const GaugeField& U) { return 0.0;}; // evaluate the action
|
||||
virtual void deriv(const GaugeField& U, GaugeField& dSdU) { assert(0); }; // evaluate the action derivative
|
||||
|
||||
///////////////////////////////
|
||||
// Logging
|
||||
///////////////////////////////
|
||||
virtual std::string action_name() { return std::string("Level Force Log"); };
|
||||
virtual std::string LogParameters() { return std::string("No parameters");};
|
||||
};
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif // ACTION_BASE_H
|
||||
|
@ -30,6 +30,8 @@ directory
|
||||
#ifndef QCD_ACTION_CORE
|
||||
#define QCD_ACTION_CORE
|
||||
|
||||
#include <Grid/qcd/action/gauge/GaugeImplementations.h>
|
||||
|
||||
#include <Grid/qcd/action/ActionBase.h>
|
||||
NAMESPACE_CHECK(ActionBase);
|
||||
#include <Grid/qcd/action/ActionSet.h>
|
||||
|
@ -126,6 +126,16 @@ typedef WilsonFermion<WilsonTwoIndexSymmetricImplD> WilsonTwoIndexSymmetricFermi
|
||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplF> WilsonTwoIndexAntiSymmetricFermionF;
|
||||
typedef WilsonFermion<WilsonTwoIndexAntiSymmetricImplD> WilsonTwoIndexAntiSymmetricFermionD;
|
||||
|
||||
// Sp(2n)
|
||||
typedef WilsonFermion<SpWilsonImplF> SpWilsonFermionF;
|
||||
typedef WilsonFermion<SpWilsonImplD> SpWilsonFermionD;
|
||||
|
||||
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplF> SpWilsonTwoIndexAntiSymmetricFermionF;
|
||||
typedef WilsonFermion<SpWilsonTwoIndexAntiSymmetricImplD> SpWilsonTwoIndexAntiSymmetricFermionD;
|
||||
|
||||
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplF> SpWilsonTwoIndexSymmetricFermionF;
|
||||
typedef WilsonFermion<SpWilsonTwoIndexSymmetricImplD> SpWilsonTwoIndexSymmetricFermionD;
|
||||
|
||||
// Twisted mass fermion
|
||||
typedef WilsonTMFermion<WilsonImplD2> WilsonTMFermionD2;
|
||||
typedef WilsonTMFermion<WilsonImplF> WilsonTMFermionF;
|
||||
|
@ -507,6 +507,7 @@ public:
|
||||
}
|
||||
this->face_table_computed=1;
|
||||
assert(this->u_comm_offset==this->_unified_buffer_size);
|
||||
accelerator_barrier();
|
||||
}
|
||||
|
||||
};
|
||||
|
@ -261,6 +261,22 @@ typedef WilsonImpl<vComplex, TwoIndexAntiSymmetricRepresentation, CoeffReal > W
|
||||
typedef WilsonImpl<vComplexF, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplF; // Float
|
||||
typedef WilsonImpl<vComplexD, TwoIndexAntiSymmetricRepresentation, CoeffReal > WilsonTwoIndexAntiSymmetricImplD; // Double
|
||||
|
||||
//sp 2n
|
||||
|
||||
typedef WilsonImpl<vComplex, SpFundamentalRepresentation, CoeffReal > SpWilsonImplR; // Real.. whichever prec
|
||||
typedef WilsonImpl<vComplexF, SpFundamentalRepresentation, CoeffReal > SpWilsonImplF; // Float
|
||||
typedef WilsonImpl<vComplexD, SpFundamentalRepresentation, CoeffReal > SpWilsonImplD; // Double
|
||||
|
||||
typedef WilsonImpl<vComplex, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplR; // Real.. whichever prec
|
||||
typedef WilsonImpl<vComplexF, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplF; // Float
|
||||
typedef WilsonImpl<vComplexD, SpTwoIndexAntiSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexAntiSymmetricImplD; // Double
|
||||
|
||||
typedef WilsonImpl<vComplex, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplR; // Real.. whichever prec
|
||||
typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplF; // Float
|
||||
typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonTwoIndexSymmetricImplD; // Double
|
||||
|
||||
typedef WilsonImpl<vComplex, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplR; // Real.. whichever prec // adj = 2indx symmetric for Sp(2N)
|
||||
typedef WilsonImpl<vComplexF, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplF; // Float // adj = 2indx symmetric for Sp(2N)
|
||||
typedef WilsonImpl<vComplexD, SpTwoIndexSymmetricRepresentation, CoeffReal > SpWilsonAdjImplD; // Double // adj = 2indx symmetric for Sp(2N)
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -63,7 +63,9 @@ public:
|
||||
virtual void MooeeDag(const FermionField &in, FermionField &out) ;
|
||||
virtual void MooeeInv(const FermionField &in, FermionField &out) ;
|
||||
virtual void MooeeInvDag(const FermionField &in, FermionField &out) ;
|
||||
|
||||
virtual void M(const FermionField &in, FermionField &out) ;
|
||||
virtual void Mdag(const FermionField &in, FermionField &out) ;
|
||||
|
||||
private:
|
||||
RealD mu; // TwistedMass parameter
|
||||
|
||||
|
@ -280,20 +280,16 @@ void StaggeredKernels<Impl>::DhopImproved(StencilImpl &st, LebesgueOrder &lo,
|
||||
|
||||
if( interior && exterior ) {
|
||||
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGeneric,1); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,1); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == OptInlineAsm ) { ASM_CALL(DhopSiteAsm); return;}
|
||||
#endif
|
||||
} else if( interior ) {
|
||||
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericInt,1); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandInt,1); return;}
|
||||
#endif
|
||||
} else if( exterior ) {
|
||||
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericExt,1); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandExt,1); return;}
|
||||
#endif
|
||||
}
|
||||
assert(0 && " Kernel optimisation case not covered ");
|
||||
}
|
||||
@ -322,19 +318,13 @@ void StaggeredKernels<Impl>::DhopNaive(StencilImpl &st, LebesgueOrder &lo,
|
||||
|
||||
if( interior && exterior ) {
|
||||
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGeneric,0); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHand,0); return;}
|
||||
#endif
|
||||
} else if( interior ) {
|
||||
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericInt,0); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandInt,0); return;}
|
||||
#endif
|
||||
} else if( exterior ) {
|
||||
if (Opt == OptGeneric ) { KERNEL_CALL(DhopSiteGenericExt,0); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == OptHandUnroll ) { KERNEL_CALL(DhopSiteHandExt,0); return;}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -332,8 +332,7 @@ void WilsonFermion5D<Impl>::DhopInternalOverlappedComms(StencilImpl & st, Lebesg
|
||||
/////////////////////////////
|
||||
{
|
||||
GRID_TRACE("Gather");
|
||||
st.HaloExchangeOptGather(in,compressor);
|
||||
accelerator_barrier();
|
||||
st.HaloExchangeOptGather(in,compressor); // Put the barrier in the routine
|
||||
}
|
||||
|
||||
std::vector<std::vector<CommsRequest_t> > requests;
|
||||
|
@ -423,14 +423,14 @@ void WilsonKernels<Impl>::DhopDirKernel( StencilImpl &st, DoubledGaugeField &U,S
|
||||
#define KERNEL_CALL(A) KERNEL_CALLNB(A); accelerator_barrier();
|
||||
|
||||
#define KERNEL_CALL_EXT(A) \
|
||||
const uint64_t NN = Nsite*Ls; \
|
||||
const uint64_t sz = st.surface_list.size(); \
|
||||
auto ptr = &st.surface_list[0]; \
|
||||
accelerator_forNB( ss, sz, Simd::Nsimd(), { \
|
||||
int sF = ptr[ss]; \
|
||||
int sU = ss/Ls; \
|
||||
int sU = sF/Ls; \
|
||||
WilsonKernels<Impl>::A(st_v,U_v,buf,sF,sU,in_v,out_v); \
|
||||
});
|
||||
}); \
|
||||
accelerator_barrier();
|
||||
|
||||
#define ASM_CALL(A) \
|
||||
thread_for( sss, Nsite, { \
|
||||
@ -462,6 +462,7 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
|
||||
autoView(st_v , st,AcceleratorRead);
|
||||
|
||||
if( interior && exterior ) {
|
||||
acceleratorFenceComputeStream();
|
||||
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSite); return;}
|
||||
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSite); return;}
|
||||
#ifndef GRID_CUDA
|
||||
@ -474,9 +475,10 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
|
||||
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteInt); return;}
|
||||
#endif
|
||||
} else if( exterior ) {
|
||||
// dependent on result of merge
|
||||
acceleratorFenceComputeStream();
|
||||
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteExt); return;}
|
||||
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteExt); return;}
|
||||
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL_EXT(GenericDhopSiteExt); return;}
|
||||
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL_EXT(HandDhopSiteExt); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteExt); return;}
|
||||
#endif
|
||||
@ -494,6 +496,7 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
|
||||
autoView(st_v ,st,AcceleratorRead);
|
||||
|
||||
if( interior && exterior ) {
|
||||
acceleratorFenceComputeStream();
|
||||
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteDag); return;}
|
||||
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDag); return;}
|
||||
#ifndef GRID_CUDA
|
||||
@ -506,9 +509,10 @@ void WilsonKernels<Impl>::DhopKernel(int Opt,StencilImpl &st, DoubledGaugeField
|
||||
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDagInt); return;}
|
||||
#endif
|
||||
} else if( exterior ) {
|
||||
// Dependent on result of merge
|
||||
acceleratorFenceComputeStream();
|
||||
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL(GenericDhopSiteDagExt); return;}
|
||||
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL(HandDhopSiteDagExt); return;}
|
||||
if (Opt == WilsonKernelsStatic::OptGeneric ) { KERNEL_CALL_EXT(GenericDhopSiteDagExt); return;}
|
||||
if (Opt == WilsonKernelsStatic::OptHandUnroll ) { KERNEL_CALL_EXT(HandDhopSiteDagExt); return;}
|
||||
#ifndef GRID_CUDA
|
||||
if (Opt == WilsonKernelsStatic::OptInlineAsm ) { ASM_CALL(AsmDhopSiteDagExt); return;}
|
||||
#endif
|
||||
|
@ -93,5 +93,25 @@ void WilsonTMFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &ou
|
||||
RealD b = tm /sq;
|
||||
axpibg5x(out,in,a,b);
|
||||
}
|
||||
template<class Impl>
|
||||
void WilsonTMFermion<Impl>::M(const FermionField &in, FermionField &out) {
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
this->Dhop(in, out, DaggerNo);
|
||||
FermionField tmp(out.Grid());
|
||||
RealD a = 4.0+this->mass;
|
||||
RealD b = this->mu;
|
||||
axpibg5x(tmp,in,a,b);
|
||||
axpy(out, 1.0, tmp, out);
|
||||
}
|
||||
template<class Impl>
|
||||
void WilsonTMFermion<Impl>::Mdag(const FermionField &in, FermionField &out) {
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
this->Dhop(in, out, DaggerYes);
|
||||
FermionField tmp(out.Grid());
|
||||
RealD a = 4.0+this->mass;
|
||||
RealD b = -this->mu;
|
||||
axpibg5x(tmp,in,a,b);
|
||||
axpy(out, 1.0, tmp, out);
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -0,0 +1 @@
|
||||
../WilsonCloverFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonTMFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
#define IMPLEMENTATION SpWilsonImplD
|
@ -0,0 +1 @@
|
||||
../WilsonCloverFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonTMFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
#define IMPLEMENTATION SpWilsonImplF
|
@ -0,0 +1 @@
|
||||
../WilsonCloverFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonTMFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
#define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplD
|
@ -0,0 +1 @@
|
||||
../WilsonCloverFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonTMFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
#define IMPLEMENTATION SpWilsonTwoIndexAntiSymmetricImplF
|
@ -0,0 +1 @@
|
||||
../WilsonCloverFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonFermionInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonKernelsInstantiation.cc.master
|
@ -0,0 +1 @@
|
||||
../WilsonTMFermionInstantiation.cc.master
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user