mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-17 23:37:06 +01:00
Compare commits
2026 Commits
feature/hd
...
07a07b6fa3
Author | SHA1 | Date | |
---|---|---|---|
07a07b6fa3 | |||
dc80b08969 | |||
a49a161f8d | |||
a6479ca50f | |||
0e607a55e7 | |||
c4b9f71357 | |||
394e506aea | |||
e19b26341b | |||
cfe1b13225 | |||
890c5ea1cd | |||
a87378d3b6 | |||
832fc08809 | |||
9a1ad6a5eb | |||
a90eafad24 | |||
ad14a82742 | |||
14e9d8ed9f | |||
0ac85fa70b | |||
c371de42b9 | |||
ccf147d6c1 | |||
7aa12b446f | |||
c293228102 | |||
5c4c9f721a | |||
057f86c1de | |||
cd52e3cbc2 | |||
24602e1259 | |||
8a098889fc | |||
5c3ace7c3e | |||
aa148455b7 | |||
98cf247f33 | |||
0cf16522d1 | |||
7b7c75f9e5 | |||
aefd255a3c | |||
1c5aa939fd | |||
3a0ff17be0 | |||
47829ae5cc | |||
bfa7b69aff | |||
2aaa959b5f | |||
ce2970b93a | |||
7b76970d10 | |||
9fd41882d2 | |||
ff2ea5de18 | |||
5147a42818 | |||
57552d8ca3 | |||
13713b2a76 | |||
36a14e4ee3 | |||
b4cc788b8c | |||
0f0e7512f3 | |||
1196b1a161 | |||
2c8c3be9ee | |||
5b79d51c22 | |||
da890dc293 | |||
93d0a1e73a | |||
f0a8c7d045 | |||
db8793777c | |||
c745484e65 | |||
da59379612 | |||
3ef2a41518 | |||
aa96f420c6 | |||
49e9e4ed0e | |||
f7b8163016 | |||
93769eacd3 | |||
59b0cc11df | |||
f32c275376 | |||
5404fc66ab | |||
1f53458af8 | |||
434c3e7f1d | |||
500b119f3d | |||
4b87259c1b | |||
503dec34ef | |||
d1e9fe50d2 | |||
d01e5fa838 | |||
a477c25e8c | |||
1bd20cd9e8 | |||
e49e95b037 | |||
6f59fed563 | |||
60b7f6c99d | |||
b92dfcc8d3 | |||
f6fd6dd053 | |||
79ad567dd5 | |||
fab1efb48c | |||
660eb76d93 | |||
461cd045c6 | |||
fee65d7a75 | |||
31f9971dbf | |||
62e7bf024a | |||
95f3d69cf9 | |||
89c0519f83 | |||
2704b82084 | |||
cf8632bbac | |||
d224297972 | |||
a4d11a630f | |||
2b4399f8b1 | |||
f17b8de907 | |||
d87296f3e8 | |||
be94cf1c6f | |||
cc04dc42dc | |||
070b61f08f | |||
7e5bd46dd3 | |||
228bbb9d81 | |||
b812a7b4c6 | |||
891a366f73 | |||
10116b3be8 | |||
a46a0f0882 | |||
a26a8a38f4 | |||
7435315d50 | |||
9b5f741e85 | |||
517822fdd2 | |||
1b93a9be88 | |||
783a66b348 | |||
976c3e9b59 | |||
f8ca971dae | |||
21bc8c24df | |||
30228214f7 | |||
2ae980ae43 | |||
6153dec2e4 | |||
c805f86343 | |||
04ca065281 | |||
88d8fa43d7 | |||
3c49762875 | |||
436bf1d9d3 | |||
f70df6e195 | |||
fce3852dff | |||
ee1b8bbdbd | |||
3f1636637d | |||
2e570f5300 | |||
9f89486df5 | |||
22b43b86cb | |||
3c9012676a | |||
ee3b3c4c56 | |||
462d706a63 | |||
ee0d460c8e | |||
cd15abe9d1 | |||
9f40467e24 | |||
d0b6593823 | |||
79fc821d8d | |||
d7fdb9a7e6 | |||
b74de51c18 | |||
b507fe209c | |||
6cd2d8fcd5 | |||
b02d022993 | |||
94581e3c7a | |||
88b52cc045 | |||
0a816b5509 | |||
1c8b807c2e | |||
44b466e072 | |||
5e5b471bb2 | |||
9c2565f64e | |||
e1d0a7cec3 | |||
b19ae8f465 | |||
cdff2c8e18 | |||
66391f84f2 | |||
97f7a9ecb3 | |||
15878f7613 | |||
e0d5e3c6c7 | |||
6f3455900e | |||
56827d6ad6 | |||
73c0b29535 | |||
303b83cdb8 | |||
5ef4da3f29 | |||
1502860004 | |||
585efc6f3f | |||
62055e04dd | |||
e4a641b64e | |||
8849f187f1 | |||
db420525b3 | |||
b5659d106e | |||
4b43307402 | |||
09af8c25a2 | |||
9514035b87 | |||
2da09ae99b | |||
a38fb0e04a | |||
7019916294 | |||
1514b4f137 | |||
91cf5ee312 | |||
0a6e2f42c5 | |||
ab2de131bd | |||
5bfa88be85 | |||
5af8da76d7 | |||
b8b9dc952d | |||
79a6ed32d8 | |||
caa5f97723 | |||
4924b3209e | |||
eb702f581b | |||
3d13fd56c5 | |||
6f51b49ef8 | |||
addc638856 | |||
00f24f8765 | |||
f5b3d582b0 | |||
981c93d67a | |||
c020b78e02 | |||
42ae36bc28 | |||
c69f73ff9f | |||
ca5ae8a2e6 | |||
d967eb53de | |||
839f9f1bbe | |||
b754a152c6 | |||
e07cb2b9de | |||
a1f8bbb078 | |||
7909683f3b | |||
25f71913b7 | |||
34ddd2b7b1 | |||
d5fd90b2f3 | |||
b7c7000d0d | |||
551f6c4edd | |||
defd814750 | |||
3d517bbd2a | |||
78ab955fec | |||
dd13937bb6 | |||
66a1b63aa9 | |||
22c611bd1a | |||
c9bb1bf8ea | |||
2a0d75bac2 | |||
9e489887cf | |||
9feb801bb9 | |||
c00b495933 | |||
d22eebe553 | |||
8bcbd82680 | |||
dfa617c439 | |||
48d1f0df89 | |||
b75cb7a12c | |||
332563e037 | |||
0cce97a4fe | |||
95a8e4be64 | |||
abcd6b8cb6 | |||
e8f21c9b6d | |||
f48298ad4e | |||
645e47c1ba | |||
d1d9827263 | |||
e054078b11 | |||
14643c0aab | |||
b77a9b8947 | |||
6835a7f208 | |||
f59993b979 | |||
2290b8f680 | |||
2c54be651c | |||
e859a199df | |||
0a3682ad0b | |||
59abaeb5cd | |||
3e448435d3 | |||
a294bc3c5b | |||
b302ad3d49 | |||
82fc4b1e94 | |||
b4f1740380 | |||
031f85247c | |||
639cc6f73a | |||
09946cf1ba | |||
f4fa95e7cb | |||
100e29e35e | |||
4cbe471a83 | |||
8bece1f861 | |||
a3ca71ec01 | |||
e0543e8af5 | |||
c1eb80d01a | |||
a26121d97b | |||
043031a757 | |||
807aeebe4c | |||
8aa1a37aad | |||
7d077fe493 | |||
9cd4128833 | |||
c8b17c9526 | |||
2ae2a81e85 | |||
69c869d345 | |||
df9b958c40 | |||
3d3376d1a3 | |||
4efa042f50 | |||
c7cb37e970 | |||
d34b207eab | |||
0e6fa6f6b8 | |||
38b87de53f | |||
aa5047a9e4 | |||
24b6ee0df9 | |||
1e79cc9cbe | |||
b3925df9c3 | |||
f2648e94b9 | |||
351795ac3a | |||
9c9c42d0df | |||
b6ad1bafc7 | |||
a5ca40f446 | |||
9ab54c5565 | |||
4341d96bde | |||
5fac47a26d | |||
e064f17346 | |||
afe10ba2a2 | |||
7cc3435ba8 | |||
541772313c | |||
3747494a09 | |||
f2b98d0dcc | |||
80471bf762 | |||
a06f63c110 | |||
0ae4478cd9 | |||
ae4e705e09 | |||
f5dcea9dbf | |||
21ed6ac0f4 | |||
7bb8ab7000 | |||
2c824c2641 | |||
391fd9cc6a | |||
2207309f8a | |||
51051df62c | |||
33097681b9 | |||
07e4900218 | |||
36ab567d67 | |||
e19171523b | |||
9626a2c7c0 | |||
e936f5b80b | |||
ffc0639cb9 | |||
c5b43b322c | |||
c9c4576237 | |||
bf4369f72d | |||
36600899e2 | |||
b9c70d156b | |||
eb89579fe7 | |||
0cfd13d18b | |||
e6ed516052 | |||
e2a3dae1f2 | |||
2111e7ab5f | |||
d29abfdcaf | |||
a751c42cc5 | |||
6a3bc9865e | |||
4d5f7e4377 | |||
78b117fb78 | |||
ded63a1319 | |||
df3e4d1e9c | |||
b58fd80379 | |||
7f6e0f57d0 | |||
cae27678d8 | |||
48ff655bad | |||
2525ad4623 | |||
e7020017c5 | |||
eacebfad74 | |||
3bc2da5321 | |||
2d710d6bfd | |||
6532b7f32b | |||
7b41b92d99 | |||
dd557af84b | |||
59b9d0e030 | |||
b82eee4733 | |||
6a87487544 | |||
fcf5023845 | |||
c8adad6d8b | |||
737d3ffb98 | |||
6d0c2de399 | |||
7786ea9921 | |||
d93eac7b1c | |||
b01e67bab1 | |||
8a70314f54 | |||
afc316f501 | |||
f14bfd5c1b | |||
c5f1420dea | |||
018e6da872 | |||
b77bccfac2 | |||
36ae6e5aba | |||
9db585cfeb | |||
c564611ba7 | |||
e187bcb85c | |||
be18ffe3b4 | |||
0d63dce4e2 | |||
26b30e1551 | |||
7fc58ac293 | |||
3a86cce8c1 | |||
80359e0d49 | |||
3d437c5cc4 | |||
37884d369f | |||
9246e653cd | |||
64283c8673 | |||
755002da9c | |||
31b8e8b437 | |||
0ec0de97e6 | |||
6c3ade5d89 | |||
980c5f9a34 | |||
63d9b8e8a3 | |||
d247031c98 | |||
471ca5f281 | |||
e82ddcff5d | |||
b9dcad89e8 | |||
993f43ef4a | |||
2b43308208 | |||
04a1ac3a76 | |||
990b8798bd | |||
b334a73a44 | |||
5d113d1c70 | |||
c14977aeab | |||
3e94838204 | |||
c0a0b8ca62 | |||
b8a7004365 | |||
affff3865f | |||
9c22655b5a | |||
99d879ea7f | |||
bd56c95a6f | |||
994512048e | |||
dbd8bb49dc | |||
3a29af0ce4 | |||
f7b79cdd45 | |||
075b9d22d0 | |||
b92428f05f | |||
34b11864b6 | |||
1dfaa08afb | |||
9d263d9a7d | |||
9015c229dc | |||
f44dce390f | |||
bb71e9a96a | |||
78bae9417c | |||
dd170ead01 | |||
014704856f | |||
a7eabaad56 | |||
eeb4703b84 | |||
a07421b3d3 | |||
cda53b4068 | |||
6f6844ccf1 | |||
4c6613d72c | |||
ee92e08edb | |||
c1dcee9328 | |||
559257bbe9 | |||
6b150961fe | |||
cff1f8d3b8 | |||
f27d2083cd | |||
36cc9c524f | |||
2822487450 | |||
e07fafe46a | |||
063d290bd8 | |||
4e6194d92a | |||
de30c4e22a | |||
df99f227c1 | |||
5bafcaedfa | |||
bfeceae708 | |||
eacb66591f | |||
fadaa85626 | |||
02a5b0d786 | |||
0e2141442a | |||
769eb0eecb | |||
4241c7d4a3 | |||
d536c67b9d | |||
f44f005dad | |||
26b2caf570 | |||
7b11075102 | |||
abc658dca5 | |||
8bb078db25 | |||
b61ba40023 | |||
452bf2e907 | |||
2372275b2c | |||
ef736e8aa4 | |||
5e539e2d54 | |||
96773f5254 | |||
d80df09f3b | |||
621e612c30 | |||
8c3792721b | |||
c95bbd3948 | |||
e28ab7a732 | |||
c797cbe737 | |||
e09dfbf1c2 | |||
85e35c4da1 | |||
d72e914cf0 | |||
3b5254e2d5 | |||
f1c358b596 | |||
c0ef210265 | |||
e3e1cc1962 | |||
723eadbb5c | |||
e24637ec1e | |||
8b01ff4ce7 | |||
588197c487 | |||
116d90b0ee | |||
b0646ca187 | |||
1352bad2e4 | |||
14d352ea4f | |||
1cf9ec1cce | |||
4895ff260e | |||
4b994a1bc7 | |||
e506d6d369 | |||
ab56ad8d7a | |||
470d93006a | |||
2f3d03f188 | |||
8db7c23bee | |||
69dc5172dc | |||
fd72eb6546 | |||
ffd7301649 | |||
d2a8494044 | |||
0982e0d19b | |||
3badbfc3c1 | |||
5465961e30 | |||
477b794bc5 | |||
e8c29e2fe5 | |||
4835fd1a87 | |||
6533c25814 | |||
b405767569 | |||
fe88a0c12f | |||
e61a9ed2b4 | |||
de8daa3824 | |||
3a50fb29cb | |||
6647d2656f | |||
a6f4dbeb6d | |||
92a282f2d8 | |||
ca2fd9fc7b | |||
3825329f8e | |||
be1a4f5860 | |||
1b2914ec09 | |||
519f795066 | |||
5897b93dd4 | |||
af091e0881 | |||
3c1e5e9517 | |||
85b2cb7a8a | |||
c7bdf2c0e4 | |||
4240ad5ca8 | |||
d418347d86 | |||
29a4bfe5e5 | |||
9955bf9daf | |||
da9cbfc7cc | |||
6b9f07c1ed | |||
b8bdc2eefb | |||
0078826ff1 | |||
e855c41772 | |||
d169c275b6 | |||
a5125e23f4 | |||
7b83c80757 | |||
e41821e206 | |||
bf91778550 | |||
5a75ab15a2 | |||
932c783fbf | |||
55f9cce577 | |||
b3533ca847 | |||
fd2a637010 | |||
eee27b8b30 | |||
8522352aa3 | |||
3beb8f4091 | |||
12a706e9b1 | |||
170aa7df01 | |||
e8ad1fef53 | |||
876c8f4478 | |||
9c8750f261 | |||
91efd08179 | |||
9953511b65 | |||
025fa9991a | |||
e8c60c355b | |||
6c9c7f9d85 | |||
f534523ede | |||
1b8a834beb | |||
aa9df63a05 | |||
3953312a93 | |||
6e62f4f616 | |||
6a7bdca53b | |||
c7fba9aace | |||
ac6c7cb8d6 | |||
c5924833a1 | |||
ac0a74be0d | |||
42b0e1125d | |||
339c4fda79 | |||
9b85bf9402 | |||
86b02c3cd8 | |||
7b3b7093fa | |||
881b08a465 | |||
3ee5444c69 | |||
5e28fe56d2 | |||
3aa43e6065 | |||
78ac4044ff | |||
119c3db47f | |||
21bbdb8fc2 | |||
5aabe074fe | |||
739bd7572c | |||
074627a5bd | |||
6a23b2c599 | |||
dace904c10 | |||
be98d26610 | |||
bd891fb3f5 | |||
3984265851 | |||
45361d188f | |||
80c9d77e02 | |||
3aff64dddb | |||
b4f2ca81ff | |||
d1dea5f840 | |||
54f8b84d16 | |||
da503fef0e | |||
4a6802098a | |||
f9b41a84d2 | |||
5d7e0d18b9 | |||
9e64387933 | |||
983b681d46 | |||
4072408b6f | |||
bd76b47fbf | |||
5f75735dab | |||
178376f24b | |||
18ce23aa75 | |||
6a0eb466ee | |||
ffa7fe0cc2 | |||
6b979f0a69 | |||
4ea29b8f0f | |||
778291230a | |||
86dac5ff4f | |||
4a382fad3f | |||
cc753670d9 | |||
cc9d88ea1c | |||
b281b0166e | |||
6a21f694ff | |||
fc4db5e963 | |||
6252ffaf76 | |||
026e736dfa | |||
4275b3f431 | |||
af64c1c6b6 | |||
866f48391a | |||
a4df527d74 | |||
5764d21161 | |||
496d04cd85 | |||
10e6d7c6ce | |||
c42e25e5b8 | |||
a00ae981e0 | |||
58e020b62a | |||
a7e1aceeca | |||
7212432f43 | |||
4a261fab30 | |||
6af97069b9 | |||
5068413cdb | |||
71c6960eea | |||
ddf6d5c9e3 | |||
39214702f6 | |||
3e4614c63a | |||
900e01f49b | |||
2376156fbc | |||
3f2fd49db4 | |||
0efa107cb6 | |||
8feedb4f6f | |||
05e562e3d7 | |||
dd3bbb8fa2 | |||
2fbcf13c46 | |||
4ea48ef0c4 | |||
5c85774ee3 | |||
d8a9a745d8 | |||
dcf172da3b | |||
d57ed25071 | |||
546be724e7 | |||
8a1b9073f9 | |||
1a7114d4b9 | |||
3f385f717c | |||
481bbaf1fc | |||
281488611a | |||
c180a52518 | |||
90130e25e9 | |||
23298acb81 | |||
52384e34cf | |||
d0bb033ea2 | |||
c6621806ca | |||
0b6f0f6d2f | |||
b5b759df73 | |||
7db8dd7a95 | |||
8b43be39c0 | |||
f17f879206 | |||
68428fceab | |||
4135f2dcd1 | |||
c5bdf61215 | |||
88e218e8ee | |||
0f2b786436 | |||
e1c326558a | |||
bae0f8ea99 | |||
bbbcd36ae5 | |||
39c0815d9e | |||
1b8176e2c0 | |||
cbc053c3db | |||
cdf3f6ef6e | |||
ba7f9d7b70 | |||
a997d24743 | |||
861e5d7f4c | |||
14cc142a14 | |||
f36b87deb5 | |||
eeb6e0a6e3 | |||
cad5b187dd | |||
87697eb07e | |||
371fd123fb | |||
d6ff644aab | |||
29586f6b5e | |||
fd057c838f | |||
f51222086c | |||
a3e935c902 | |||
7731c7db8e | |||
ff97340324 | |||
83d86943db | |||
e82cf1d311 | |||
1db58a8acc | |||
920a51438d | |||
be528b6d27 | |||
f73691ec47 | |||
ccd21f96ff | |||
4b90cb8888 | |||
7ebda3e9ec | |||
b10e1b7bc8 | |||
796abfad80 | |||
ad0270ac8c | |||
7d62f1d6d2 | |||
458c943987 | |||
88015b0858 | |||
4ca1bf7cca | |||
2ff868f7a5 | |||
ede02b6883 | |||
1822ced302 | |||
37ba32776f | |||
99b3697b03 | |||
43a45ec97b | |||
b00a4142e5 | |||
3791bc527b | |||
d7dea44ce7 | |||
d8c29f5fcf | |||
37b6b82869 | |||
92ad5b8f74 | |||
281f8101fe | |||
472ed2dd5c | |||
4f85672674 | |||
dc747c54be | |||
140684d706 | |||
5bb7ba92fa | |||
b54d0f3c73 | |||
ff6777a98d | |||
07acfe89f2 | |||
40234f531f | |||
d49694f38f | |||
8c80f1c168 | |||
dc6a38f177 | |||
82c1ecf60f | |||
67f569354e | |||
97a098636d | |||
e13930c8b2 | |||
0af7d5a793 | |||
505fa49983 | |||
7bcf33def9 | |||
a13820656a | |||
fa71b46a41 | |||
b8b3ae6ac1 | |||
55c008da21 | |||
2507606bd0 | |||
7c2ad4f8c8 | |||
54c8025aad | |||
921e23e83c | |||
6e750ecb0e | |||
b8f1f5d2a3 | |||
9273f2937c | |||
1aa28b47ae | |||
629cb2987a | |||
03235d6368 | |||
22064c7e4c | |||
5fa573dfd3 | |||
f6402cb6c4 | |||
bae6c263dc | |||
d71672dca9 | |||
121c9e2ceb | |||
63a30ae34f | |||
7d8231ba32 | |||
b690b1cbe9 | |||
c0fb20fc03 | |||
bc9579dac6 | |||
a5c77f8b95 | |||
2de03e5172 | |||
3af4929dda | |||
1ba429345b | |||
3dbfce5223 | |||
e51eaedc56 | |||
e2a938e7f7 | |||
ddad25211b | |||
6209120de9 | |||
fe6e8f5ac6 | |||
ee84dcb400 | |||
0ae0e5f436 | |||
e047616571 | |||
1af7572c61 | |||
653039695b | |||
ca62abd203 | |||
e74666a09c | |||
45a001e078 | |||
0352da34f0 | |||
7d302a525d | |||
e2e269e03b | |||
0db4f1803f | |||
5fe480d81c | |||
0566fc6267 | |||
a11c12e2e7 | |||
0655dab466 | |||
7f097bcc28 | |||
5c75aa5008 | |||
1873101362 | |||
63fd1dfa62 | |||
bd68861b28 | |||
82e959f66c | |||
006268f556 | |||
78acae9b50 | |||
a3927a8a27 | |||
d9dd9a5b5f | |||
eae1c02111 | |||
132d841b05 | |||
62e52de06d | |||
184adeedb8 | |||
5fa6a8b96d | |||
a2a879b668 | |||
9317d893b2 | |||
86075fdd45 | |||
b36442e263 | |||
513d797ea6 | |||
9e4835a3e3 | |||
2e8c3b0ddb | |||
991667ba5e | |||
8a07b52009 | |||
2bcff94b52 | |||
d089739e2f | |||
204c283e16 | |||
551a5f8dc8 | |||
c82b164f6b | |||
584a3ee45c | |||
eec0c9eb7d | |||
477ebf24f4 | |||
0d5639f707 | |||
413312f9a9 | |||
03508448f8 | |||
e1e5c75023 | |||
9296299b61 | |||
66d001ec9e | |||
fad2f969d9 | |||
48165c1dc1 | |||
25df2d2c3b | |||
af9ecb8b41 | |||
234324599e | |||
97448a93dc | |||
70c83ec3be | |||
8f4e2ee545 | |||
e8bfbf2f7c | |||
9e81b42981 | |||
6c9eef9726 | |||
7ffbc3e98e | |||
68e4d833dd | |||
a2cefaa53a | |||
a0d682687e | |||
eb552c3ecd | |||
97cce103d7 | |||
87ac7104f8 | |||
e4c117aabf | |||
5b128a6f9f | |||
19da647e3c | |||
1713de35c0 | |||
1177b8f661 | |||
442bfb3d42 | |||
e7d9b75fdd | |||
3d0e3ec363 | |||
3c1c51f9aa | |||
8cc3c522c3 | |||
913fbca74a | |||
5c87342108 | |||
66177bfbe2 | |||
5205e68963 | |||
cd5cf6d614 | |||
5abb19eab0 | |||
06d7b88c78 | |||
cf72799735 | |||
cdb8fcc269 | |||
b4f4130901 | |||
bb049847d5 | |||
fd33c835dd | |||
21371a7e5b | |||
abfaa00d3e | |||
efee33c55d | |||
db0fe6ddbb | |||
8a9e647120 | |||
e6dcb821ad | |||
9bff188f02 | |||
111b30ca1d | |||
24182ca8bf | |||
ee2d7369b3 | |||
7c686d29c9 | |||
e8a0a1e75d | |||
730be89abf | |||
f991ad7d5c | |||
b3f33f82f7 | |||
a34a6e059f | |||
1333319941 | |||
9295ed8d20 | |||
19cc7653fb | |||
5752538661 | |||
ca40a1b00b | |||
659fac9dfb | |||
4dc3d6fce0 | |||
60dfb49afa | |||
554c238359 | |||
f922adf05e | |||
95b640cb6b | |||
2cb5bedc15 | |||
806b02bddf | |||
de40395773 | |||
7ba4788715 | |||
06d9ce1a02 | |||
75bb6b2b40 | |||
74f10c2dc0 | |||
188d2c7a4d | |||
17d7177105 | |||
bb0a0da47a | |||
84110166e4 | |||
d32b923b6c | |||
a93d5459d4 | |||
9c21add0c6 | |||
639aab6563 | |||
8137cc7049 | |||
60e63dca1d | |||
486409574e | |||
a913b8be12 | |||
2239751850 | |||
9b20f1449c | |||
b99453083d | |||
2ab1af5754 | |||
5f8892bf03 | |||
f14e7e51e7 | |||
943fbb914d | |||
ca4603580d | |||
f73db8f1f3 | |||
f7217d12d2 | |||
fab50c57d9 | |||
3440534fbf | |||
177b1a7ec6 | |||
58182fe345 | |||
1f907d330d | |||
b0fe664e9d | |||
c0f8482402 | |||
3544965f54 | |||
33e4a0caee | |||
1f903d9296 | |||
4df1e0987f | |||
588c2f3cb1 | |||
bd99fd608c | |||
57b442d0de | |||
751a4562d7 | |||
ca66301dee | |||
808bb59206 | |||
4b7f51d19d | |||
d03152fac4 | |||
137f190258 | |||
53d01312b3 | |||
220050822a | |||
87ad76d81b | |||
042ab1a052 | |||
4ac1094856 | |||
d44a57b0af | |||
dc000d10ee | |||
3685f391cf | |||
efd7338a00 | |||
e1e7b1e224 | |||
7319d4e1ad | |||
fd933420c6 | |||
8208a6214f | |||
3d8146b596 | |||
31efa5c4da | |||
d10d30dda8 | |||
0e9666bc92 | |||
6efd80f104 | |||
fdef7a1a8c | |||
501bb117bf | |||
05ca7dc252 | |||
e9648a1635 | |||
2df98a99bc | |||
315ea18be2 | |||
9a9f4a111f | |||
1ad54d049d | |||
57bd0a0a22 | |||
b49db84b08 | |||
583f7c52f3 | |||
58a86c9164 | |||
a25b32847f | |||
6f1a2e132b | |||
b1ede7b46d | |||
e762c940c2 | |||
6a1a198144 | |||
34faa39f4f | |||
5ddea3829d | |||
7eb29cf529 | |||
f729b9b889 | |||
4f997c5f04 | |||
a9c2e1df03 | |||
d3496d2fe0 | |||
60f4cb0ffd | |||
136d843ce7 | |||
18028f4309 | |||
5164016740 | |||
d83beaa890 | |||
f9f05e995b | |||
e651b9e7ab | |||
47b4e91473 | |||
3f31afa4fc | |||
da4daea57a | |||
af3b065add | |||
e346154c5d | |||
7937ac2bab | |||
e909aeedf0 | |||
bab8aa8eb0 | |||
38b22f05be | |||
3ca0de1c40 | |||
c7205d2a73 | |||
617c5362c1 | |||
083b58e66d | |||
633427a2df | |||
2031d6910a | |||
f82ce67624 | |||
b52e8ef65a | |||
2594e3c230 | |||
8cedb45af2 | |||
aa008cbe99 | |||
79e34b3eb4 | |||
4f3d581ab4 | |||
6fb6ca5b6b | |||
b8ee19691c | |||
d16427b837 | |||
4b1997e2f3 | |||
8939d5dc73 | |||
b051e00de0 | |||
8aa75b492f | |||
0274f40686 | |||
77aa147ce5 | |||
32facbd02a | |||
6121397587 | |||
4de50ab146 | |||
8b12a61097 | |||
79ea027c0b | |||
62339d437f | |||
698e745276 | |||
0417b96896 | |||
9a6e2c315d | |||
e61fed87db | |||
81fe4c937e | |||
f77f3a6598 | |||
239afb18fb | |||
ef820a26cd | |||
65abe4d0d3 | |||
5012adfebf | |||
b808d48fa1 | |||
83f818a99d | |||
b8bc560b51 | |||
6bc2483d57 | |||
82aecbf4cf | |||
ee23a76aa0 | |||
d7191e5a02 | |||
c8a824425b | |||
f23626a6b8 | |||
6577a03d16 | |||
427c8695fe | |||
9e82c468ab | |||
603fd96747 | |||
fe993c0836 | |||
cdf31d52c1 | |||
0542eaf1da | |||
317bdcf158 | |||
387397374a | |||
9ca2c98882 | |||
605cf401e1 | |||
f99c3660d2 | |||
92a83a9eb3 | |||
53ae01a34a | |||
b615fa0f35 | |||
76c294a7ba | |||
0c0c2b1e20 | |||
e2fc3a0f04 | |||
451e7972fd | |||
56c089d347 | |||
acf740e44d | |||
182f513404 | |||
d5b2323a57 | |||
bad18d4417 | |||
bb5c16b97f | |||
0d80eeb545 | |||
d1decee4cc | |||
d4ae71b880 | |||
b0f4eee78b | |||
5340e50427 | |||
e16fc5b2e4 | |||
694306f202 | |||
9aac1e6d64 | |||
3e882f555d | |||
438caab25f | |||
239e2c1ee6 | |||
013dc2ef33 | |||
9616811c3d | |||
8a3002c03b | |||
0f1c5b08a1 | |||
70988e43d2 | |||
71034f828e | |||
aab3bcb46f | |||
11437930c5 | |||
3d44aa9cb9 | |||
2851870d70 | |||
da06d15f73 | |||
e8b1251b8c | |||
63dbaeefaa | |||
e8c187b323 | |||
fad5a74a4b | |||
e83f6a6ae9 | |||
0c1618197f | |||
f49d5c2d22 | |||
a3b022d469 | |||
48772f0976 | |||
c322420580 | |||
6283d11d50 | |||
86f4e17928 | |||
6616d5d090 | |||
215df671be | |||
1b6b12589f | |||
3082ab8252 | |||
add86cd7f4 | |||
0b6fd20c54 | |||
e83423fee6 | |||
b4f8e87982 | |||
135808dcfa | |||
7f7d06d963 | |||
2bf3b4d576 | |||
0bd83cdbda | |||
f34d34bd17 | |||
e32d5141b4 | |||
6d5277f2d7 | |||
14d82777e0 | |||
2a4e739513 | |||
8079dc2a14 | |||
6ceb556684 | |||
76cde73705 | |||
cc094366a9 | |||
41a575ff9b | |||
12ef413065 | |||
829a328451 | |||
402523c62e | |||
d7bef70b5c | |||
2ad1811642 | |||
88bdd4344b | |||
a65a497bae | |||
b27b12828e | |||
42d56ea6b6 | |||
0b905a72dd | |||
fe9edf8526 | |||
44204c7e06 | |||
33b3789598 | |||
195ab2888d | |||
85f750d753 | |||
a4ce6e42c7 | |||
5398b7e7e3 | |||
fd13a3f2be | |||
c144b32368 | |||
4044536eea | |||
4d8ae6221c | |||
ba7e371b90 | |||
99e7a5d18a | |||
f824d99059 | |||
749b8022a4 | |||
7e0057d2c4 | |||
cfe9e870d3 | |||
e9c4f06cbf | |||
1f9688417a | |||
4e31e4e094 | |||
0d6674e489 | |||
b145fd4f5b | |||
8a5b794f25 | |||
291e80f88a | |||
1ace5850ae | |||
283f14b7c1 | |||
1d6e708083 | |||
89457e25e3 | |||
7e3b298d3d | |||
7ff3e5eed4 | |||
19eb51cf41 | |||
470d4dcc6d | |||
ed03bfd555 | |||
8c0fbcccae | |||
d4866157fe | |||
16c2a99965 | |||
b6496b6cb5 | |||
4f5fe57920 | |||
11fb943b1e | |||
cda915a345 | |||
7c16189e16 | |||
ecbfccea43 | |||
a8eda8f6da | |||
9b1a0653cf | |||
7cb1ff7395 | |||
ab6ea29913 | |||
b5c81a02b6 | |||
d899ee80fc | |||
4016e705fc | |||
2f4e85e5d6 | |||
8ed0b57b09 | |||
046a23121e | |||
a976fa6746 | |||
6c66b8d997 | |||
9523ad3d73 | |||
73a95fa96f | |||
7e130076d6 | |||
6efdad6f21 | |||
a822c48565 | |||
014fb76e88 | |||
30e5311b43 | |||
67e08aa952 | |||
ed1f20f3a1 | |||
cffc736bb3 | |||
c0d56a1c04 | |||
3206f69478 | |||
b2ccaad761 | |||
8eb1232683 | |||
c6ce3ad03b | |||
b3b033d343 | |||
ca9816bfbb | |||
814d5abc7e | |||
a29122e2bf | |||
e188c0512e | |||
1fb6aaf150 | |||
894654f7ef | |||
109507888b | |||
68650b61fe | |||
7ee66bf453 | |||
8bd70ad8b5 | |||
af98525766 | |||
1c2f218519 | |||
c9aa1f507c | |||
ea7126496d | |||
f660dc67e4 | |||
ede8faea74 | |||
1b750761c2 | |||
145acf2919 | |||
cc4a27b9e6 | |||
b4690e6091 | |||
4b24800132 | |||
9d2238148c | |||
c15493218d | |||
001a556a34 | |||
3d0f88e702 | |||
dd091d0960 | |||
e2abbf9520 | |||
c7baeb5bae | |||
402d80e197 | |||
86e33c8ab2 | |||
5dae6a6dac | |||
361bb8a101 | |||
7efdb3cd2b | |||
65ef4ec29f | |||
d5835c0222 | |||
a7b943b33e | |||
7440cde92f | |||
0fc662bb24 | |||
8195890640 | |||
4c88104a73 | |||
73b944c152 | |||
d1b0b7f5c6 | |||
381d8797d0 | |||
11ee8a1061 | |||
b06526bc1e | |||
3044419111 | |||
bcfa9cf068 | |||
114920b8de | |||
0d588b95f4 | |||
5b3c530aa7 | |||
c6a5499c8b | |||
ec9c3fe77a | |||
6135ad530e | |||
40098424c7 | |||
7163b31a26 | |||
ffbdd91e0e | |||
5d29e175d8 | |||
417dbfa257 | |||
1eda4d8e0b | |||
50181f16e5 | |||
75030637cc | |||
fe5aaf7677 | |||
80ac2a73ca | |||
770680669d | |||
0cdfc5cf22 | |||
d75a66a3e6 | |||
fcc4374d7b | |||
67c3c16fe5 | |||
25e9be50b5 | |||
428b8ba907 | |||
323cf6c038 | |||
29a22ae603 | |||
403bff1a47 | |||
c50f27e68b | |||
80afacec5b | |||
6cd9224dd7 | |||
4bf8196ff1 | |||
4c5440fb06 | |||
a269a3d919 | |||
0c4f585496 | |||
33d2df46a0 | |||
2df308f649 | |||
92def28bd3 | |||
ca10bfa1c7 | |||
298a6ec51e | |||
e5dbe488a6 | |||
0e27e3847d | |||
393727b93b | |||
2b1fcd78c3 | |||
0a4e0b49a0 | |||
76af169f05 | |||
7b89232251 | |||
b5aeae526f | |||
ef0ddd5d04 | |||
9b73dacf50 | |||
244b4aa07f | |||
8cfc7342cd | |||
15ae317858 | |||
834f536b5f | |||
c332d9f08b | |||
cf2923d5dd | |||
0e4413ddde | |||
009ccd581e | |||
8cd4263974 | |||
d45c868656 | |||
955a8113de | |||
dbe210dd53 | |||
54c6b1376d | |||
86e11743ca | |||
f3f11b586f | |||
8083e3f7e8 | |||
980e721f6e | |||
364793154b | |||
3e2ae1e9af | |||
d38ae2fd18 | |||
030e7754e4 | |||
e2a0142d87 | |||
895244ecc3 | |||
addeb621a7 | |||
3b7fce1e76 | |||
4d15417f93 | |||
ab3c855f65 | |||
92e2c517d8 | |||
a7fb25adf6 | |||
e947992957 | |||
bb89a82a07 | |||
2bb374daea | |||
8bdadbadac | |||
15c50a7442 | |||
49b0af2c95 | |||
9c2b37218a | |||
3c67d626ba | |||
51f506553c | |||
226be84937 | |||
001814b442 | |||
db3ac67506 | |||
da91a884ef | |||
a71e6755e3 | |||
cd5891eecd | |||
5bb7336f27 | |||
ce1fc1f48a | |||
82402c6a7c | |||
d9c4afe5b7 | |||
f786ff8d69 | |||
a651caed5f | |||
0e21adb3f6 | |||
58bf9b9e6d | |||
2146eebb65 | |||
6a429ee6d3 | |||
4d1ea15c79 | |||
a76cb005e0 | |||
49ecbc81d4 | |||
9e5fb52eb9 | |||
a9604367c1 | |||
d7065023cc | |||
89d299ceec | |||
e34eda66df | |||
b24181aa4f | |||
aa173e2998 | |||
7a19432e0b | |||
9b15704290 | |||
017f955b2d | |||
f252d69eef | |||
3b06e4655e | |||
d4b4de8f42 | |||
c90beee774 | |||
1eea9d73b9 | |||
679d1d22f7 | |||
b2b5e0b98c | |||
03e54722c1 | |||
442336bd96 | |||
9c9566b9c9 | |||
1059a81a3c | |||
2e61556389 | |||
f9b1f240f6 | |||
69f41469dd | |||
d620b303ff | |||
157fd1428d | |||
c791cb2214 | |||
d5ab571a89 | |||
0ed800f6e4 | |||
0a32183825 | |||
2cacfbde2a | |||
c073e62e0b | |||
e3d019bc2f | |||
7ae030f585 | |||
86b58d5aff | |||
26e8b9f4a5 | |||
35114c9e62 | |||
dfd28a85c9 | |||
a503332924 | |||
1ac13ec3a7 | |||
55de69a569 | |||
eda9ab487b | |||
cd99edcc5f | |||
4705aa541d | |||
3215d88a91 | |||
9b9a53f870 | |||
019ffe17d4 | |||
bc496dd844 | |||
a673b6a54d | |||
1bf2e4d187 | |||
96dd7a8fbd | |||
7905afa9f5 | |||
712bb40650 | |||
81d88d9f4d | |||
77063418da | |||
2983b6fdf6 | |||
69f1f04f74 | |||
11a5fd09d6 | |||
ff1fa98808 | |||
df16202865 | |||
3ff7c2c02a | |||
fc6d07897f | |||
f9c8e5c8ef | |||
8bfa0e74f8 | |||
9b73a937e7 | |||
b0339bc5a4 | |||
3c23a947cc | |||
56111bb823 | |||
99445673f6 | |||
97a59643f7 | |||
579595f547 | |||
281ac5fc12 | |||
d8fa903b02 | |||
eaff0f3aeb | |||
e8e20c01b2 | |||
a4afc3ea2a | |||
fa12b9a329 | |||
45fc7ded3a | |||
74de2d9742 | |||
e759367d42 | |||
299d0de066 | |||
3fe75bc7cb | |||
45d49d8648 | |||
6013183361 | |||
4b882e8056 | |||
3f9ae6e7e7 | |||
909acd55cd | |||
4dd9e39e0d | |||
b4c1317ab4 | |||
f36d6f3923 | |||
7adb253e25 | |||
808f1e0e8c | |||
873519e960 | |||
9aec4a3c26 | |||
c438118fd7 | |||
70510d151b | |||
9e7bacb5a4 | |||
2ef1fa66a8 | |||
cf76741ec6 | |||
497e7c1c40 | |||
888eacd3b8 | |||
321f0f51b5 | |||
17ec9c5545 | |||
30ad9578a2 | |||
9dce101586 | |||
97e264d0ff | |||
683a5e5bf5 | |||
d4861a362c | |||
5ff3eae027 | |||
147dc15d26 | |||
c61ea72949 | |||
86e8b9fe38 | |||
612e468889 | |||
4ea8d128c2 | |||
e49b7f2f88 | |||
aace3d47b9 | |||
d5049949a4 | |||
f1c7480e3c | |||
5adae5d6ff | |||
a8412ace05 | |||
9fd1c2ad4b | |||
4cf3575353 | |||
804a810d68 | |||
8fcb392e24 | |||
dd8d70eeff | |||
aa8aba6543 | |||
13df14f96e | |||
3aab983760 | |||
9c4dcc5ea3 | |||
a1063ddbb9 | |||
18ef8056ec | |||
1c673977fa | |||
e9bc748828 | |||
f48156529b | |||
d05ce01809 | |||
cf23eff60e | |||
6e313575be | |||
b13d1f7238 | |||
b5e7945dd9 | |||
7535566f54 | |||
50b808ab33 | |||
f16c2665f5 | |||
41e28015ae | |||
3594ce877b | |||
9bae6b889a | |||
4014dfd5b9 | |||
67023c334b | |||
a3de7026c8 | |||
ee11678b1f | |||
a0ccbb3bd6 | |||
5eeabaa2bb | |||
00d0d6d008 | |||
537a9f7030 | |||
cc9c993f74 | |||
d10422ded8 | |||
f313565a3c | |||
b3881d2636 | |||
61d5860b46 | |||
52d17987dc | |||
19d8bba97d | |||
463d72d322 | |||
d060341168 | |||
c772bcd514 | |||
3362f8dfa0 | |||
bf3c9857e0 | |||
a88b3ceca5 | |||
aa135412f5 | |||
9945399e60 | |||
5eeffa49e8 | |||
3f06209720 | |||
12e239dd9f | |||
af2301afbb | |||
f98856a26f | |||
d55cc5b380 | |||
c2b688abc9 | |||
b0d61b9687 | |||
5f893bf9af | |||
0e17bd6597 | |||
22caa158cc | |||
b24a504d7c | |||
992ef6e9fc | |||
f32a320bc3 | |||
5f0fe029d2 | |||
6b1486e89b | |||
3f9c427a3a | |||
d201277652 | |||
fdda7cf9cf | |||
e22d30f715 | |||
1ba25a0d8c | |||
9ba3647bdf | |||
5ee832f738 | |||
467deee46f | |||
35a69a5133 | |||
e9c5a271a8 | |||
acac2d6938 | |||
97db2b8d20 | |||
80fd6ab407 | |||
5534921bee | |||
ace9cd64bb | |||
a3e2aeb603 | |||
049dd25785 | |||
d43d372294 | |||
b71a081cba | |||
c48909590b | |||
446ef40570 | |||
81441e98f4 | |||
ecd3f890f5 | |||
1c881ce23c | |||
dacbbdd051 | |||
2859955a03 | |||
cc220abd1d | |||
d1c0c0197e | |||
fd9424ef27 | |||
a5c35c4024 | |||
e03b64dc06 | |||
4677c40195 | |||
288c615782 | |||
48e81cf6f8 | |||
5cffa05c7e | |||
d50a2164d7 | |||
32ff766dbd | |||
01652d8cfe | |||
4d2dc7ba03 | |||
51d1beb1f3 | |||
65b724bb5f | |||
6dbd117aa5 | |||
198b29f618 | |||
a8309638d4 | |||
f98a4e880e | |||
8244caff25 | |||
bcd7895362 | |||
85b1c5df39 | |||
b4255140d6 | |||
0c3095e173 | |||
d3ce60713d | |||
eac1f08b7b | |||
1654c4f3c0 | |||
8807d998bc | |||
5791021dcd | |||
c273fb051c | |||
c545530170 | |||
d982a5b6d5 | |||
15ca8637f3 | |||
cbc995b74c | |||
8b74174d74 | |||
e21fef17df | |||
3d27708f07 | |||
b918744184 | |||
7d14a3c086 | |||
e14a84317d | |||
6c31b99f1f | |||
9522dcd611 | |||
ed469898dc | |||
1eee94a809 | |||
54523369a3 | |||
a98c91c2a5 | |||
a9b92867a8 | |||
65920faeba | |||
249e2db87d | |||
cf3535d16e | |||
d61ee817f4 | |||
3448b7387c | |||
47b89d2739 | |||
2a75516330 | |||
b2087f14c4 | |||
dd1ba266b2 | |||
1292d59563 | |||
9877ed9bf8 | |||
f0dc0f3621 | |||
1efe30d6cc | |||
0b787e9fe0 | |||
37ec4b241c | |||
63b0a19f37 | |||
90ea7dfa99 | |||
f866d7c33e | |||
542bdef198 | |||
06007db3d9 | |||
12e6059a70 | |||
dbaa24ebf6 | |||
3276aa67dc | |||
3b30b9f0c0 | |||
69db4816f7 | |||
3abe09025a | |||
e33878e0de | |||
27b4fbf3f0 | |||
968a90633a | |||
6365a89ba3 | |||
ddbb008694 | |||
7997e0a449 | |||
197612bc7a | |||
0e88bf4bff | |||
3e64d78469 | |||
2004611def | |||
a2868c96a4 | |||
7cf7f11e1a | |||
ea7f8fda5e | |||
906b78811b | |||
97703b181b | |||
d9474c6cb6 | |||
bbd145382b | |||
1b08cb7300 | |||
337d9dc043 | |||
8726e94ea7 | |||
67db4993c2 | |||
f1f655d92b | |||
43334e88c3 | |||
4f1e66b044 | |||
fd3c8b0e85 | |||
1635c263ee | |||
64fe5b21b4 | |||
ee9889821d | |||
eb470aa6dc | |||
77af9a3ddc | |||
102089798c | |||
39cea8b5a7 | |||
a65f66d2db | |||
936c5ecf69 | |||
22cfbdbbb3 | |||
093d1ee21b | |||
d6ba2581ce | |||
577c064184 | |||
2ff1fa6fad | |||
70be1bd8be | |||
4ef50ba31f | |||
3e97a26f90 | |||
599f28f6ef | |||
c48da35921 | |||
6c5fa8dcd8 | |||
0d2f913a1a | |||
5b117865b2 | |||
1a74816c25 | |||
73de335256 | |||
228fd450ce | |||
b949cf6b12 | |||
11bc1aeadc | |||
66005929af | |||
05bbc49a99 | |||
ff7c847735 | |||
1aa988b2af | |||
edf17708a8 | |||
81a8209749 | |||
a87e45ba25 | |||
465856331a | |||
cc958aa9ed | |||
f46f029dbb | |||
3dccd7aa2c | |||
a25e4b3d0c | |||
d1210ca12a | |||
36ea0e222a | |||
65e6e7da6f | |||
b5e87e8d97 | |||
5f5807d60a | |||
92281ec22d | |||
87266ce099 | |||
2a23f133e8 | |||
8dbf790f62 | |||
2402b4940e | |||
2111052fbe | |||
7974acff54 | |||
f0d17d2b49 | |||
244c003a1b | |||
0174f5f742 | |||
32b2b59be4 | |||
86bb0cc24b | |||
84c19587e7 | |||
237ce92540 | |||
a7ffc61e82 | |||
fd97f64612 | |||
8720aecb80 | |||
cdf0a04fc5 | |||
616d3dd737 | |||
8b066baca8 | |||
e97f3688db | |||
433766ac62 | |||
93a37c8f68 | |||
89a1e78390 | |||
ffbb3fc02c | |||
5a73ef3647 | |||
87e5d2f4b7 | |||
d720f10758 | |||
14fcd0912a | |||
3111c0bd4f | |||
e03064490e | |||
1a4c8c3387 | |||
2b1e259441 | |||
f39c2a240b | |||
0d95805cde | |||
f67830587f | |||
6bf7f839ff | |||
e3147881a9 | |||
9872c76825 | |||
fb559614ad | |||
e93e12b6a4 | |||
0c3112cd94 | |||
8cfd5d2639 | |||
1c9f20b15e | |||
32237895bd | |||
5ee3ea2144 | |||
c5c2dbc0ce | |||
9fcb47ee63 | |||
5050833b42 | |||
7bee4ebb54 | |||
71cf9851e7 | |||
b4735c9904 | |||
9b2699226c | |||
5f52804907 | |||
936071773e | |||
1732f9319e | |||
91c81cab30 | |||
38164f8480 | |||
f013979791 | |||
e947b563ea | |||
5cb3530c34 | |||
250008372f | |||
1d252d0922 | |||
006cc8a8f1 | |||
4fedd8d29f | |||
cf2938688a | |||
ee63721bad | |||
22c5168d70 | |||
949ac3cd24 | |||
7bc0166c1c | |||
cb0d1b3399 | |||
d1f1ccc705 | |||
c7519a237a | |||
32be2b13d3 | |||
92b342a477 | |||
556da86ac3 | |||
8285e41574 | |||
f999408e92 | |||
a7abda89e2 | |||
7860a50f70 | |||
6ddcef1bca | |||
8c5a5fdfce | |||
046b1cbbc0 | |||
a65ce237c1 | |||
cd27f1005d | |||
f8c0a59221 | |||
832485699f | |||
81484a4760 | |||
9a86059761 | |||
b780b7b7a0 | |||
9e085bd04e | |||
6c6812a5ca | |||
8358ee38c4 | |||
1f154fe652 | |||
d708c0258d | |||
a7635fd5ba | |||
6b6bf537d3 | |||
323a651c71 | |||
9f212679f1 | |||
032f7dde1a | |||
ebb60330c9 | |||
5aa60be17d | |||
50b1db1e8b | |||
015d8bb38a | |||
10a34312dc | |||
db8c0e7584 | |||
32fbdf4fb1 | |||
a9847aa866 | |||
2e652431e5 | |||
8b5b55b682 | |||
0e3c49f687 | |||
cb7ee37562 | |||
82f71643a4 | |||
d15ccad8a7 | |||
0009b5cee8 | |||
20d1941a45 | |||
d24d8e8398 | |||
162e4bb567 | |||
07c0c02f8c | |||
8c31c065b5 | |||
b7c76ede29 | |||
05edf803bd | |||
b1c86900b2 | |||
78b8e40f83 | |||
fc2e9850d3 | |||
ffaaed679e | |||
bbbee5660d | |||
ea08f193e7 | |||
2bb2c68e15 | |||
efe5bc6a3c | |||
b2fd8b993a | |||
291ee8c3d0 | |||
e1a5b3ea49 | |||
55a55660cb | |||
384da487bd | |||
ee1de82a53 | |||
2b576fc185 | |||
52081acfa5 | |||
b01b7f761a | |||
c83471bfd0 | |||
ab0c5d77fb | |||
779e3c7442 | |||
0c570824f2 | |||
f8b8e00090 | |||
0dd1bdfa94 | |||
1d65e2f62c | |||
93920c4811 | |||
6859a3e1d4 | |||
21ca182c36 | |||
ceb8b374da | |||
4bc2ad2894 | |||
798af3e68f | |||
b0ef2367f3 | |||
71a7350a85 | |||
6f79369955 | |||
f9cb6b979f | |||
ed4d9d17f8 | |||
fbed02690d | |||
39f3ae5b1d | |||
e64bec8c8e | |||
0893b4e552 | |||
92f0f29670 | |||
48a340a9d1 | |||
f45621109b | |||
32d1a0bbea | |||
267cce66a1 | |||
3417147b11 | |||
b338719bc8 | |||
2b81cbe2c2 | |||
acff9d6ed2 | |||
053b4dd495 | |||
a306a49788 | |||
42bb5f0721 | |||
253bcc3426 | |||
a887206413 | |||
591ebb6213 | |||
56e2f7d088 | |||
7ef03c5368 | |||
525418abfb | |||
5f780806c2 | |||
3c6ffcb48c | |||
87984ece7d | |||
e9b295f967 | |||
224cbf0453 | |||
c1e57d4357 | |||
28a1fcaaff | |||
6b64727161 | |||
04863f8f38 | |||
04927d2e40 | |||
7caed4edd9 | |||
59c51d2c35 | |||
ff53b231c8 | |||
fc19cf905b | |||
2a1387e992 | |||
9bfa51bffb | |||
38532753f4 | |||
949be9605c | |||
63cf201ee7 | |||
c8af498a2a | |||
ddb192bac7 | |||
7666300a6f | |||
4a4b9e305d | |||
9b2d2d0fc3 | |||
5011753f4f | |||
dbaeefaeef | |||
dee96cbf82 | |||
dd3ebc2ce4 | |||
103e7ae2f0 | |||
29ae5615c0 | |||
6240e02619 | |||
f4033ad8cb | |||
5abec5b8a9 | |||
499edc0636 | |||
d990e61be3 | |||
3edb2dc2da | |||
f1fe444d4f | |||
345721220e | |||
6db68d6ecb | |||
dae820aa96 | |||
5daf176f4a | |||
e96c86ec14 | |||
09f0963d1f | |||
6f44e3c192 | |||
c2c3cad20d | |||
edec9ee2e2 | |||
ed70cce542 | |||
4701201b5f | |||
5893888f87 | |||
39b448affb | |||
e54a8f05a9 | |||
0782b76ed4 | |||
0896f2cead | |||
181709bba4 | |||
64b72fc17f | |||
091d5c605e | |||
6fdce60492 | |||
90229cfb0f | |||
0475c46ecb | |||
3cca10e617 | |||
327da332bb | |||
852db4626a | |||
43dc2814dd | |||
6504a098cc | |||
79a385faca | |||
c12a67030a | |||
581392f2f2 | |||
113f277b6a | |||
f3a8d039a2 | |||
974586bedc | |||
4e864e56c9 | |||
014dbfa464 | |||
3b0e07882f | |||
8e81a811d0 | |||
160f78c1e4 | |||
7e4e1bbbc2 | |||
e699b7e9f9 | |||
a28bc0de90 | |||
14d0fe4d6c | |||
0ad2e0815c | |||
1c8ca05e16 | |||
dc9c8340bb | |||
19eef97503 | |||
635246ce50 | |||
5cdbb7e71e | |||
8123590a1b | |||
86c9c4da8b | |||
cd1efee866 | |||
bd310932f7 | |||
304762e7ac | |||
d79ab03a6c | |||
d5708e0eb2 | |||
123f6b7a61 | |||
2b6457dd9a | |||
b367cbd422 | |||
e252c1aca3 | |||
b140c6a4f9 | |||
326de36467 | |||
9f224a1647 | |||
bb46ba9b5f | |||
dd5a22b36b | |||
1ea85b9972 | |||
8fb63f1c25 | |||
77fa586f6c | |||
96e8e44fd4 | |||
5fc8a273e7 | |||
d671a63e78 | |||
15238e8d5e | |||
b27e31957a | |||
46927771e3 | |||
d8cea77707 | |||
5f8a76d490 | |||
28d49a3b60 | |||
b4c624ece6 | |||
2c22db841a | |||
856d168e41 | |||
6235c7ba98 | |||
7e13724882 | |||
b6cbdd2aa3 | |||
a2188ea875 | |||
989af65807 | |||
60db3133d3 | |||
c9b737a4e7 | |||
037bb6ea73 | |||
05ebc458e2 | |||
3753508957 | |||
c1677fccf6 | |||
35e8e31749 | |||
34813e9b04 | |||
373cf61abb | |||
4e8fbc4b49 | |||
516ac1d4d5 | |||
318f63eb34 | |||
16503d7532 | |||
0fa93383b7 | |||
0a827aa7bf | |||
165c68e28e | |||
b32b1ca642 | |||
9479bc8486 | |||
10192dfc71 | |||
c69a3b6ef6 | |||
2ed39ebb7a | |||
96671bbb24 | |||
0ca1992151 | |||
df2b0c4e79 | |||
5d834486c9 | |||
f7373e97a4 | |||
b8bd8cd2ae | |||
c7637a84ad | |||
a7772c827b | |||
8e83398861 | |||
843ca9350a | |||
f47b2b6e13 | |||
4180a4a8a7 |
54
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
Normal file
54
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
Normal file
@ -0,0 +1,54 @@
|
||||
name: Bug report
|
||||
description: Report a bug.
|
||||
title: "<insert title>"
|
||||
labels: [bug]
|
||||
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thank you for taking the time to file a bug report.
|
||||
Please check that the code is pointing to the HEAD of develop
|
||||
or any commit in master which is tagged with a version number.
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Describe the issue:"
|
||||
description: >
|
||||
Describe the issue and any previous attempt to solve it.
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Code example:"
|
||||
description: >
|
||||
If relevant, show how to reproduce the issue using a minimal working
|
||||
example.
|
||||
placeholder: |
|
||||
<< your code here >>
|
||||
render: shell
|
||||
validations:
|
||||
required: false
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Target platform:"
|
||||
description: >
|
||||
Give a description of the target platform (CPU, network, compiler).
|
||||
Please give the full CPU part description, using for example
|
||||
`cat /proc/cpuinfo | grep 'model name' | uniq` (Linux)
|
||||
or `sysctl machdep.cpu.brand_string` (macOS) and the full output
|
||||
the `--version` option of your compiler.
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
attributes:
|
||||
label: "Configure options:"
|
||||
description: >
|
||||
Please give the exact configure command used and attach
|
||||
`config.log`, `grid.config.summary` and the output of `make V=1`.
|
||||
render: shell
|
||||
validations:
|
||||
required: true
|
5
.gitignore
vendored
5
.gitignore
vendored
@ -1,3 +1,7 @@
|
||||
# Doxygen stuff
|
||||
html/*
|
||||
latex/*
|
||||
|
||||
# Compiled Object files #
|
||||
#########################
|
||||
*.slo
|
||||
@ -88,6 +92,7 @@ Thumbs.db
|
||||
# build directory #
|
||||
###################
|
||||
build*/*
|
||||
Documentation/_build
|
||||
|
||||
# IDE related files #
|
||||
#####################
|
||||
|
61
.travis.yml
61
.travis.yml
@ -1,61 +0,0 @@
|
||||
language: cpp
|
||||
|
||||
cache:
|
||||
directories:
|
||||
- clang
|
||||
|
||||
matrix:
|
||||
include:
|
||||
- os: osx
|
||||
osx_image: xcode8.3
|
||||
compiler: clang
|
||||
env: PREC=single
|
||||
- os: osx
|
||||
osx_image: xcode8.3
|
||||
compiler: clang
|
||||
env: PREC=double
|
||||
|
||||
before_install:
|
||||
- export GRIDDIR=`pwd`
|
||||
- if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]] && [ ! -e clang/bin ]; then wget $CLANG_LINK; tar -xf `basename $CLANG_LINK`; mkdir clang; mv clang+*/* clang/; fi
|
||||
- if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export PATH="${GRIDDIR}/clang/bin:${PATH}"; fi
|
||||
- if [[ "$TRAVIS_OS_NAME" == "linux" ]] && [[ "$CC" == "clang" ]]; then export LD_LIBRARY_PATH="${GRIDDIR}/clang/lib:${LD_LIBRARY_PATH}"; fi
|
||||
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew update; fi
|
||||
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then brew install libmpc openssl; fi
|
||||
|
||||
install:
|
||||
- export CWD=`pwd`
|
||||
- echo $CWD
|
||||
- export CC=$CC$VERSION
|
||||
- export CXX=$CXX$VERSION
|
||||
- echo $PATH
|
||||
- which autoconf
|
||||
- autoconf --version
|
||||
- which automake
|
||||
- automake --version
|
||||
- which $CC
|
||||
- $CC --version
|
||||
- which $CXX
|
||||
- $CXX --version
|
||||
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then export LDFLAGS='-L/usr/local/lib'; fi
|
||||
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then export EXTRACONF='--with-openssl=/usr/local/opt/openssl'; fi
|
||||
|
||||
script:
|
||||
- ./bootstrap.sh
|
||||
- mkdir build
|
||||
- cd build
|
||||
- mkdir lime
|
||||
- cd lime
|
||||
- mkdir build
|
||||
- cd build
|
||||
- wget http://usqcd-software.github.io/downloads/c-lime/lime-1.3.2.tar.gz
|
||||
- tar xf lime-1.3.2.tar.gz
|
||||
- cd lime-1.3.2
|
||||
- ./configure --prefix=$CWD/build/lime/install
|
||||
- make -j4
|
||||
- make install
|
||||
- cd $CWD/build
|
||||
- ../configure --enable-precision=$PREC --enable-simd=SSE4 --enable-comms=none --with-lime=$CWD/build/lime/install ${EXTRACONF}
|
||||
- make -j4
|
||||
- ./benchmarks/Benchmark_dwf --threads 1 --debug-signals
|
||||
- make check
|
@ -37,19 +37,29 @@ directory
|
||||
#endif
|
||||
|
||||
//disables and intel compiler specific warning (in json.hpp)
|
||||
#ifdef __ICC
|
||||
#pragma warning disable 488
|
||||
#endif
|
||||
|
||||
#ifdef __NVCC__
|
||||
//disables nvcc specific warning in json.hpp
|
||||
#pragma clang diagnostic ignored "-Wdeprecated-register"
|
||||
|
||||
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
|
||||
//disables nvcc specific warning in json.hpp
|
||||
#pragma nv_diag_suppress unsigned_compare_with_zero
|
||||
#pragma nv_diag_suppress cast_to_qualified_type
|
||||
//disables nvcc specific warning in many files
|
||||
#pragma nv_diag_suppress esa_on_defaulted_function_ignored
|
||||
#pragma nv_diag_suppress extra_semicolon
|
||||
#else
|
||||
//disables nvcc specific warning in json.hpp
|
||||
#pragma diag_suppress unsigned_compare_with_zero
|
||||
#pragma diag_suppress cast_to_qualified_type
|
||||
|
||||
//disables nvcc specific warning in many files
|
||||
#pragma diag_suppress esa_on_defaulted_function_ignored
|
||||
#pragma diag_suppress extra_semicolon
|
||||
|
||||
//Eigen only
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Disable vectorisation in Eigen on the Power8/9 and PowerPC
|
||||
|
@ -44,12 +44,13 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/GridStd.h>
|
||||
#include <Grid/threads/Pragmas.h>
|
||||
#include <Grid/perfmon/Timer.h>
|
||||
#include <Grid/perfmon/PerfCount.h>
|
||||
//#include <Grid/perfmon/PerfCount.h>
|
||||
#include <Grid/util/Util.h>
|
||||
#include <Grid/log/Log.h>
|
||||
#include <Grid/allocator/AlignedAllocator.h>
|
||||
#include <Grid/perfmon/Tracing.h>
|
||||
#include <Grid/allocator/Allocator.h>
|
||||
#include <Grid/simd/Simd.h>
|
||||
#include <Grid/threads/Threads.h>
|
||||
#include <Grid/threads/ThreadReduction.h>
|
||||
#include <Grid/serialisation/Serialisation.h>
|
||||
#include <Grid/util/Sha.h>
|
||||
#include <Grid/communicator/Communicator.h>
|
||||
@ -58,6 +59,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/lattice/Lattice.h>
|
||||
#include <Grid/cshift/Cshift.h>
|
||||
#include <Grid/stencil/Stencil.h>
|
||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
||||
#include <Grid/parallelIO/BinaryIO.h>
|
||||
#include <Grid/algorithms/Algorithms.h>
|
||||
NAMESPACE_CHECK(GridCore)
|
||||
|
@ -36,6 +36,7 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/GridCore.h>
|
||||
#include <Grid/qcd/QCD.h>
|
||||
#include <Grid/qcd/spin/Spin.h>
|
||||
#include <Grid/qcd/gparity/Gparity.h>
|
||||
#include <Grid/qcd/utils/Utils.h>
|
||||
#include <Grid/qcd/representations/Representations.h>
|
||||
NAMESPACE_CHECK(GridQCDCore);
|
||||
|
@ -6,6 +6,7 @@
|
||||
///////////////////
|
||||
#include <cassert>
|
||||
#include <complex>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include <array>
|
||||
#include <string>
|
||||
@ -15,6 +16,7 @@
|
||||
#include <functional>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <strings.h>
|
||||
#include <stdio.h>
|
||||
#include <signal.h>
|
||||
#include <ctime>
|
||||
@ -27,4 +29,7 @@
|
||||
///////////////////
|
||||
#include "Config.h"
|
||||
|
||||
#ifdef TOFU
|
||||
#undef GRID_COMMS_THREADS
|
||||
#endif
|
||||
#endif /* GRID_STD_H */
|
||||
|
@ -14,16 +14,37 @@
|
||||
/* NVCC save and restore compile environment*/
|
||||
#ifdef __NVCC__
|
||||
#pragma push
|
||||
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
|
||||
#pragma nv_diag_suppress code_is_unreachable
|
||||
#else
|
||||
#pragma diag_suppress code_is_unreachable
|
||||
#endif
|
||||
#pragma push_macro("__CUDA_ARCH__")
|
||||
#pragma push_macro("__NVCC__")
|
||||
#pragma push_macro("__CUDACC__")
|
||||
#undef __CUDA_ARCH__
|
||||
#undef __NVCC__
|
||||
#undef __CUDACC__
|
||||
#undef __CUDA_ARCH__
|
||||
#define __NVCC__REDEFINE__
|
||||
#endif
|
||||
|
||||
/* SYCL save and restore compile environment*/
|
||||
#ifdef GRID_SYCL
|
||||
#pragma push
|
||||
#pragma push_macro("__SYCL_DEVICE_ONLY__")
|
||||
#undef __SYCL_DEVICE_ONLY__
|
||||
#define EIGEN_DONT_VECTORIZE
|
||||
#undef EIGEN_USE_SYCL
|
||||
#define __SYCL__REDEFINE__
|
||||
#endif
|
||||
|
||||
/* HIP save and restore compile environment*/
|
||||
#ifdef GRID_HIP
|
||||
#pragma push
|
||||
#pragma push_macro("__HIP_DEVICE_COMPILE__")
|
||||
#endif
|
||||
#define EIGEN_NO_HIP
|
||||
|
||||
#include <Grid/Eigen/Dense>
|
||||
#include <Grid/Eigen/unsupported/CXX11/Tensor>
|
||||
|
||||
@ -35,7 +56,20 @@
|
||||
#pragma pop
|
||||
#endif
|
||||
|
||||
/*SYCL restore*/
|
||||
#ifdef __SYCL__REDEFINE__
|
||||
#pragma pop_macro("__SYCL_DEVICE_ONLY__")
|
||||
#pragma pop
|
||||
#endif
|
||||
|
||||
/*HIP restore*/
|
||||
#ifdef __HIP__REDEFINE__
|
||||
#pragma pop_macro("__HIP_DEVICE_COMPILE__")
|
||||
#pragma pop
|
||||
#endif
|
||||
|
||||
#if defined __GNUC__
|
||||
#pragma GCC diagnostic pop
|
||||
#endif
|
||||
|
||||
|
||||
|
@ -21,7 +21,8 @@ if BUILD_HDF5
|
||||
extra_headers+=serialisation/Hdf5Type.h
|
||||
endif
|
||||
|
||||
all: version-cache
|
||||
|
||||
all: version-cache Version.h
|
||||
|
||||
version-cache:
|
||||
@if [ `git status --porcelain | grep -v '??' | wc -l` -gt 0 ]; then\
|
||||
@ -42,7 +43,7 @@ version-cache:
|
||||
fi;\
|
||||
rm -f vertmp
|
||||
|
||||
Version.h:
|
||||
Version.h: version-cache
|
||||
cp version-cache Version.h
|
||||
|
||||
.PHONY: version-cache
|
||||
@ -53,6 +54,23 @@ Version.h:
|
||||
include Make.inc
|
||||
include Eigen.inc
|
||||
|
||||
extra_sources+=$(WILS_FERMION_FILES)
|
||||
extra_sources+=$(STAG_FERMION_FILES)
|
||||
if BUILD_ZMOBIUS
|
||||
extra_sources+=$(ZWILS_FERMION_FILES)
|
||||
endif
|
||||
if BUILD_GPARITY
|
||||
extra_sources+=$(GP_FERMION_FILES)
|
||||
endif
|
||||
if BUILD_FERMION_REPS
|
||||
extra_sources+=$(ADJ_FERMION_FILES)
|
||||
extra_sources+=$(TWOIND_FERMION_FILES)
|
||||
endif
|
||||
if BUILD_SP
|
||||
extra_sources+=$(SP_FERMION_FILES)
|
||||
extra_sources+=$(SP_TWOIND_FERMION_FILES)
|
||||
endif
|
||||
|
||||
lib_LIBRARIES = libGrid.a
|
||||
|
||||
CCFILES += $(extra_sources)
|
||||
|
@ -29,9 +29,14 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#ifndef GRID_ALGORITHMS_H
|
||||
#define GRID_ALGORITHMS_H
|
||||
|
||||
NAMESPACE_CHECK(blas);
|
||||
#include <Grid/algorithms/blas/BatchedBlas.h>
|
||||
|
||||
NAMESPACE_CHECK(algorithms);
|
||||
#include <Grid/algorithms/SparseMatrix.h>
|
||||
#include <Grid/algorithms/LinearOperator.h>
|
||||
#include <Grid/algorithms/Preconditioner.h>
|
||||
NAMESPACE_CHECK(SparseMatrix);
|
||||
|
||||
#include <Grid/algorithms/approx/Zolotarev.h>
|
||||
#include <Grid/algorithms/approx/Chebyshev.h>
|
||||
@ -39,14 +44,25 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/algorithms/approx/Remez.h>
|
||||
#include <Grid/algorithms/approx/MultiShiftFunction.h>
|
||||
#include <Grid/algorithms/approx/Forecast.h>
|
||||
|
||||
#include <Grid/algorithms/iterative/Deflation.h>
|
||||
#include <Grid/algorithms/approx/RemezGeneral.h>
|
||||
#include <Grid/algorithms/approx/ZMobius.h>
|
||||
NAMESPACE_CHECK(approx);
|
||||
#include <Grid/algorithms/deflation/Deflation.h>
|
||||
#include <Grid/algorithms/deflation/MultiRHSBlockProject.h>
|
||||
#include <Grid/algorithms/deflation/MultiRHSDeflation.h>
|
||||
NAMESPACE_CHECK(deflation);
|
||||
#include <Grid/algorithms/iterative/ConjugateGradient.h>
|
||||
NAMESPACE_CHECK(ConjGrad);
|
||||
#include <Grid/algorithms/iterative/BiCGSTAB.h>
|
||||
NAMESPACE_CHECK(BiCGSTAB);
|
||||
#include <Grid/algorithms/iterative/ConjugateResidual.h>
|
||||
#include <Grid/algorithms/iterative/NormalEquations.h>
|
||||
#include <Grid/algorithms/iterative/SchurRedBlack.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShift.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrec.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientMixedPrecBatched.h>
|
||||
#include <Grid/algorithms/iterative/BiCGSTABMixedPrec.h>
|
||||
#include <Grid/algorithms/iterative/BlockConjugateGradient.h>
|
||||
#include <Grid/algorithms/iterative/ConjugateGradientReliableUpdate.h>
|
||||
#include <Grid/algorithms/iterative/MinimalResidual.h>
|
||||
@ -57,8 +73,11 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/algorithms/iterative/MixedPrecisionFlexibleGeneralisedMinimalResidual.h>
|
||||
#include <Grid/algorithms/iterative/ImplicitlyRestartedLanczos.h>
|
||||
#include <Grid/algorithms/iterative/PowerMethod.h>
|
||||
|
||||
#include <Grid/algorithms/CoarsenedMatrix.h>
|
||||
#include <Grid/algorithms/iterative/AdefGeneric.h>
|
||||
#include <Grid/algorithms/iterative/AdefMrhs.h>
|
||||
NAMESPACE_CHECK(PowerMethod);
|
||||
#include <Grid/algorithms/multigrid/MultiGrid.h>
|
||||
NAMESPACE_CHECK(multigrid);
|
||||
#include <Grid/algorithms/FFT.h>
|
||||
|
||||
#endif
|
||||
|
@ -1,985 +0,0 @@
|
||||
// blockZaxpy in bockPromote - 3s, 5%
|
||||
// noncoalesced linalg in Preconditionoer ~ 3s 5%
|
||||
// Lancos tuning or replace 10-20s ~ 25%, open ended
|
||||
// setup tuning 5s ~ 8%
|
||||
// -- e.g. ordermin, orderstep tunables.
|
||||
// MdagM path without norm in LinOp code. few seconds
|
||||
|
||||
// Mdir calc blocking kernels
|
||||
// Fuse kernels in blockMaskedInnerProduct
|
||||
// preallocate Vectors in Cayley 5D ~ few percent few seconds
|
||||
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/CoarsenedMatrix.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_ALGORITHM_COARSENED_MATRIX_H
|
||||
#define GRID_ALGORITHM_COARSENED_MATRIX_H
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class vobj,class CComplex>
|
||||
inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
|
||||
const Lattice<decltype(innerProduct(vobj(),vobj()))> &FineMask,
|
||||
const Lattice<vobj> &fineX,
|
||||
const Lattice<vobj> &fineY)
|
||||
{
|
||||
typedef decltype(innerProduct(vobj(),vobj())) dotp;
|
||||
|
||||
GridBase *coarse(CoarseInner.Grid());
|
||||
GridBase *fine (fineX.Grid());
|
||||
|
||||
Lattice<dotp> fine_inner(fine); fine_inner.Checkerboard() = fineX.Checkerboard();
|
||||
Lattice<dotp> fine_inner_msk(fine);
|
||||
|
||||
// Multiply could be fused with innerProduct
|
||||
// Single block sum kernel could do both masks.
|
||||
fine_inner = localInnerProduct(fineX,fineY);
|
||||
mult(fine_inner_msk, fine_inner,FineMask);
|
||||
blockSum(CoarseInner,fine_inner_msk);
|
||||
}
|
||||
|
||||
|
||||
class Geometry {
|
||||
public:
|
||||
int npoint;
|
||||
std::vector<int> directions ;
|
||||
std::vector<int> displacements;
|
||||
|
||||
Geometry(int _d) {
|
||||
|
||||
int base = (_d==5) ? 1:0;
|
||||
|
||||
// make coarse grid stencil for 4d , not 5d
|
||||
if ( _d==5 ) _d=4;
|
||||
|
||||
npoint = 2*_d+1;
|
||||
directions.resize(npoint);
|
||||
displacements.resize(npoint);
|
||||
for(int d=0;d<_d;d++){
|
||||
directions[d ] = d+base;
|
||||
directions[d+_d] = d+base;
|
||||
displacements[d ] = +1;
|
||||
displacements[d+_d]= -1;
|
||||
}
|
||||
directions [2*_d]=0;
|
||||
displacements[2*_d]=0;
|
||||
|
||||
//// report back
|
||||
std::cout<<GridLogMessage<<"directions :";
|
||||
for(int d=0;d<npoint;d++) std::cout<< directions[d]<< " ";
|
||||
std::cout<<std::endl;
|
||||
std::cout<<GridLogMessage<<"displacements :";
|
||||
for(int d=0;d<npoint;d++) std::cout<< displacements[d]<< " ";
|
||||
std::cout<<std::endl;
|
||||
}
|
||||
|
||||
/*
|
||||
// Original cleaner code
|
||||
Geometry(int _d) : dimension(_d), npoint(2*_d+1), directions(npoint), displacements(npoint) {
|
||||
for(int d=0;d<dimension;d++){
|
||||
directions[2*d ] = d;
|
||||
directions[2*d+1] = d;
|
||||
displacements[2*d ] = +1;
|
||||
displacements[2*d+1] = -1;
|
||||
}
|
||||
directions [2*dimension]=0;
|
||||
displacements[2*dimension]=0;
|
||||
}
|
||||
std::vector<int> GetDelta(int point) {
|
||||
std::vector<int> delta(dimension,0);
|
||||
delta[directions[point]] = displacements[point];
|
||||
return delta;
|
||||
};
|
||||
*/
|
||||
|
||||
};
|
||||
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class Aggregation {
|
||||
public:
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef Lattice<siteVector> CoarseVector;
|
||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
|
||||
GridBase *CoarseGrid;
|
||||
GridBase *FineGrid;
|
||||
std::vector<Lattice<Fobj> > subspace;
|
||||
int checkerboard;
|
||||
int Checkerboard(void){return checkerboard;}
|
||||
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
|
||||
CoarseGrid(_CoarseGrid),
|
||||
FineGrid(_FineGrid),
|
||||
subspace(nbasis,_FineGrid),
|
||||
checkerboard(_checkerboard)
|
||||
{
|
||||
};
|
||||
|
||||
void Orthogonalise(void){
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
|
||||
blockOrthogonalise(InnerProd,subspace);
|
||||
// std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 2"<<std::endl; // Really have to do twice? Yuck
|
||||
// blockOrthogonalise(InnerProd,subspace);
|
||||
// std::cout << GridLogMessage <<" Gramm-Schmidt checking orthogonality"<<std::endl;
|
||||
// CheckOrthogonal();
|
||||
}
|
||||
void CheckOrthogonal(void){
|
||||
CoarseVector iProj(CoarseGrid);
|
||||
CoarseVector eProj(CoarseGrid);
|
||||
for(int i=0;i<nbasis;i++){
|
||||
blockProject(iProj,subspace[i],subspace);
|
||||
eProj=Zero();
|
||||
accelerator_for(ss, CoarseGrid->oSites(),1,{
|
||||
eProj[ss](i)=CComplex(1.0);
|
||||
});
|
||||
eProj=eProj - iProj;
|
||||
std::cout<<GridLogMessage<<"Orthog check error "<<i<<" " << norm2(eProj)<<std::endl;
|
||||
}
|
||||
std::cout<<GridLogMessage <<"CheckOrthog done"<<std::endl;
|
||||
}
|
||||
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
|
||||
blockProject(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
|
||||
FineVec.Checkerboard() = subspace[0].Checkerboard();
|
||||
blockPromote(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
void CreateSubspaceRandom(GridParallelRNG &RNG){
|
||||
for(int i=0;i<nbasis;i++){
|
||||
random(RNG,subspace[i]);
|
||||
}
|
||||
}
|
||||
|
||||
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
ConjugateGradient<FineField> CG(1.0e-2,100,false);
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
|
||||
for(int b=0;b<nn;b++){
|
||||
|
||||
subspace[b] = Zero();
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
for(int i=0;i<1;i++){
|
||||
|
||||
CG(hermop,noise,subspace[b]);
|
||||
|
||||
noise = subspace[b];
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
}
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
|
||||
subspace[b] = noise;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
|
||||
// and this is the best I found
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#if 1
|
||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
double lo,
|
||||
int orderfilter,
|
||||
int ordermin,
|
||||
int orderstep,
|
||||
double filterlo
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
int b =0;
|
||||
{
|
||||
// Filter
|
||||
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
||||
Cheb(hermop,noise,Mn);
|
||||
// normalise
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
b++;
|
||||
}
|
||||
|
||||
// Generate a full sequence of Chebyshevs
|
||||
{
|
||||
lo=filterlo;
|
||||
noise=Mn;
|
||||
|
||||
FineField T0(FineGrid); T0 = noise;
|
||||
FineField T1(FineGrid);
|
||||
FineField T2(FineGrid);
|
||||
FineField y(FineGrid);
|
||||
|
||||
FineField *Tnm = &T0;
|
||||
FineField *Tn = &T1;
|
||||
FineField *Tnp = &T2;
|
||||
|
||||
// Tn=T1 = (xscale M + mscale)in
|
||||
RealD xscale = 2.0/(hi-lo);
|
||||
RealD mscale = -(hi+lo)/(hi-lo);
|
||||
hermop.HermOp(T0,y);
|
||||
T1=y*xscale+noise*mscale;
|
||||
|
||||
for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
|
||||
|
||||
hermop.HermOp(*Tn,y);
|
||||
|
||||
auto y_v = y.View();
|
||||
auto Tn_v = Tn->View();
|
||||
auto Tnp_v = Tnp->View();
|
||||
auto Tnm_v = Tnm->View();
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
accelerator_forNB(ss, FineGrid->oSites(), Nsimd, {
|
||||
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
|
||||
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
|
||||
});
|
||||
|
||||
// Possible more fine grained control is needed than a linear sweep,
|
||||
// but huge productivity gain if this is simple algorithm and not a tunable
|
||||
int m =1;
|
||||
if ( n>=ordermin ) m=n-ordermin;
|
||||
if ( (m%orderstep)==0 ) {
|
||||
Mn=*Tnp;
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
b++;
|
||||
}
|
||||
|
||||
// Cycle pointers to avoid copies
|
||||
FineField *swizzle = Tnm;
|
||||
Tnm =Tn;
|
||||
Tn =Tnp;
|
||||
Tnp =swizzle;
|
||||
|
||||
}
|
||||
}
|
||||
assert(b==nn);
|
||||
}
|
||||
#endif
|
||||
#if 0
|
||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
double lo,
|
||||
int orderfilter,
|
||||
int ordermin,
|
||||
int orderstep,
|
||||
double filterlo
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
FineField combined(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
int b =0;
|
||||
#define FILTERb(llo,hhi,oorder) \
|
||||
{ \
|
||||
Chebyshev<FineField> Cheb(llo,hhi,oorder); \
|
||||
Cheb(hermop,noise,Mn); \
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale; \
|
||||
subspace[b] = Mn; \
|
||||
hermop.Op(Mn,tmp); \
|
||||
std::cout<<GridLogMessage << oorder<< " Cheb filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; \
|
||||
b++; \
|
||||
}
|
||||
|
||||
// JacobiPolynomial<FineField> Cheb(0.002,60.0,1500,-0.5,3.5); \
|
||||
|
||||
RealD alpha=-0.8;
|
||||
RealD beta =-0.8;
|
||||
#define FILTER(llo,hhi,oorder) \
|
||||
{ \
|
||||
Chebyshev<FineField> Cheb(llo,hhi,oorder); \
|
||||
/* JacobiPolynomial<FineField> Cheb(0.0,60.0,oorder,alpha,beta);*/\
|
||||
Cheb(hermop,noise,Mn); \
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale; \
|
||||
subspace[b] = Mn; \
|
||||
hermop.Op(Mn,tmp); \
|
||||
std::cout<<GridLogMessage << oorder<< "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; \
|
||||
b++; \
|
||||
}
|
||||
|
||||
#define FILTERc(llo,hhi,oorder) \
|
||||
{ \
|
||||
Chebyshev<FineField> Cheb(llo,hhi,oorder); \
|
||||
Cheb(hermop,noise,combined); \
|
||||
}
|
||||
|
||||
double node = 0.000;
|
||||
FILTERb(lo,hi,orderfilter);// 0
|
||||
// FILTERc(node,hi,51);// 0
|
||||
noise = Mn;
|
||||
int base = 0;
|
||||
int mult = 100;
|
||||
FILTER(node,hi,base+1*mult);
|
||||
FILTER(node,hi,base+2*mult);
|
||||
FILTER(node,hi,base+3*mult);
|
||||
FILTER(node,hi,base+4*mult);
|
||||
FILTER(node,hi,base+5*mult);
|
||||
FILTER(node,hi,base+6*mult);
|
||||
FILTER(node,hi,base+7*mult);
|
||||
FILTER(node,hi,base+8*mult);
|
||||
FILTER(node,hi,base+9*mult);
|
||||
FILTER(node,hi,base+10*mult);
|
||||
FILTER(node,hi,base+11*mult);
|
||||
FILTER(node,hi,base+12*mult);
|
||||
FILTER(node,hi,base+13*mult);
|
||||
FILTER(node,hi,base+14*mult);
|
||||
FILTER(node,hi,base+15*mult);
|
||||
assert(b==nn);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
double lo,
|
||||
int orderfilter,
|
||||
int ordermin,
|
||||
int orderstep,
|
||||
double filterlo
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
FineField combined(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
int b =0;
|
||||
{
|
||||
Chebyshev<FineField> JacobiPoly(0.005,60.,1500);
|
||||
// JacobiPolynomial<FineField> JacobiPoly(0.002,60.0,1500,-0.5,3.5);
|
||||
//JacobiPolynomial<FineField> JacobiPoly(0.03,60.0,500,-0.5,3.5);
|
||||
// JacobiPolynomial<FineField> JacobiPoly(0.00,60.0,1000,-0.5,3.5);
|
||||
JacobiPoly(hermop,noise,Mn);
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
b++;
|
||||
// scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
|
||||
// subspace[b] = tmp; b++;
|
||||
// }
|
||||
}
|
||||
|
||||
#define FILTER(lambda) \
|
||||
{ \
|
||||
hermop.HermOp(subspace[0],tmp); \
|
||||
tmp = tmp - lambda *subspace[0]; \
|
||||
scale = std::pow(norm2(tmp),-0.5); \
|
||||
tmp=tmp*scale; \
|
||||
subspace[b] = tmp; \
|
||||
hermop.Op(subspace[b],tmp); \
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl; \
|
||||
b++; \
|
||||
}
|
||||
// scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
|
||||
// subspace[b] = tmp; b++;
|
||||
// }
|
||||
|
||||
FILTER(2.0e-5);
|
||||
FILTER(2.0e-4);
|
||||
FILTER(4.0e-4);
|
||||
FILTER(8.0e-4);
|
||||
FILTER(8.0e-4);
|
||||
|
||||
FILTER(2.0e-3);
|
||||
FILTER(3.0e-3);
|
||||
FILTER(4.0e-3);
|
||||
FILTER(5.0e-3);
|
||||
FILTER(6.0e-3);
|
||||
|
||||
FILTER(2.5e-3);
|
||||
FILTER(3.5e-3);
|
||||
FILTER(4.5e-3);
|
||||
FILTER(5.5e-3);
|
||||
FILTER(6.5e-3);
|
||||
|
||||
// FILTER(6.0e-5);//6
|
||||
// FILTER(7.0e-5);//8
|
||||
// FILTER(8.0e-5);//9
|
||||
// FILTER(9.0e-5);//3
|
||||
|
||||
/*
|
||||
// FILTER(1.0e-4);//10
|
||||
FILTER(2.0e-4);//11
|
||||
// FILTER(3.0e-4);//12
|
||||
// FILTER(4.0e-4);//13
|
||||
FILTER(5.0e-4);//14
|
||||
|
||||
FILTER(6.0e-3);//4
|
||||
FILTER(7.0e-4);//1
|
||||
FILTER(8.0e-4);//7
|
||||
FILTER(9.0e-4);//15
|
||||
FILTER(1.0e-3);//2
|
||||
|
||||
FILTER(2.0e-3);//2
|
||||
FILTER(3.0e-3);//2
|
||||
FILTER(4.0e-3);//2
|
||||
FILTER(5.0e-3);//2
|
||||
FILTER(6.0e-3);//2
|
||||
|
||||
FILTER(7.0e-3);//2
|
||||
FILTER(8.0e-3);//2
|
||||
FILTER(1.0e-2);//2
|
||||
*/
|
||||
std::cout << GridLogMessage <<"Jacobi filtering done" <<std::endl;
|
||||
assert(b==nn);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
};
|
||||
|
||||
// Fine Object == (per site) type of fine field
|
||||
// nbasis == number of deflation vectors
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class CoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
|
||||
public:
|
||||
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef Lattice<CComplex > CoarseComplexField;
|
||||
typedef Lattice<siteVector> CoarseVector;
|
||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||
typedef iMatrix<CComplex,nbasis > Cobj;
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
|
||||
////////////////////
|
||||
// Data members
|
||||
////////////////////
|
||||
Geometry geom;
|
||||
GridBase * _grid;
|
||||
int hermitian;
|
||||
|
||||
CartesianStencil<siteVector,siteVector,int> Stencil;
|
||||
|
||||
std::vector<CoarseMatrix> A;
|
||||
|
||||
///////////////////////
|
||||
// Interface
|
||||
///////////////////////
|
||||
GridBase * Grid(void) { return _grid; }; // this is all the linalg routines need to know
|
||||
|
||||
RealD M (const CoarseVector &in, CoarseVector &out){
|
||||
|
||||
conformable(_grid,in.Grid());
|
||||
conformable(in.Grid(),out.Grid());
|
||||
|
||||
// RealD Nin = norm2(in);
|
||||
SimpleCompressor<siteVector> compressor;
|
||||
|
||||
double comms_usec = -usecond();
|
||||
Stencil.HaloExchange(in,compressor);
|
||||
comms_usec += usecond();
|
||||
|
||||
auto in_v = in.View();
|
||||
auto out_v = out.View();
|
||||
typedef LatticeView<Cobj> Aview;
|
||||
|
||||
Vector<Aview> AcceleratorViewContainer;
|
||||
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View());
|
||||
Aview *Aview_p = & AcceleratorViewContainer[0];
|
||||
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
typedef decltype(coalescedRead(in_v[0])) calcVector;
|
||||
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
|
||||
|
||||
GridStopWatch ArithmeticTimer;
|
||||
int osites=Grid()->oSites();
|
||||
// double flops = osites*Nsimd*nbasis*nbasis*8.0*geom.npoint;
|
||||
// double bytes = osites*nbasis*nbasis*geom.npoint*sizeof(CComplex);
|
||||
double usecs =-usecond();
|
||||
// assert(geom.npoint==9);
|
||||
|
||||
accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
|
||||
int ss = sss/nbasis;
|
||||
int b = sss%nbasis;
|
||||
calcComplex res = Zero();
|
||||
calcVector nbr;
|
||||
int ptype;
|
||||
StencilEntry *SE;
|
||||
|
||||
int lane=SIMTlane(Nsimd);
|
||||
for(int point=0;point<geom.npoint;point++){
|
||||
|
||||
SE=Stencil.GetEntry(ptype,point,ss);
|
||||
|
||||
if(SE->_is_local) {
|
||||
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute,lane);
|
||||
} else {
|
||||
nbr = coalescedRead(Stencil.CommBuf()[SE->_offset],lane);
|
||||
}
|
||||
synchronise();
|
||||
|
||||
for(int bb=0;bb<nbasis;bb++) {
|
||||
res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
|
||||
}
|
||||
}
|
||||
coalescedWrite(out_v[ss](b),res,lane);
|
||||
});
|
||||
usecs +=usecond();
|
||||
|
||||
double nrm_usec=-usecond();
|
||||
RealD Nout= norm2(out);
|
||||
nrm_usec+=usecond();
|
||||
|
||||
/*
|
||||
std::cout << GridLogMessage << "\tNorm " << nrm_usec << " us" <<std::endl;
|
||||
std::cout << GridLogMessage << "\tHalo " << comms_usec << " us" <<std::endl;
|
||||
std::cout << GridLogMessage << "\tMatrix " << usecs << " us" <<std::endl;
|
||||
std::cout << GridLogMessage << "\t mflop/s " << flops/usecs<<std::endl;
|
||||
std::cout << GridLogMessage << "\t MB/s " << bytes/usecs<<std::endl;
|
||||
*/
|
||||
return Nout;
|
||||
};
|
||||
|
||||
RealD Mdag (const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
if(hermitian) {
|
||||
// corresponds to Petrov-Galerkin coarsening
|
||||
return M(in,out);
|
||||
} else {
|
||||
// corresponds to Galerkin coarsening
|
||||
CoarseVector tmp(Grid());
|
||||
G5C(tmp, in);
|
||||
M(tmp, out);
|
||||
G5C(out, out);
|
||||
return norm2(out);
|
||||
}
|
||||
};
|
||||
void MdirComms(const CoarseVector &in)
|
||||
{
|
||||
SimpleCompressor<siteVector> compressor;
|
||||
Stencil.HaloExchange(in,compressor);
|
||||
}
|
||||
void MdirCalc(const CoarseVector &in, CoarseVector &out, int point)
|
||||
{
|
||||
conformable(_grid,in.Grid());
|
||||
conformable(_grid,out.Grid());
|
||||
|
||||
typedef LatticeView<Cobj> Aview;
|
||||
Vector<Aview> AcceleratorViewContainer;
|
||||
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View());
|
||||
Aview *Aview_p = & AcceleratorViewContainer[0];
|
||||
|
||||
auto out_v = out.View();
|
||||
auto in_v = in.View();
|
||||
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
typedef decltype(coalescedRead(in_v[0])) calcVector;
|
||||
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
|
||||
|
||||
accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
|
||||
int ss = sss/nbasis;
|
||||
int b = sss%nbasis;
|
||||
calcComplex res = Zero();
|
||||
calcVector nbr;
|
||||
int ptype;
|
||||
StencilEntry *SE;
|
||||
|
||||
int lane=SIMTlane(Nsimd);
|
||||
SE=Stencil.GetEntry(ptype,point,ss);
|
||||
|
||||
if(SE->_is_local) {
|
||||
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute,lane);
|
||||
} else {
|
||||
nbr = coalescedRead(Stencil.CommBuf()[SE->_offset],lane);
|
||||
}
|
||||
synchronise();
|
||||
|
||||
for(int bb=0;bb<nbasis;bb++) {
|
||||
res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
|
||||
}
|
||||
coalescedWrite(out_v[ss](b),res,lane);
|
||||
});
|
||||
#if 0
|
||||
accelerator_for(ss,Grid()->oSites(),1,{
|
||||
|
||||
siteVector res = Zero();
|
||||
siteVector nbr;
|
||||
int ptype;
|
||||
StencilEntry *SE;
|
||||
|
||||
SE=Stencil.GetEntry(ptype,point,ss);
|
||||
|
||||
if(SE->_is_local&&SE->_permute) {
|
||||
permute(nbr,in_v[SE->_offset],ptype);
|
||||
} else if(SE->_is_local) {
|
||||
nbr = in_v[SE->_offset];
|
||||
} else {
|
||||
nbr = Stencil.CommBuf()[SE->_offset];
|
||||
}
|
||||
synchronise();
|
||||
|
||||
res = res + Aview_p[point][ss]*nbr;
|
||||
|
||||
out_v[ss]=res;
|
||||
});
|
||||
#endif
|
||||
}
|
||||
void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
|
||||
{
|
||||
this->MdirComms(in);
|
||||
int ndir=geom.npoint-1;
|
||||
if ((out.size()!=ndir)&&(out.size()!=ndir+1)) {
|
||||
std::cout <<"MdirAll out size "<< out.size()<<std::endl;
|
||||
std::cout <<"MdirAll ndir "<< ndir<<std::endl;
|
||||
assert(0);
|
||||
}
|
||||
for(int p=0;p<ndir;p++){
|
||||
MdirCalc(in,out[p],p);
|
||||
}
|
||||
};
|
||||
void Mdir(const CoarseVector &in, CoarseVector &out, int dir, int disp){
|
||||
|
||||
this->MdirComms(in);
|
||||
|
||||
int ndim = in.Grid()->Nd();
|
||||
|
||||
//////////////
|
||||
// 4D action like wilson
|
||||
// 0+ => 0
|
||||
// 0- => 1
|
||||
// 1+ => 2
|
||||
// 1- => 3
|
||||
// etc..
|
||||
//////////////
|
||||
// 5D action like DWF
|
||||
// 1+ => 0
|
||||
// 1- => 1
|
||||
// 2+ => 2
|
||||
// 2- => 3
|
||||
// etc..
|
||||
auto point = [dir, disp, ndim](){
|
||||
if(dir == 0 and disp == 0)
|
||||
return 8;
|
||||
else if ( ndim==4 ) {
|
||||
return (4 * dir + 1 - disp) / 2;
|
||||
} else {
|
||||
return (4 * (dir-1) + 1 - disp) / 2;
|
||||
}
|
||||
}();
|
||||
|
||||
MdirCalc(in,out,point);
|
||||
|
||||
};
|
||||
|
||||
void Mdiag(const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
int point=geom.npoint-1;
|
||||
MdirCalc(in, out, point); // No comms
|
||||
};
|
||||
|
||||
|
||||
CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) :
|
||||
|
||||
_grid(&CoarseGrid),
|
||||
geom(CoarseGrid._ndimension),
|
||||
hermitian(hermitian_),
|
||||
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
|
||||
A(geom.npoint,&CoarseGrid)
|
||||
{
|
||||
};
|
||||
|
||||
void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> & Subspace)
|
||||
{
|
||||
typedef Lattice<typename Fobj::tensor_reduced> FineComplexField;
|
||||
typedef typename Fobj::scalar_type scalar_type;
|
||||
|
||||
FineComplexField one(FineGrid); one=scalar_type(1.0,0.0);
|
||||
FineComplexField zero(FineGrid); zero=scalar_type(0.0,0.0);
|
||||
|
||||
std::vector<FineComplexField> masks(geom.npoint,FineGrid);
|
||||
FineComplexField imask(FineGrid); // contributions from within this block
|
||||
FineComplexField omask(FineGrid); // contributions from outwith this block
|
||||
|
||||
FineComplexField evenmask(FineGrid);
|
||||
FineComplexField oddmask(FineGrid);
|
||||
|
||||
FineField phi(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
FineField zz(FineGrid); zz=Zero();
|
||||
FineField Mphi(FineGrid);
|
||||
FineField Mphie(FineGrid);
|
||||
FineField Mphio(FineGrid);
|
||||
std::vector<FineField> Mphi_p(geom.npoint,FineGrid);
|
||||
|
||||
Lattice<iScalar<vInteger> > coor (FineGrid);
|
||||
Lattice<iScalar<vInteger> > bcoor(FineGrid);
|
||||
Lattice<iScalar<vInteger> > bcb (FineGrid); bcb = Zero();
|
||||
|
||||
CoarseVector iProj(Grid());
|
||||
CoarseVector oProj(Grid());
|
||||
CoarseVector SelfProj(Grid());
|
||||
CoarseComplexField iZProj(Grid());
|
||||
CoarseComplexField oZProj(Grid());
|
||||
|
||||
CoarseScalar InnerProd(Grid());
|
||||
|
||||
// Orthogonalise the subblocks over the basis
|
||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
||||
|
||||
// Compute the matrix elements of linop between this orthonormal
|
||||
// set of vectors.
|
||||
int self_stencil=-1;
|
||||
for(int p=0;p<geom.npoint;p++)
|
||||
{
|
||||
int dir = geom.directions[p];
|
||||
int disp = geom.displacements[p];
|
||||
A[p]=Zero();
|
||||
if( geom.displacements[p]==0){
|
||||
self_stencil=p;
|
||||
}
|
||||
|
||||
Integer block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]);
|
||||
|
||||
LatticeCoordinate(coor,dir);
|
||||
|
||||
///////////////////////////////////////////////////////
|
||||
// Work out even and odd block checkerboarding for fast diagonal term
|
||||
///////////////////////////////////////////////////////
|
||||
if ( disp==1 ) {
|
||||
bcb = bcb + div(coor,block);
|
||||
}
|
||||
|
||||
if ( disp==0 ) {
|
||||
masks[p]= Zero();
|
||||
} else if ( disp==1 ) {
|
||||
masks[p] = where(mod(coor,block)==(block-1),one,zero);
|
||||
} else if ( disp==-1 ) {
|
||||
masks[p] = where(mod(coor,block)==(Integer)0,one,zero);
|
||||
}
|
||||
}
|
||||
evenmask = where(mod(bcb,2)==(Integer)0,one,zero);
|
||||
oddmask = one-evenmask;
|
||||
|
||||
assert(self_stencil!=-1);
|
||||
|
||||
for(int i=0;i<nbasis;i++){
|
||||
|
||||
phi=Subspace.subspace[i];
|
||||
|
||||
// std::cout << GridLogMessage<< "CoarsenMatrix vector "<<i << std::endl;
|
||||
linop.OpDirAll(phi,Mphi_p);
|
||||
linop.OpDiag (phi,Mphi_p[geom.npoint-1]);
|
||||
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
|
||||
Mphi = Mphi_p[p];
|
||||
|
||||
int dir = geom.directions[p];
|
||||
int disp = geom.displacements[p];
|
||||
|
||||
if ( (disp==-1) || (!hermitian ) ) {
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Pick out contributions coming from this cell and neighbour cell
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
omask = masks[p];
|
||||
imask = one-omask;
|
||||
|
||||
for(int j=0;j<nbasis;j++){
|
||||
|
||||
blockMaskedInnerProduct(oZProj,omask,Subspace.subspace[j],Mphi);
|
||||
|
||||
auto iZProj_v = iZProj.View() ;
|
||||
auto oZProj_v = oZProj.View() ;
|
||||
auto A_p = A[p].View();
|
||||
auto A_self = A[self_stencil].View();
|
||||
|
||||
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); });
|
||||
// if( disp!= 0 ) { accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); });}
|
||||
// accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_self[ss](j,i),A_self(ss)(j,i)+iZProj_v(ss)); });
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////
|
||||
// Faster alternate self coupling.. use hermiticity to save 2x
|
||||
///////////////////////////////////////////
|
||||
{
|
||||
mult(tmp,phi,evenmask); linop.Op(tmp,Mphie);
|
||||
mult(tmp,phi,oddmask ); linop.Op(tmp,Mphio);
|
||||
|
||||
{
|
||||
auto tmp_ = tmp.View();
|
||||
auto evenmask_ = evenmask.View();
|
||||
auto oddmask_ = oddmask.View();
|
||||
auto Mphie_ = Mphie.View();
|
||||
auto Mphio_ = Mphio.View();
|
||||
accelerator_for(ss, FineGrid->oSites(), Fobj::Nsimd(),{
|
||||
coalescedWrite(tmp_[ss],evenmask_(ss)*Mphie_(ss) + oddmask_(ss)*Mphio_(ss));
|
||||
});
|
||||
}
|
||||
|
||||
blockProject(SelfProj,tmp,Subspace.subspace);
|
||||
|
||||
auto SelfProj_ = SelfProj.View();
|
||||
auto A_self = A[self_stencil].View();
|
||||
|
||||
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{
|
||||
for(int j=0;j<nbasis;j++){
|
||||
coalescedWrite(A_self[ss](j,i), SelfProj_(ss)(j));
|
||||
}
|
||||
});
|
||||
|
||||
}
|
||||
}
|
||||
if(hermitian) {
|
||||
std::cout << GridLogMessage << " ForceHermitian, new code "<<std::endl;
|
||||
ForceHermitian();
|
||||
}
|
||||
// AssertHermitian();
|
||||
// ForceDiagonal();
|
||||
}
|
||||
|
||||
#if 0
|
||||
///////////////////////////
|
||||
// test code worth preserving in if block
|
||||
///////////////////////////
|
||||
std::cout<<GridLogMessage<< " Computed matrix elements "<< self_stencil <<std::endl;
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
std::cout<<GridLogMessage<< "A["<<p<<"]" << std::endl;
|
||||
std::cout<<GridLogMessage<< A[p] << std::endl;
|
||||
}
|
||||
std::cout<<GridLogMessage<< " picking by block0 "<< self_stencil <<std::endl;
|
||||
|
||||
phi=Subspace.subspace[0];
|
||||
std::vector<int> bc(FineGrid->_ndimension,0);
|
||||
|
||||
blockPick(Grid(),phi,tmp,bc); // Pick out a block
|
||||
linop.Op(tmp,Mphi); // Apply big dop
|
||||
blockProject(iProj,Mphi,Subspace.subspace); // project it and print it
|
||||
std::cout<<GridLogMessage<< " Computed matrix elements from block zero only "<<std::endl;
|
||||
std::cout<<GridLogMessage<< iProj <<std::endl;
|
||||
std::cout<<GridLogMessage<<"Computed Coarse Operator"<<std::endl;
|
||||
#endif
|
||||
|
||||
|
||||
void ForceHermitian(void) {
|
||||
CoarseMatrix Diff (Grid());
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
int dir = geom.directions[p];
|
||||
int disp = geom.displacements[p];
|
||||
if(disp==-1) {
|
||||
// Find the opposite link
|
||||
for(int pp=0;pp<geom.npoint;pp++){
|
||||
int dirp = geom.directions[pp];
|
||||
int dispp = geom.displacements[pp];
|
||||
if ( (dirp==dir) && (dispp==1) ){
|
||||
// Diff = adj(Cshift(A[p],dir,1)) - A[pp];
|
||||
// std::cout << GridLogMessage<<" Replacing stencil leg "<<pp<<" with leg "<<p<< " diff "<<norm2(Diff) <<std::endl;
|
||||
A[pp] = adj(Cshift(A[p],dir,1));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
void AssertHermitian(void) {
|
||||
CoarseMatrix AA (Grid());
|
||||
CoarseMatrix AAc (Grid());
|
||||
CoarseMatrix Diff (Grid());
|
||||
for(int d=0;d<4;d++){
|
||||
|
||||
int dd=d+1;
|
||||
AAc = Cshift(A[2*d+1],dd,1);
|
||||
AA = A[2*d];
|
||||
|
||||
Diff = AA - adj(AAc);
|
||||
|
||||
std::cout<<GridLogMessage<<"Norm diff dim "<<d<<" "<< norm2(Diff)<<std::endl;
|
||||
std::cout<<GridLogMessage<<"Norm dim "<<d<<" "<< norm2(AA)<<std::endl;
|
||||
|
||||
}
|
||||
Diff = A[8] - adj(A[8]);
|
||||
std::cout<<GridLogMessage<<"Norm diff local "<< norm2(Diff)<<std::endl;
|
||||
std::cout<<GridLogMessage<<"Norm local "<< norm2(A[8])<<std::endl;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -1,4 +1,3 @@
|
||||
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
@ -30,14 +29,13 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#define _GRID_FFT_H_
|
||||
|
||||
#ifdef HAVE_FFTW
|
||||
#ifdef USE_MKL
|
||||
#if defined(USE_MKL) || defined(GRID_SYCL)
|
||||
#include <fftw/fftw3.h>
|
||||
#else
|
||||
#include <fftw3.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class scalar> struct FFTW { };
|
||||
@ -138,7 +136,7 @@ public:
|
||||
flops=0;
|
||||
usec =0;
|
||||
Coordinate layout(Nd,1);
|
||||
sgrid = new GridCartesian(dimensions,layout,processors);
|
||||
sgrid = new GridCartesian(dimensions,layout,processors,*grid);
|
||||
};
|
||||
|
||||
~FFT ( void) {
|
||||
@ -184,14 +182,14 @@ public:
|
||||
pencil_gd[dim] = G*processors[dim];
|
||||
|
||||
// Pencil global vol LxLxGxLxL per node
|
||||
GridCartesian pencil_g(pencil_gd,layout,processors);
|
||||
GridCartesian pencil_g(pencil_gd,layout,processors,*vgrid);
|
||||
|
||||
// Construct pencils
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename sobj::scalar_type scalar;
|
||||
|
||||
Lattice<sobj> pgbuf(&pencil_g);
|
||||
auto pgbuf_v = pgbuf.View();
|
||||
autoView(pgbuf_v , pgbuf, CpuWrite);
|
||||
|
||||
typedef typename FFTW<scalar>::FFTW_scalar FFTW_scalar;
|
||||
typedef typename FFTW<scalar>::FFTW_plan FFTW_plan;
|
||||
@ -232,15 +230,18 @@ public:
|
||||
result = source;
|
||||
int pc = processor_coor[dim];
|
||||
for(int p=0;p<processors[dim];p++) {
|
||||
thread_for(idx, sgrid->lSites(),{
|
||||
{
|
||||
autoView(r_v,result,CpuRead);
|
||||
autoView(p_v,pgbuf,CpuWrite);
|
||||
thread_for(idx, sgrid->lSites(),{
|
||||
Coordinate cbuf(Nd);
|
||||
sobj s;
|
||||
sgrid->LocalIndexToLocalCoor(idx,cbuf);
|
||||
peekLocalSite(s,result,cbuf);
|
||||
peekLocalSite(s,r_v,cbuf);
|
||||
cbuf[dim]+=((pc+p) % processors[dim])*L;
|
||||
// cbuf[dim]+=p*L;
|
||||
pokeLocalSite(s,pgbuf,cbuf);
|
||||
});
|
||||
pokeLocalSite(s,p_v,cbuf);
|
||||
});
|
||||
}
|
||||
if (p != processors[dim] - 1) {
|
||||
result = Cshift(result,dim,L);
|
||||
}
|
||||
@ -269,15 +270,19 @@ public:
|
||||
flops+= flops_call*NN;
|
||||
|
||||
// writing out result
|
||||
thread_for(idx,sgrid->lSites(),{
|
||||
{
|
||||
autoView(pgbuf_v,pgbuf,CpuRead);
|
||||
autoView(result_v,result,CpuWrite);
|
||||
thread_for(idx,sgrid->lSites(),{
|
||||
Coordinate clbuf(Nd), cgbuf(Nd);
|
||||
sobj s;
|
||||
sgrid->LocalIndexToLocalCoor(idx,clbuf);
|
||||
cgbuf = clbuf;
|
||||
cgbuf[dim] = clbuf[dim]+L*pc;
|
||||
peekLocalSite(s,pgbuf,cgbuf);
|
||||
pokeLocalSite(s,result,clbuf);
|
||||
});
|
||||
peekLocalSite(s,pgbuf_v,cgbuf);
|
||||
pokeLocalSite(s,result_v,clbuf);
|
||||
});
|
||||
}
|
||||
result = result*div;
|
||||
|
||||
// destroying plan
|
||||
|
@ -43,7 +43,6 @@ NAMESPACE_BEGIN(Grid);
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class LinearOperatorBase {
|
||||
public:
|
||||
|
||||
// Support for coarsening to a multigrid
|
||||
virtual void OpDiag (const Field &in, Field &out) = 0; // Abstract base
|
||||
virtual void OpDir (const Field &in, Field &out,int dir,int disp) = 0; // Abstract base
|
||||
@ -53,6 +52,7 @@ public:
|
||||
virtual void AdjOp (const Field &in, Field &out) = 0; // Abstract base
|
||||
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0;
|
||||
virtual void HermOp(const Field &in, Field &out)=0;
|
||||
virtual ~LinearOperatorBase(){};
|
||||
};
|
||||
|
||||
|
||||
@ -94,7 +94,10 @@ public:
|
||||
_Mat.Mdag(in,out);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
_Mat.MdagM(in,out,n1,n2);
|
||||
_Mat.MdagM(in,out);
|
||||
ComplexD dot = innerProduct(in,out);
|
||||
n1=real(dot);
|
||||
n2=norm2(out);
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
_Mat.MdagM(in,out);
|
||||
@ -131,20 +134,55 @@ public:
|
||||
assert(0);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
_Mat.MdagM(in,out,n1,n2);
|
||||
out = out + _shift*in;
|
||||
|
||||
ComplexD dot;
|
||||
dot= innerProduct(in,out);
|
||||
HermOp(in,out);
|
||||
ComplexD dot = innerProduct(in,out);
|
||||
n1=real(dot);
|
||||
n2=norm2(out);
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
RealD n1,n2;
|
||||
HermOpAndNorm(in,out,n1,n2);
|
||||
_Mat.MdagM(in,out);
|
||||
out = out + _shift*in;
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// Create a shifted HermOp
|
||||
////////////////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
class ShiftedHermOpLinearOperator : public LinearOperatorBase<Field> {
|
||||
LinearOperatorBase<Field> &_Mat;
|
||||
RealD _shift;
|
||||
public:
|
||||
ShiftedHermOpLinearOperator(LinearOperatorBase<Field> &Mat,RealD shift): _Mat(Mat), _shift(shift){};
|
||||
// Support for coarsening to a multigrid
|
||||
void OpDiag (const Field &in, Field &out) {
|
||||
assert(0);
|
||||
}
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
assert(0);
|
||||
}
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){
|
||||
assert(0);
|
||||
};
|
||||
void Op (const Field &in, Field &out){
|
||||
HermOp(in,out);
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
HermOp(in,out);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
HermOp(in,out);
|
||||
ComplexD dot = innerProduct(in,out);
|
||||
n1=real(dot);
|
||||
n2=norm2(out);
|
||||
}
|
||||
void HermOp(const Field &in, Field &out){
|
||||
_Mat.HermOp(in,out);
|
||||
out = out + _shift*in;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// Wrap an already herm matrix
|
||||
////////////////////////////////////////////////////////////////////
|
||||
@ -170,7 +208,7 @@ public:
|
||||
_Mat.M(in,out);
|
||||
}
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
_Mat.M(in,out);
|
||||
HermOp(in,out);
|
||||
ComplexD dot= innerProduct(in,out); n1=real(dot);
|
||||
n2=norm2(out);
|
||||
}
|
||||
@ -208,220 +246,312 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// Even Odd Schur decomp operators; there are several
|
||||
// ways to introduce the even odd checkerboarding
|
||||
//////////////////////////////////////////////////////////
|
||||
//////////////////////////////////////////////////////////
|
||||
// Even Odd Schur decomp operators; there are several
|
||||
// ways to introduce the even odd checkerboarding
|
||||
//////////////////////////////////////////////////////////
|
||||
|
||||
template<class Field>
|
||||
class SchurOperatorBase : public LinearOperatorBase<Field> {
|
||||
public:
|
||||
virtual RealD Mpc (const Field &in, Field &out) =0;
|
||||
virtual RealD MpcDag (const Field &in, Field &out) =0;
|
||||
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
|
||||
Field tmp(in.Grid());
|
||||
tmp.Checkerboard() = in.Checkerboard();
|
||||
ni=Mpc(in,tmp);
|
||||
no=MpcDag(tmp,out);
|
||||
}
|
||||
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
MpcDagMpc(in,out,n1,n2);
|
||||
}
|
||||
virtual void HermOp(const Field &in, Field &out){
|
||||
RealD n1,n2;
|
||||
HermOpAndNorm(in,out,n1,n2);
|
||||
}
|
||||
void Op (const Field &in, Field &out){
|
||||
Mpc(in,out);
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
MpcDag(in,out);
|
||||
}
|
||||
// Support for coarsening to a multigrid
|
||||
void OpDiag (const Field &in, Field &out) {
|
||||
assert(0); // must coarsen the unpreconditioned system
|
||||
}
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
assert(0);
|
||||
}
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){
|
||||
assert(0);
|
||||
};
|
||||
};
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagMooeeOperator : public SchurOperatorBase<Field> {
|
||||
public:
|
||||
Matrix &_Mat;
|
||||
SchurDiagMooeeOperator (Matrix &Mat): _Mat(Mat){};
|
||||
virtual RealD Mpc (const Field &in, Field &out) {
|
||||
Field tmp(in.Grid());
|
||||
tmp.Checkerboard() = !in.Checkerboard();
|
||||
//std::cout <<"grid pointers: in._grid="<< in._grid << " out._grid=" << out._grid << " _Mat.Grid=" << _Mat.Grid() << " _Mat.RedBlackGrid=" << _Mat.RedBlackGrid() << std::endl;
|
||||
|
||||
_Mat.Meooe(in,tmp);
|
||||
_Mat.MooeeInv(tmp,out);
|
||||
_Mat.Meooe(out,tmp);
|
||||
|
||||
//std::cout << "cb in " << in.Checkerboard() << " cb out " << out.Checkerboard() << std::endl;
|
||||
_Mat.Mooee(in,out);
|
||||
return axpy_norm(out,-1.0,tmp,out);
|
||||
}
|
||||
virtual RealD MpcDag (const Field &in, Field &out){
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.MeooeDag(in,tmp);
|
||||
_Mat.MooeeInvDag(tmp,out);
|
||||
_Mat.MeooeDag(out,tmp);
|
||||
|
||||
_Mat.MooeeDag(in,out);
|
||||
return axpy_norm(out,-1.0,tmp,out);
|
||||
}
|
||||
};
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagOneOperator : public SchurOperatorBase<Field> {
|
||||
protected:
|
||||
Matrix &_Mat;
|
||||
public:
|
||||
SchurDiagOneOperator (Matrix &Mat): _Mat(Mat){};
|
||||
|
||||
virtual RealD Mpc (const Field &in, Field &out) {
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.Meooe(in,out);
|
||||
_Mat.MooeeInv(out,tmp);
|
||||
_Mat.Meooe(tmp,out);
|
||||
_Mat.MooeeInv(out,tmp);
|
||||
|
||||
return axpy_norm(out,-1.0,tmp,in);
|
||||
}
|
||||
virtual RealD MpcDag (const Field &in, Field &out){
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.MooeeInvDag(in,out);
|
||||
_Mat.MeooeDag(out,tmp);
|
||||
_Mat.MooeeInvDag(tmp,out);
|
||||
_Mat.MeooeDag(out,tmp);
|
||||
|
||||
return axpy_norm(out,-1.0,tmp,in);
|
||||
}
|
||||
};
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagTwoOperator : public SchurOperatorBase<Field> {
|
||||
protected:
|
||||
Matrix &_Mat;
|
||||
public:
|
||||
SchurDiagTwoOperator (Matrix &Mat): _Mat(Mat){};
|
||||
|
||||
virtual RealD Mpc (const Field &in, Field &out) {
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.MooeeInv(in,out);
|
||||
_Mat.Meooe(out,tmp);
|
||||
_Mat.MooeeInv(tmp,out);
|
||||
_Mat.Meooe(out,tmp);
|
||||
|
||||
return axpy_norm(out,-1.0,tmp,in);
|
||||
}
|
||||
virtual RealD MpcDag (const Field &in, Field &out){
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.MeooeDag(in,out);
|
||||
_Mat.MooeeInvDag(out,tmp);
|
||||
_Mat.MeooeDag(tmp,out);
|
||||
_Mat.MooeeInvDag(out,tmp);
|
||||
|
||||
return axpy_norm(out,-1.0,tmp,in);
|
||||
}
|
||||
};
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Left handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta --> ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
|
||||
// Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta --> ( 1 - Moe Mee^-1 Meo Moo^-1) phi=eta ; psi = Moo^-1 phi
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ;
|
||||
template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ;
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Staggered use
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Matrix,class Field>
|
||||
class SchurStaggeredOperator : public SchurOperatorBase<Field> {
|
||||
protected:
|
||||
Matrix &_Mat;
|
||||
Field tmp;
|
||||
RealD mass;
|
||||
double tMpc;
|
||||
double tIP;
|
||||
double tMeo;
|
||||
double taxpby_norm;
|
||||
uint64_t ncall;
|
||||
public:
|
||||
void Report(void)
|
||||
{
|
||||
std::cout << GridLogMessage << " HermOpAndNorm.Mpc "<< tMpc/ncall<<" usec "<<std::endl;
|
||||
std::cout << GridLogMessage << " HermOpAndNorm.IP "<< tIP /ncall<<" usec "<<std::endl;
|
||||
std::cout << GridLogMessage << " Mpc.MeoMoe "<< tMeo/ncall<<" usec "<<std::endl;
|
||||
std::cout << GridLogMessage << " Mpc.axpby_norm "<< taxpby_norm/ncall<<" usec "<<std::endl;
|
||||
}
|
||||
SchurStaggeredOperator (Matrix &Mat): _Mat(Mat), tmp(_Mat.RedBlackGrid())
|
||||
{
|
||||
assert( _Mat.isTrivialEE() );
|
||||
mass = _Mat.Mass();
|
||||
tMpc=0;
|
||||
tIP =0;
|
||||
tMeo=0;
|
||||
taxpby_norm=0;
|
||||
ncall=0;
|
||||
}
|
||||
template<class Field>
|
||||
class SchurOperatorBase : public LinearOperatorBase<Field> {
|
||||
public:
|
||||
virtual void Mpc (const Field &in, Field &out) =0;
|
||||
virtual void MpcDag (const Field &in, Field &out) =0;
|
||||
virtual void MpcDagMpc(const Field &in, Field &out) {
|
||||
Field tmp(in.Grid());
|
||||
tmp.Checkerboard() = in.Checkerboard();
|
||||
Mpc(in,tmp);
|
||||
MpcDag(tmp,out);
|
||||
}
|
||||
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
ncall++;
|
||||
tMpc-=usecond();
|
||||
n2 = Mpc(in,out);
|
||||
tMpc+=usecond();
|
||||
tIP-=usecond();
|
||||
ComplexD dot= innerProduct(in,out);
|
||||
tIP+=usecond();
|
||||
n1 = real(dot);
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
MpcDagMpc(in,out);
|
||||
ComplexD dot= innerProduct(in,out);
|
||||
n1=real(dot);
|
||||
n2=norm2(out);
|
||||
}
|
||||
virtual void HermOp(const Field &in, Field &out){
|
||||
ncall++;
|
||||
tMpc-=usecond();
|
||||
_Mat.Meooe(in,out);
|
||||
_Mat.Meooe(out,tmp);
|
||||
tMpc+=usecond();
|
||||
taxpby_norm-=usecond();
|
||||
axpby(out,-1.0,mass*mass,tmp,in);
|
||||
taxpby_norm+=usecond();
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
MpcDagMpc(in,out);
|
||||
}
|
||||
virtual RealD Mpc (const Field &in, Field &out)
|
||||
{
|
||||
void Op (const Field &in, Field &out){
|
||||
Mpc(in,out);
|
||||
}
|
||||
void AdjOp (const Field &in, Field &out){
|
||||
MpcDag(in,out);
|
||||
}
|
||||
// Support for coarsening to a multigrid
|
||||
void OpDiag (const Field &in, Field &out) {
|
||||
assert(0); // must coarsen the unpreconditioned system
|
||||
}
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp) {
|
||||
assert(0);
|
||||
}
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){
|
||||
assert(0);
|
||||
};
|
||||
};
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagMooeeOperator : public SchurOperatorBase<Field> {
|
||||
public:
|
||||
Matrix &_Mat;
|
||||
SchurDiagMooeeOperator (Matrix &Mat): _Mat(Mat){};
|
||||
virtual void Mpc (const Field &in, Field &out) {
|
||||
Field tmp(in.Grid());
|
||||
tmp.Checkerboard() = !in.Checkerboard();
|
||||
|
||||
_Mat.Meooe(in,tmp);
|
||||
_Mat.MooeeInv(tmp,out);
|
||||
_Mat.Meooe(out,tmp);
|
||||
_Mat.Mooee(in,out);
|
||||
axpy(out,-1.0,tmp,out);
|
||||
}
|
||||
virtual void MpcDag (const Field &in, Field &out){
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.MeooeDag(in,tmp);
|
||||
_Mat.MooeeInvDag(tmp,out);
|
||||
_Mat.MeooeDag(out,tmp);
|
||||
_Mat.MooeeDag(in,out);
|
||||
axpy(out,-1.0,tmp,out);
|
||||
}
|
||||
};
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagOneOperator : public SchurOperatorBase<Field> {
|
||||
protected:
|
||||
Matrix &_Mat;
|
||||
public:
|
||||
SchurDiagOneOperator (Matrix &Mat): _Mat(Mat){};
|
||||
|
||||
virtual void Mpc (const Field &in, Field &out) {
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.Meooe(in,out);
|
||||
_Mat.MooeeInv(out,tmp);
|
||||
_Mat.Meooe(tmp,out);
|
||||
_Mat.MooeeInv(out,tmp);
|
||||
axpy(out,-1.0,tmp,in);
|
||||
}
|
||||
virtual void MpcDag (const Field &in, Field &out){
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.MooeeInvDag(in,out);
|
||||
_Mat.MeooeDag(out,tmp);
|
||||
_Mat.MooeeInvDag(tmp,out);
|
||||
_Mat.MeooeDag(out,tmp);
|
||||
axpy(out,-1.0,tmp,in);
|
||||
}
|
||||
};
|
||||
template<class Matrix,class Field>
|
||||
class SchurDiagTwoOperator : public SchurOperatorBase<Field> {
|
||||
protected:
|
||||
Matrix &_Mat;
|
||||
public:
|
||||
SchurDiagTwoOperator (Matrix &Mat): _Mat(Mat){};
|
||||
|
||||
virtual void Mpc (const Field &in, Field &out) {
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.MooeeInv(in,out);
|
||||
_Mat.Meooe(out,tmp);
|
||||
_Mat.MooeeInv(tmp,out);
|
||||
_Mat.Meooe(out,tmp);
|
||||
|
||||
axpy(out,-1.0,tmp,in);
|
||||
}
|
||||
virtual void MpcDag (const Field &in, Field &out){
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.MeooeDag(in,out);
|
||||
_Mat.MooeeInvDag(out,tmp);
|
||||
_Mat.MeooeDag(tmp,out);
|
||||
_Mat.MooeeInvDag(out,tmp);
|
||||
|
||||
axpy(out,-1.0,tmp,in);
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field>
|
||||
class NonHermitianSchurOperatorBase : public LinearOperatorBase<Field>
|
||||
{
|
||||
public:
|
||||
virtual void Mpc (const Field& in, Field& out) = 0;
|
||||
virtual void MpcDag (const Field& in, Field& out) = 0;
|
||||
virtual void MpcDagMpc(const Field& in, Field& out) {
|
||||
Field tmp(in.Grid());
|
||||
tmp.Checkerboard() = in.Checkerboard();
|
||||
Mpc(in,tmp);
|
||||
MpcDag(tmp,out);
|
||||
}
|
||||
virtual void HermOpAndNorm(const Field& in, Field& out, RealD& n1, RealD& n2) {
|
||||
assert(0);
|
||||
}
|
||||
virtual void HermOp(const Field& in, Field& out) {
|
||||
assert(0);
|
||||
}
|
||||
void Op(const Field& in, Field& out) {
|
||||
Mpc(in, out);
|
||||
}
|
||||
void AdjOp(const Field& in, Field& out) {
|
||||
MpcDag(in, out);
|
||||
}
|
||||
// Support for coarsening to a multigrid
|
||||
void OpDiag(const Field& in, Field& out) {
|
||||
assert(0); // must coarsen the unpreconditioned system
|
||||
}
|
||||
void OpDir(const Field& in, Field& out, int dir, int disp) {
|
||||
assert(0);
|
||||
}
|
||||
void OpDirAll(const Field& in, std::vector<Field>& out){
|
||||
assert(0);
|
||||
};
|
||||
};
|
||||
|
||||
template<class Matrix, class Field>
|
||||
class NonHermitianSchurDiagMooeeOperator : public NonHermitianSchurOperatorBase<Field>
|
||||
{
|
||||
public:
|
||||
Matrix& _Mat;
|
||||
NonHermitianSchurDiagMooeeOperator(Matrix& Mat): _Mat(Mat){};
|
||||
virtual void Mpc(const Field& in, Field& out) {
|
||||
Field tmp(in.Grid());
|
||||
tmp.Checkerboard() = !in.Checkerboard();
|
||||
|
||||
_Mat.Meooe(in, tmp);
|
||||
_Mat.MooeeInv(tmp, out);
|
||||
_Mat.Meooe(out, tmp);
|
||||
|
||||
_Mat.Mooee(in, out);
|
||||
|
||||
axpy(out, -1.0, tmp, out);
|
||||
}
|
||||
virtual void MpcDag(const Field& in, Field& out) {
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.MeooeDag(in, tmp);
|
||||
_Mat.MooeeInvDag(tmp, out);
|
||||
_Mat.MeooeDag(out, tmp);
|
||||
|
||||
_Mat.MooeeDag(in, out);
|
||||
|
||||
axpy(out, -1.0, tmp, out);
|
||||
}
|
||||
};
|
||||
|
||||
template<class Matrix,class Field>
|
||||
class NonHermitianSchurDiagOneOperator : public NonHermitianSchurOperatorBase<Field>
|
||||
{
|
||||
protected:
|
||||
Matrix &_Mat;
|
||||
|
||||
public:
|
||||
NonHermitianSchurDiagOneOperator (Matrix& Mat): _Mat(Mat){};
|
||||
virtual void Mpc(const Field& in, Field& out) {
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.Meooe(in, out);
|
||||
_Mat.MooeeInv(out, tmp);
|
||||
_Mat.Meooe(tmp, out);
|
||||
_Mat.MooeeInv(out, tmp);
|
||||
|
||||
axpy(out, -1.0, tmp, in);
|
||||
}
|
||||
virtual void MpcDag(const Field& in, Field& out) {
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.MooeeInvDag(in, out);
|
||||
_Mat.MeooeDag(out, tmp);
|
||||
_Mat.MooeeInvDag(tmp, out);
|
||||
_Mat.MeooeDag(out, tmp);
|
||||
|
||||
axpy(out, -1.0, tmp, in);
|
||||
}
|
||||
};
|
||||
|
||||
template<class Matrix, class Field>
|
||||
class NonHermitianSchurDiagTwoOperator : public NonHermitianSchurOperatorBase<Field>
|
||||
{
|
||||
protected:
|
||||
Matrix& _Mat;
|
||||
|
||||
public:
|
||||
NonHermitianSchurDiagTwoOperator(Matrix& Mat): _Mat(Mat){};
|
||||
|
||||
virtual void Mpc(const Field& in, Field& out) {
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.MooeeInv(in, out);
|
||||
_Mat.Meooe(out, tmp);
|
||||
_Mat.MooeeInv(tmp, out);
|
||||
_Mat.Meooe(out, tmp);
|
||||
|
||||
axpy(out, -1.0, tmp, in);
|
||||
}
|
||||
virtual void MpcDag(const Field& in, Field& out) {
|
||||
Field tmp(in.Grid());
|
||||
|
||||
_Mat.MeooeDag(in, out);
|
||||
_Mat.MooeeInvDag(out, tmp);
|
||||
_Mat.MeooeDag(tmp, out);
|
||||
_Mat.MooeeInvDag(out, tmp);
|
||||
|
||||
axpy(out, -1.0, tmp, in);
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Left handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) psi = eta --> ( 1 - Moo^-1 Moe Mee^-1 Meo ) psi = Moo^-1 eta
|
||||
// Right handed Moo^-1 ; (Moo - Moe Mee^-1 Meo) Moo^-1 Moo psi = eta --> ( 1 - Moe Mee^-1 Meo Moo^-1) phi=eta ; psi = Moo^-1 phi
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Matrix,class Field> using SchurDiagOneRH = SchurDiagTwoOperator<Matrix,Field> ;
|
||||
template<class Matrix,class Field> using SchurDiagOneLH = SchurDiagOneOperator<Matrix,Field> ;
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Staggered use
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Matrix,class Field>
|
||||
class SchurStaggeredOperator : public SchurOperatorBase<Field> {
|
||||
protected:
|
||||
Matrix &_Mat;
|
||||
Field tmp;
|
||||
RealD mass;
|
||||
public:
|
||||
SchurStaggeredOperator (Matrix &Mat): _Mat(Mat), tmp(_Mat.RedBlackGrid())
|
||||
{
|
||||
assert( _Mat.isTrivialEE() );
|
||||
mass = _Mat.Mass();
|
||||
}
|
||||
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
Mpc(in,out);
|
||||
ComplexD dot= innerProduct(in,out);
|
||||
n1 = real(dot);
|
||||
n2 =0.0;
|
||||
}
|
||||
virtual void HermOp(const Field &in, Field &out){
|
||||
Mpc(in,out);
|
||||
// _Mat.Meooe(in,out);
|
||||
// _Mat.Meooe(out,tmp);
|
||||
// axpby(out,-1.0,mass*mass,tmp,in);
|
||||
}
|
||||
virtual void Mpc (const Field &in, Field &out)
|
||||
{
|
||||
Field tmp(in.Grid());
|
||||
Field tmp2(in.Grid());
|
||||
|
||||
// _Mat.Mooee(in,out);
|
||||
// _Mat.Mooee(out,tmp);
|
||||
|
||||
// std::cout << GridLogIterative << " HermOp.Mpc "<<std::endl;
|
||||
_Mat.Mooee(in,out);
|
||||
_Mat.Mooee(out,tmp);
|
||||
// std::cout << GridLogIterative << " HermOp.MooeeMooee "<<std::endl;
|
||||
|
||||
tMeo-=usecond();
|
||||
_Mat.Meooe(in,out);
|
||||
_Mat.Meooe(out,tmp);
|
||||
tMeo+=usecond();
|
||||
taxpby_norm-=usecond();
|
||||
RealD nn=axpby_norm(out,-1.0,mass*mass,tmp,in);
|
||||
taxpby_norm+=usecond();
|
||||
return nn;
|
||||
axpby(out,-1.0,mass*mass,tmp,in);
|
||||
}
|
||||
virtual RealD MpcDag (const Field &in, Field &out){
|
||||
return Mpc(in,out);
|
||||
virtual void MpcDag (const Field &in, Field &out){
|
||||
Mpc(in,out);
|
||||
}
|
||||
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
|
||||
virtual void MpcDagMpc(const Field &in, Field &out) {
|
||||
assert(0);// Never need with staggered
|
||||
}
|
||||
};
|
||||
template<class Matrix,class Field> using SchurStagOperator = SchurStaggeredOperator<Matrix,Field>;
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Base classes for functions of operators
|
||||
/////////////////////////////////////////////////////////////
|
||||
@ -434,11 +564,23 @@ public:
|
||||
(*this)(Linop,in[k],out[k]);
|
||||
}
|
||||
};
|
||||
virtual ~OperatorFunction(){};
|
||||
};
|
||||
|
||||
template<class Field> class LinearFunction {
|
||||
public:
|
||||
virtual void operator() (const Field &in, Field &out) = 0;
|
||||
|
||||
virtual void operator() (const std::vector<Field> &in, std::vector<Field> &out)
|
||||
{
|
||||
assert(in.size() == out.size());
|
||||
|
||||
for (unsigned int i = 0; i < in.size(); ++i)
|
||||
{
|
||||
(*this)(in[i], out[i]);
|
||||
}
|
||||
}
|
||||
virtual ~LinearFunction(){};
|
||||
};
|
||||
|
||||
template<class Field> class IdentityLinearFunction : public LinearFunction<Field> {
|
||||
@ -484,6 +626,7 @@ class HermOpOperatorFunction : public OperatorFunction<Field> {
|
||||
template<typename Field>
|
||||
class PlainHermOp : public LinearFunction<Field> {
|
||||
public:
|
||||
using LinearFunction<Field>::operator();
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
|
||||
PlainHermOp(LinearOperatorBase<Field>& linop) : _Linop(linop)
|
||||
@ -497,6 +640,7 @@ public:
|
||||
template<typename Field>
|
||||
class FunctionHermOp : public LinearFunction<Field> {
|
||||
public:
|
||||
using LinearFunction<Field>::operator();
|
||||
OperatorFunction<Field> & _poly;
|
||||
LinearOperatorBase<Field> &_Linop;
|
||||
|
||||
|
@ -30,13 +30,19 @@ Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Field> class Preconditioner : public LinearFunction<Field> {
|
||||
template<class Field> using Preconditioner = LinearFunction<Field> ;
|
||||
|
||||
/*
|
||||
template<class Field> class Preconditioner : public LinearFunction<Field> {
|
||||
using LinearFunction<Field>::operator();
|
||||
virtual void operator()(const Field &src, Field & psi)=0;
|
||||
};
|
||||
*/
|
||||
|
||||
template<class Field> class TrivialPrecon : public Preconditioner<Field> {
|
||||
public:
|
||||
void operator()(const Field &src, Field & psi){
|
||||
using Preconditioner<Field>::operator();
|
||||
virtual void operator()(const Field &src, Field & psi){
|
||||
psi = src;
|
||||
}
|
||||
TrivialPrecon(void){};
|
||||
|
@ -38,20 +38,17 @@ template<class Field> class SparseMatrixBase {
|
||||
public:
|
||||
virtual GridBase *Grid(void) =0;
|
||||
// Full checkerboar operations
|
||||
virtual RealD M (const Field &in, Field &out)=0;
|
||||
virtual RealD Mdag (const Field &in, Field &out)=0;
|
||||
virtual void MdagM(const Field &in, Field &out,RealD &ni,RealD &no) {
|
||||
Field tmp (in.Grid());
|
||||
ni=M(in,tmp);
|
||||
no=Mdag(tmp,out);
|
||||
}
|
||||
virtual void M (const Field &in, Field &out)=0;
|
||||
virtual void Mdag (const Field &in, Field &out)=0;
|
||||
virtual void MdagM(const Field &in, Field &out) {
|
||||
RealD ni, no;
|
||||
MdagM(in,out,ni,no);
|
||||
Field tmp (in.Grid());
|
||||
M(in,tmp);
|
||||
Mdag(tmp,out);
|
||||
}
|
||||
virtual void Mdiag (const Field &in, Field &out)=0;
|
||||
virtual void Mdir (const Field &in, Field &out,int dir, int disp)=0;
|
||||
virtual void MdirAll (const Field &in, std::vector<Field> &out)=0;
|
||||
virtual ~SparseMatrixBase() {};
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -76,7 +73,7 @@ public:
|
||||
virtual void MeooeDag (const Field &in, Field &out)=0;
|
||||
virtual void MooeeDag (const Field &in, Field &out)=0;
|
||||
virtual void MooeeInvDag (const Field &in, Field &out)=0;
|
||||
|
||||
virtual ~CheckerBoardedSparseMatrixBase() {};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -90,9 +90,8 @@ public:
|
||||
order=_order;
|
||||
|
||||
if(order < 2) exit(-1);
|
||||
Coeffs.resize(order);
|
||||
Coeffs.assign(0.,order);
|
||||
Coeffs[order-1] = 1.;
|
||||
Coeffs.resize(order,0.0);
|
||||
Coeffs[order-1] = 1.0;
|
||||
};
|
||||
|
||||
// PB - more efficient low pass drops high modes above the low as 1/x uses all Chebyshev's.
|
||||
@ -234,10 +233,8 @@ public:
|
||||
|
||||
GridBase *grid=in.Grid();
|
||||
|
||||
// std::cout << "Chevyshef(): in.Grid()="<<in.Grid()<<std::endl;
|
||||
//std::cout <<" Linop.Grid()="<<Linop.Grid()<<"Linop.RedBlackGrid()="<<Linop.RedBlackGrid()<<std::endl;
|
||||
|
||||
int vol=grid->gSites();
|
||||
typedef typename Field::vector_type vector_type;
|
||||
|
||||
Field T0(grid); T0 = in;
|
||||
Field T1(grid);
|
||||
@ -258,14 +255,14 @@ public:
|
||||
// out = ()*T0 + Coeffs[1]*T1;
|
||||
axpby(out,0.5*Coeffs[0],Coeffs[1],T0,T1);
|
||||
for(int n=2;n<order;n++){
|
||||
|
||||
|
||||
Linop.HermOp(*Tn,y);
|
||||
// y=xscale*y+mscale*(*Tn);
|
||||
// *Tnp=2.0*y-(*Tnm);
|
||||
// out=out+Coeffs[n]* (*Tnp);
|
||||
axpby(y,xscale,mscale,y,(*Tn));
|
||||
axpby(*Tnp,2.0,-1.0,y,(*Tnm));
|
||||
axpy(out,Coeffs[n],*Tnp,out);
|
||||
if ( Coeffs[n] != 0.0) {
|
||||
axpy(out,Coeffs[n],*Tnp,out);
|
||||
}
|
||||
|
||||
// Cycle pointers to avoid copies
|
||||
Field *swizzle = Tnm;
|
||||
Tnm =Tn;
|
||||
|
@ -40,7 +40,7 @@ public:
|
||||
RealD norm;
|
||||
RealD lo,hi;
|
||||
|
||||
MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), lo(_lo), hi(_hi) {;};
|
||||
MultiShiftFunction(int n,RealD _lo,RealD _hi): poles(n), residues(n), tolerances(n), lo(_lo), hi(_hi) {;};
|
||||
RealD approx(RealD x);
|
||||
void csv(std::ostream &out);
|
||||
void gnuplot(std::ostream &out);
|
||||
|
473
Grid/algorithms/approx/RemezGeneral.cc
Normal file
473
Grid/algorithms/approx/RemezGeneral.cc
Normal file
@ -0,0 +1,473 @@
|
||||
#include<math.h>
|
||||
#include<stdio.h>
|
||||
#include<stdlib.h>
|
||||
#include<string>
|
||||
#include<iostream>
|
||||
#include<iomanip>
|
||||
#include<cassert>
|
||||
|
||||
#include<Grid/algorithms/approx/RemezGeneral.h>
|
||||
|
||||
|
||||
// Constructor
|
||||
AlgRemezGeneral::AlgRemezGeneral(double lower, double upper, long precision,
|
||||
bigfloat (*f)(bigfloat x, void *data), void *data): f(f),
|
||||
data(data),
|
||||
prec(precision),
|
||||
apstrt(lower), apend(upper), apwidt(upper - lower),
|
||||
n(0), d(0), pow_n(0), pow_d(0)
|
||||
{
|
||||
bigfloat::setDefaultPrecision(prec);
|
||||
|
||||
std::cout<<"Approximation bounds are ["<<apstrt<<","<<apend<<"]\n";
|
||||
std::cout<<"Precision of arithmetic is "<<precision<<std::endl;
|
||||
}
|
||||
|
||||
//Determine the properties of the numerator and denominator polynomials
|
||||
void AlgRemezGeneral::setupPolyProperties(int num_degree, int den_degree, PolyType num_type_in, PolyType den_type_in){
|
||||
pow_n = num_degree;
|
||||
pow_d = den_degree;
|
||||
|
||||
if(pow_n % 2 == 0 && num_type_in == PolyType::Odd) assert(0);
|
||||
if(pow_n % 2 == 1 && num_type_in == PolyType::Even) assert(0);
|
||||
|
||||
if(pow_d % 2 == 0 && den_type_in == PolyType::Odd) assert(0);
|
||||
if(pow_d % 2 == 1 && den_type_in == PolyType::Even) assert(0);
|
||||
|
||||
num_type = num_type_in;
|
||||
den_type = den_type_in;
|
||||
|
||||
num_pows.resize(pow_n+1);
|
||||
den_pows.resize(pow_d+1);
|
||||
|
||||
int n_in = 0;
|
||||
bool odd = num_type == PolyType::Full || num_type == PolyType::Odd;
|
||||
bool even = num_type == PolyType::Full || num_type == PolyType::Even;
|
||||
for(int i=0;i<=pow_n;i++){
|
||||
num_pows[i] = -1;
|
||||
if(i % 2 == 0 && even) num_pows[i] = n_in++;
|
||||
if(i % 2 == 1 && odd) num_pows[i] = n_in++;
|
||||
}
|
||||
|
||||
std::cout << n_in << " terms in numerator" << std::endl;
|
||||
--n_in; //power is 1 less than the number of terms, eg pow=1 a x^1 + b x^0
|
||||
|
||||
int d_in = 0;
|
||||
odd = den_type == PolyType::Full || den_type == PolyType::Odd;
|
||||
even = den_type == PolyType::Full || den_type == PolyType::Even;
|
||||
for(int i=0;i<=pow_d;i++){
|
||||
den_pows[i] = -1;
|
||||
if(i % 2 == 0 && even) den_pows[i] = d_in++;
|
||||
if(i % 2 == 1 && odd) den_pows[i] = d_in++;
|
||||
}
|
||||
|
||||
std::cout << d_in << " terms in denominator" << std::endl;
|
||||
--d_in;
|
||||
|
||||
n = n_in;
|
||||
d = d_in;
|
||||
}
|
||||
|
||||
//Setup algorithm
|
||||
void AlgRemezGeneral::reinitializeAlgorithm(){
|
||||
spread = 1.0e37;
|
||||
iter = 0;
|
||||
|
||||
neq = n + d + 1; //not +2 because highest-power term in denominator is fixed to 1
|
||||
|
||||
param.resize(neq);
|
||||
yy.resize(neq+1);
|
||||
|
||||
//Initialize linear equation temporaries
|
||||
A.resize(neq*neq);
|
||||
B.resize(neq);
|
||||
IPS.resize(neq);
|
||||
|
||||
//Initialize maximum and minimum errors
|
||||
xx.resize(neq+2);
|
||||
mm.resize(neq+1);
|
||||
initialGuess();
|
||||
|
||||
//Initialize search steps
|
||||
step.resize(neq+1);
|
||||
stpini();
|
||||
}
|
||||
|
||||
double AlgRemezGeneral::generateApprox(const int num_degree, const int den_degree,
|
||||
const PolyType num_type_in, const PolyType den_type_in,
|
||||
const double _tolerance, const int report_freq){
|
||||
//Setup the properties of the polynomial
|
||||
setupPolyProperties(num_degree, den_degree, num_type_in, den_type_in);
|
||||
|
||||
//Setup the algorithm
|
||||
reinitializeAlgorithm();
|
||||
|
||||
bigfloat tolerance = _tolerance;
|
||||
|
||||
//Iterate until convergance
|
||||
while (spread > tolerance) {
|
||||
if (iter++ % report_freq==0)
|
||||
std::cout<<"Iteration " <<iter-1<<" spread "<<(double)spread<<" delta "<<(double)delta << std::endl;
|
||||
|
||||
equations();
|
||||
if (delta < tolerance) {
|
||||
std::cout<<"Iteration " << iter-1 << " delta too small (" << delta << "<" << tolerance << "), try increasing precision\n";
|
||||
assert(0);
|
||||
};
|
||||
assert( delta>= tolerance );
|
||||
|
||||
search();
|
||||
}
|
||||
|
||||
int sign;
|
||||
double error = (double)getErr(mm[0],&sign);
|
||||
std::cout<<"Converged at "<<iter<<" iterations; error = "<<error<<std::endl;
|
||||
|
||||
// Return the maximum error in the approximation
|
||||
return error;
|
||||
}
|
||||
|
||||
|
||||
// Initial values of maximal and minimal errors
|
||||
void AlgRemezGeneral::initialGuess(){
|
||||
// Supply initial guesses for solution points
|
||||
long ncheb = neq; // Degree of Chebyshev error estimate
|
||||
|
||||
// Find ncheb+1 extrema of Chebyshev polynomial
|
||||
bigfloat a = ncheb;
|
||||
bigfloat r;
|
||||
|
||||
mm[0] = apstrt;
|
||||
for (long i = 1; i < ncheb; i++) {
|
||||
r = 0.5 * (1 - cos((M_PI * i)/(double) a));
|
||||
//r *= sqrt_bf(r);
|
||||
r = (exp((double)r)-1.0)/(exp(1.0)-1.0);
|
||||
mm[i] = apstrt + r * apwidt;
|
||||
}
|
||||
mm[ncheb] = apend;
|
||||
|
||||
a = 2.0 * ncheb;
|
||||
for (long i = 0; i <= ncheb; i++) {
|
||||
r = 0.5 * (1 - cos(M_PI * (2*i+1)/(double) a));
|
||||
//r *= sqrt_bf(r); // Squeeze to low end of interval
|
||||
r = (exp((double)r)-1.0)/(exp(1.0)-1.0);
|
||||
xx[i] = apstrt + r * apwidt;
|
||||
}
|
||||
}
|
||||
|
||||
// Initialise step sizes
|
||||
void AlgRemezGeneral::stpini(){
|
||||
xx[neq+1] = apend;
|
||||
delta = 0.25;
|
||||
step[0] = xx[0] - apstrt;
|
||||
for (int i = 1; i < neq; i++) step[i] = xx[i] - xx[i-1];
|
||||
step[neq] = step[neq-1];
|
||||
}
|
||||
|
||||
// Search for error maxima and minima
|
||||
void AlgRemezGeneral::search(){
|
||||
bigfloat a, q, xm, ym, xn, yn, xx1;
|
||||
int emsign, ensign, steps;
|
||||
|
||||
int meq = neq + 1;
|
||||
|
||||
bigfloat eclose = 1.0e30;
|
||||
bigfloat farther = 0l;
|
||||
|
||||
bigfloat xx0 = apstrt;
|
||||
|
||||
for (int i = 0; i < meq; i++) {
|
||||
steps = 0;
|
||||
xx1 = xx[i]; // Next zero
|
||||
if (i == meq-1) xx1 = apend;
|
||||
xm = mm[i];
|
||||
ym = getErr(xm,&emsign);
|
||||
q = step[i];
|
||||
xn = xm + q;
|
||||
if (xn < xx0 || xn >= xx1) { // Cannot skip over adjacent boundaries
|
||||
q = -q;
|
||||
xn = xm;
|
||||
yn = ym;
|
||||
ensign = emsign;
|
||||
} else {
|
||||
yn = getErr(xn,&ensign);
|
||||
if (yn < ym) {
|
||||
q = -q;
|
||||
xn = xm;
|
||||
yn = ym;
|
||||
ensign = emsign;
|
||||
}
|
||||
}
|
||||
|
||||
while(yn >= ym) { // March until error becomes smaller.
|
||||
if (++steps > 10)
|
||||
break;
|
||||
|
||||
ym = yn;
|
||||
xm = xn;
|
||||
emsign = ensign;
|
||||
a = xm + q;
|
||||
if (a == xm || a <= xx0 || a >= xx1)
|
||||
break;// Must not skip over the zeros either side.
|
||||
|
||||
xn = a;
|
||||
yn = getErr(xn,&ensign);
|
||||
}
|
||||
|
||||
mm[i] = xm; // Position of maximum
|
||||
yy[i] = ym; // Value of maximum
|
||||
|
||||
if (eclose > ym) eclose = ym;
|
||||
if (farther < ym) farther = ym;
|
||||
|
||||
xx0 = xx1; // Walk to next zero.
|
||||
} // end of search loop
|
||||
|
||||
q = (farther - eclose); // Decrease step size if error spread increased
|
||||
|
||||
if (eclose != 0.0) q /= eclose; // Relative error spread
|
||||
|
||||
if (q >= spread)
|
||||
delta *= 0.5; // Spread is increasing; decrease step size
|
||||
|
||||
spread = q;
|
||||
|
||||
for (int i = 0; i < neq; i++) {
|
||||
q = yy[i+1];
|
||||
if (q != 0.0) q = yy[i] / q - (bigfloat)1l;
|
||||
else q = 0.0625;
|
||||
if (q > (bigfloat)0.25) q = 0.25;
|
||||
q *= mm[i+1] - mm[i];
|
||||
step[i] = q * delta;
|
||||
}
|
||||
step[neq] = step[neq-1];
|
||||
|
||||
for (int i = 0; i < neq; i++) { // Insert new locations for the zeros.
|
||||
xm = xx[i] - step[i];
|
||||
|
||||
if (xm <= apstrt)
|
||||
continue;
|
||||
|
||||
if (xm >= apend)
|
||||
continue;
|
||||
|
||||
if (xm <= mm[i])
|
||||
xm = (bigfloat)0.5 * (mm[i] + xx[i]);
|
||||
|
||||
if (xm >= mm[i+1])
|
||||
xm = (bigfloat)0.5 * (mm[i+1] + xx[i]);
|
||||
|
||||
xx[i] = xm;
|
||||
}
|
||||
}
|
||||
|
||||
// Solve the equations
|
||||
void AlgRemezGeneral::equations(){
|
||||
bigfloat x, y, z;
|
||||
bigfloat *aa;
|
||||
|
||||
for (int i = 0; i < neq; i++) { // set up the equations for solution by simq()
|
||||
int ip = neq * i; // offset to 1st element of this row of matrix
|
||||
x = xx[i]; // the guess for this row
|
||||
y = func(x); // right-hand-side vector
|
||||
|
||||
z = (bigfloat)1l;
|
||||
aa = A.data()+ip;
|
||||
int t = 0;
|
||||
for (int j = 0; j <= pow_n; j++) {
|
||||
if(num_pows[j] != -1){ *aa++ = z; t++; }
|
||||
z *= x;
|
||||
}
|
||||
assert(t == n+1);
|
||||
|
||||
z = (bigfloat)1l;
|
||||
t = 0;
|
||||
for (int j = 0; j < pow_d; j++) {
|
||||
if(den_pows[j] != -1){ *aa++ = -y * z; t++; }
|
||||
z *= x;
|
||||
}
|
||||
assert(t == d);
|
||||
|
||||
B[i] = y * z; // Right hand side vector
|
||||
}
|
||||
|
||||
// Solve the simultaneous linear equations.
|
||||
if (simq()){
|
||||
std::cout<<"simq failed\n";
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Evaluate the rational form P(x)/Q(x) using coefficients
|
||||
// from the solution vector param
|
||||
bigfloat AlgRemezGeneral::approx(const bigfloat x) const{
|
||||
// Work backwards toward the constant term.
|
||||
int c = n;
|
||||
bigfloat yn = param[c--]; // Highest order numerator coefficient
|
||||
for (int i = pow_n-1; i >= 0; i--) yn = x * yn + (num_pows[i] != -1 ? param[c--] : bigfloat(0l));
|
||||
|
||||
c = n+d;
|
||||
bigfloat yd = 1l; //Highest degree coefficient is 1.0
|
||||
for (int i = pow_d-1; i >= 0; i--) yd = x * yd + (den_pows[i] != -1 ? param[c--] : bigfloat(0l));
|
||||
|
||||
return(yn/yd);
|
||||
}
|
||||
|
||||
// Compute size and sign of the approximation error at x
|
||||
bigfloat AlgRemezGeneral::getErr(bigfloat x, int *sign) const{
|
||||
bigfloat f = func(x);
|
||||
bigfloat e = approx(x) - f;
|
||||
if (f != 0) e /= f;
|
||||
if (e < (bigfloat)0.0) {
|
||||
*sign = -1;
|
||||
e = -e;
|
||||
}
|
||||
else *sign = 1;
|
||||
|
||||
return(e);
|
||||
}
|
||||
|
||||
// Solve the system AX=B
|
||||
int AlgRemezGeneral::simq(){
|
||||
|
||||
int ip, ipj, ipk, ipn;
|
||||
int idxpiv;
|
||||
int kp, kp1, kpk, kpn;
|
||||
int nip, nkp;
|
||||
bigfloat em, q, rownrm, big, size, pivot, sum;
|
||||
bigfloat *aa;
|
||||
bigfloat *X = param.data();
|
||||
|
||||
int n = neq;
|
||||
int nm1 = n - 1;
|
||||
// Initialize IPS and X
|
||||
|
||||
int ij = 0;
|
||||
for (int i = 0; i < n; i++) {
|
||||
IPS[i] = i;
|
||||
rownrm = 0.0;
|
||||
for(int j = 0; j < n; j++) {
|
||||
q = abs_bf(A[ij]);
|
||||
if(rownrm < q) rownrm = q;
|
||||
++ij;
|
||||
}
|
||||
if (rownrm == (bigfloat)0l) {
|
||||
std::cout<<"simq rownrm=0\n";
|
||||
return(1);
|
||||
}
|
||||
X[i] = (bigfloat)1.0 / rownrm;
|
||||
}
|
||||
|
||||
for (int k = 0; k < nm1; k++) {
|
||||
big = 0.0;
|
||||
idxpiv = 0;
|
||||
|
||||
for (int i = k; i < n; i++) {
|
||||
ip = IPS[i];
|
||||
ipk = n*ip + k;
|
||||
size = abs_bf(A[ipk]) * X[ip];
|
||||
if (size > big) {
|
||||
big = size;
|
||||
idxpiv = i;
|
||||
}
|
||||
}
|
||||
|
||||
if (big == (bigfloat)0l) {
|
||||
std::cout<<"simq big=0\n";
|
||||
return(2);
|
||||
}
|
||||
if (idxpiv != k) {
|
||||
int j = IPS[k];
|
||||
IPS[k] = IPS[idxpiv];
|
||||
IPS[idxpiv] = j;
|
||||
}
|
||||
kp = IPS[k];
|
||||
kpk = n*kp + k;
|
||||
pivot = A[kpk];
|
||||
kp1 = k+1;
|
||||
for (int i = kp1; i < n; i++) {
|
||||
ip = IPS[i];
|
||||
ipk = n*ip + k;
|
||||
em = -A[ipk] / pivot;
|
||||
A[ipk] = -em;
|
||||
nip = n*ip;
|
||||
nkp = n*kp;
|
||||
aa = A.data()+nkp+kp1;
|
||||
for (int j = kp1; j < n; j++) {
|
||||
ipj = nip + j;
|
||||
A[ipj] = A[ipj] + em * *aa++;
|
||||
}
|
||||
}
|
||||
}
|
||||
kpn = n * IPS[n-1] + n - 1; // last element of IPS[n] th row
|
||||
if (A[kpn] == (bigfloat)0l) {
|
||||
std::cout<<"simq A[kpn]=0\n";
|
||||
return(3);
|
||||
}
|
||||
|
||||
|
||||
ip = IPS[0];
|
||||
X[0] = B[ip];
|
||||
for (int i = 1; i < n; i++) {
|
||||
ip = IPS[i];
|
||||
ipj = n * ip;
|
||||
sum = 0.0;
|
||||
for (int j = 0; j < i; j++) {
|
||||
sum += A[ipj] * X[j];
|
||||
++ipj;
|
||||
}
|
||||
X[i] = B[ip] - sum;
|
||||
}
|
||||
|
||||
ipn = n * IPS[n-1] + n - 1;
|
||||
X[n-1] = X[n-1] / A[ipn];
|
||||
|
||||
for (int iback = 1; iback < n; iback++) {
|
||||
//i goes (n-1),...,1
|
||||
int i = nm1 - iback;
|
||||
ip = IPS[i];
|
||||
nip = n*ip;
|
||||
sum = 0.0;
|
||||
aa = A.data()+nip+i+1;
|
||||
for (int j= i + 1; j < n; j++)
|
||||
sum += *aa++ * X[j];
|
||||
X[i] = (X[i] - sum) / A[nip+i];
|
||||
}
|
||||
|
||||
return(0);
|
||||
}
|
||||
|
||||
void AlgRemezGeneral::csv(std::ostream & os) const{
|
||||
os << "Numerator" << std::endl;
|
||||
for(int i=0;i<=pow_n;i++){
|
||||
os << getCoeffNum(i) << "*x^" << i;
|
||||
if(i!=pow_n) os << " + ";
|
||||
}
|
||||
os << std::endl;
|
||||
|
||||
os << "Denominator" << std::endl;
|
||||
for(int i=0;i<=pow_d;i++){
|
||||
os << getCoeffDen(i) << "*x^" << i;
|
||||
if(i!=pow_d) os << " + ";
|
||||
}
|
||||
os << std::endl;
|
||||
|
||||
//For a true minimax solution the errors should all be equal and the signs should oscillate +-+-+- etc
|
||||
int sign;
|
||||
os << "Errors at maxima: coordinate, error, (sign)" << std::endl;
|
||||
for(int i=0;i<neq+1;i++){
|
||||
os << mm[i] << " " << getErr(mm[i],&sign) << " (" << sign << ")" << std::endl;
|
||||
}
|
||||
|
||||
os << "Scan over range:" << std::endl;
|
||||
int npt = 60;
|
||||
bigfloat dlt = (apend - apstrt)/bigfloat(npt-1);
|
||||
|
||||
for (bigfloat x=apstrt; x<=apend; x = x + dlt) {
|
||||
double f = evaluateFunc(x);
|
||||
double r = evaluateApprox(x);
|
||||
os<< x<<","<<r<<","<<f<<","<<r-f<<std::endl;
|
||||
}
|
||||
return;
|
||||
}
|
170
Grid/algorithms/approx/RemezGeneral.h
Normal file
170
Grid/algorithms/approx/RemezGeneral.h
Normal file
@ -0,0 +1,170 @@
|
||||
/*
|
||||
C.Kelly Jan 2020 based on implementation by M. Clark May 2005
|
||||
|
||||
AlgRemezGeneral is an implementation of the Remez algorithm for approximating an arbitrary function by a rational polynomial
|
||||
It includes optional restriction to odd/even polynomials for the numerator and/or denominator
|
||||
*/
|
||||
|
||||
#ifndef INCLUDED_ALG_REMEZ_GENERAL_H
|
||||
#define INCLUDED_ALG_REMEZ_GENERAL_H
|
||||
|
||||
#include <stddef.h>
|
||||
#include <Grid/GridStd.h>
|
||||
|
||||
#ifdef HAVE_LIBGMP
|
||||
#include "bigfloat.h"
|
||||
#else
|
||||
#include "bigfloat_double.h"
|
||||
#endif
|
||||
|
||||
|
||||
class AlgRemezGeneral{
|
||||
public:
|
||||
enum PolyType { Even, Odd, Full };
|
||||
|
||||
private:
|
||||
|
||||
// In GSL-style, pass the function as a function pointer. Any data required to evaluate the function is passed in as a void pointer
|
||||
bigfloat (*f)(bigfloat x, void *data);
|
||||
void *data;
|
||||
|
||||
// The approximation parameters
|
||||
std::vector<bigfloat> param;
|
||||
bigfloat norm;
|
||||
|
||||
// The number of non-zero terms in the numerator and denominator
|
||||
int n, d;
|
||||
// The numerator and denominator degree (i.e. the largest power)
|
||||
int pow_n, pow_d;
|
||||
|
||||
// Specify if the numerator and/or denominator are odd/even polynomials
|
||||
PolyType num_type;
|
||||
PolyType den_type;
|
||||
std::vector<int> num_pows; //contains the mapping, with -1 if not present
|
||||
std::vector<int> den_pows;
|
||||
|
||||
// The bounds of the approximation
|
||||
bigfloat apstrt, apwidt, apend;
|
||||
|
||||
// Variables used to calculate the approximation
|
||||
int nd1, iter;
|
||||
std::vector<bigfloat> xx;
|
||||
std::vector<bigfloat> mm;
|
||||
std::vector<bigfloat> step;
|
||||
|
||||
bigfloat delta, spread;
|
||||
|
||||
// Variables used in search
|
||||
std::vector<bigfloat> yy;
|
||||
|
||||
// Variables used in solving linear equations
|
||||
std::vector<bigfloat> A;
|
||||
std::vector<bigfloat> B;
|
||||
std::vector<int> IPS;
|
||||
|
||||
// The number of equations we must solve at each iteration (n+d+1)
|
||||
int neq;
|
||||
|
||||
// The precision of the GNU MP library
|
||||
long prec;
|
||||
|
||||
// Initialize member variables associated with the polynomial's properties
|
||||
void setupPolyProperties(int num_degree, int den_degree, PolyType num_type_in, PolyType den_type_in);
|
||||
|
||||
// Initial values of maximal and minmal errors
|
||||
void initialGuess();
|
||||
|
||||
// Initialise step sizes
|
||||
void stpini();
|
||||
|
||||
// Initialize the algorithm
|
||||
void reinitializeAlgorithm();
|
||||
|
||||
// Solve the equations
|
||||
void equations();
|
||||
|
||||
// Search for error maxima and minima
|
||||
void search();
|
||||
|
||||
// Calculate function required for the approximation
|
||||
inline bigfloat func(bigfloat x) const{
|
||||
return f(x, data);
|
||||
}
|
||||
|
||||
// Compute size and sign of the approximation error at x
|
||||
bigfloat getErr(bigfloat x, int *sign) const;
|
||||
|
||||
// Solve the system AX=B where X = param
|
||||
int simq();
|
||||
|
||||
// Evaluate the rational form P(x)/Q(x) using coefficients from the solution vector param
|
||||
bigfloat approx(bigfloat x) const;
|
||||
|
||||
public:
|
||||
|
||||
AlgRemezGeneral(double lower, double upper, long prec,
|
||||
bigfloat (*f)(bigfloat x, void *data), void *data);
|
||||
|
||||
inline int getDegree(void) const{
|
||||
assert(n==d);
|
||||
return n;
|
||||
}
|
||||
// Reset the bounds of the approximation
|
||||
inline void setBounds(double lower, double upper) {
|
||||
apstrt = lower;
|
||||
apend = upper;
|
||||
apwidt = apend - apstrt;
|
||||
}
|
||||
|
||||
// Get the bounds of the approximation
|
||||
inline void getBounds(double &lower, double &upper) const{
|
||||
lower=(double)apstrt;
|
||||
upper=(double)apend;
|
||||
}
|
||||
|
||||
// Run the algorithm to generate the rational approximation
|
||||
double generateApprox(int num_degree, int den_degree,
|
||||
PolyType num_type, PolyType den_type,
|
||||
const double tolerance = 1e-15, const int report_freq = 1000);
|
||||
|
||||
inline double generateApprox(int num_degree, int den_degree,
|
||||
const double tolerance = 1e-15, const int report_freq = 1000){
|
||||
return generateApprox(num_degree, den_degree, Full, Full, tolerance, report_freq);
|
||||
}
|
||||
|
||||
// Evaluate the rational form P(x)/Q(x) using coefficients from the
|
||||
// solution vector param
|
||||
inline double evaluateApprox(double x) const{
|
||||
return (double)approx((bigfloat)x);
|
||||
}
|
||||
|
||||
// Evaluate the rational form Q(x)/P(x) using coefficients from the solution vector param
|
||||
inline double evaluateInverseApprox(double x) const{
|
||||
return 1.0/(double)approx((bigfloat)x);
|
||||
}
|
||||
|
||||
// Calculate function required for the approximation
|
||||
inline double evaluateFunc(double x) const{
|
||||
return (double)func((bigfloat)x);
|
||||
}
|
||||
|
||||
// Calculate inverse function required for the approximation
|
||||
inline double evaluateInverseFunc(double x) const{
|
||||
return 1.0/(double)func((bigfloat)x);
|
||||
}
|
||||
|
||||
// Dump csv of function, approx and error
|
||||
void csv(std::ostream &os = std::cout) const;
|
||||
|
||||
// Get the coefficient of the term x^i in the numerator
|
||||
inline double getCoeffNum(const int i) const{
|
||||
return num_pows[i] == -1 ? 0. : double(param[num_pows[i]]);
|
||||
}
|
||||
// Get the coefficient of the term x^i in the denominator
|
||||
inline double getCoeffDen(const int i) const{
|
||||
if(i == pow_d) return 1.0;
|
||||
else return den_pows[i] == -1 ? 0. : double(param[den_pows[i]+n+1]);
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
183
Grid/algorithms/approx/ZMobius.cc
Normal file
183
Grid/algorithms/approx/ZMobius.cc
Normal file
@ -0,0 +1,183 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/approx/ZMobius.cc
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christopher Kelly <ckelly@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#include <Grid/algorithms/approx/ZMobius.h>
|
||||
#include <Grid/algorithms/approx/RemezGeneral.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
NAMESPACE_BEGIN(Approx);
|
||||
|
||||
//Compute the tanh approximation
|
||||
inline double epsilonMobius(const double x, const std::vector<ComplexD> &w){
|
||||
int Ls = w.size();
|
||||
|
||||
ComplexD fxp = 1., fmp = 1.;
|
||||
for(int i=0;i<Ls;i++){
|
||||
fxp = fxp * ( w[i] + x );
|
||||
fmp = fmp * ( w[i] - x );
|
||||
}
|
||||
return ((fxp - fmp)/(fxp + fmp)).real();
|
||||
}
|
||||
inline double epsilonMobius(const double x, const std::vector<RealD> &w){
|
||||
int Ls = w.size();
|
||||
|
||||
double fxp = 1., fmp = 1.;
|
||||
for(int i=0;i<Ls;i++){
|
||||
fxp = fxp * ( w[i] + x );
|
||||
fmp = fmp * ( w[i] - x );
|
||||
}
|
||||
return (fxp - fmp)/(fxp + fmp);
|
||||
}
|
||||
|
||||
|
||||
|
||||
//Compute the tanh approximation in a form suitable for the Remez
|
||||
bigfloat epsilonMobius(bigfloat x, void* data){
|
||||
const std::vector<RealD> &omega = *( (std::vector<RealD> const*)data );
|
||||
bigfloat fxp(1.0);
|
||||
bigfloat fmp(1.0);
|
||||
|
||||
for(int i=0;i<omega.size();i++){
|
||||
fxp = fxp * ( bigfloat(omega[i]) + x);
|
||||
fmp = fmp * ( bigfloat(omega[i]) - x);
|
||||
}
|
||||
return (fxp - fmp)/(fxp + fmp);
|
||||
}
|
||||
|
||||
//Compute the Zmobius Omega parameters suitable for eigenvalue range -lambda_bound <= lambda <= lambda_bound
|
||||
//Note omega_i = 1/(b_i + c_i) where b_i and c_i are the Mobius parameters
|
||||
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out,
|
||||
const std::vector<RealD> &omega_in, const int Ls_in,
|
||||
const RealD lambda_bound){
|
||||
assert(omega_in.size() == Ls_in);
|
||||
omega_out.resize(Ls_out);
|
||||
|
||||
//Use the Remez algorithm to generate the appropriate rational polynomial
|
||||
//For odd polynomial, to satisfy Haar condition must take either positive or negative half of range (cf https://arxiv.org/pdf/0803.0439.pdf page 6)
|
||||
AlgRemezGeneral remez(0, lambda_bound, 64, &epsilonMobius, (void*)&omega_in);
|
||||
remez.generateApprox(Ls_out-1, Ls_out,AlgRemezGeneral::Odd, AlgRemezGeneral::Even, 1e-15, 100);
|
||||
remez.csv(std::cout);
|
||||
|
||||
//The rational approximation has the form [ f(x) - f(-x) ] / [ f(x) + f(-x) ] where f(x) = \Prod_{i=0}^{L_s-1} ( \omega_i + x )
|
||||
//cf https://academiccommons.columbia.edu/doi/10.7916/D8T72HD7 pg 102
|
||||
//omega_i are therefore the negative of the complex roots of f(x)
|
||||
|
||||
//We can find the roots by recognizing that the eigenvalues of a matrix A are the roots of the characteristic polynomial
|
||||
// \rho(\lambda) = det( A - \lambda I ) where I is the unit matrix
|
||||
//The matrix whose characteristic polynomial is an arbitrary monic polynomial a0 + a1 x + a2 x^2 + ... x^n is the companion matrix
|
||||
// A = | 0 1 0 0 0 .... 0 |
|
||||
// | 0 0 1 0 0 .... 0 |
|
||||
// | : : : : : : |
|
||||
// | 0 0 0 0 0 1
|
||||
// | -a0 -a1 -a2 ... ... -an|
|
||||
|
||||
|
||||
//Note the Remez defines the largest power to have unit coefficient
|
||||
std::vector<RealD> coeffs(Ls_out+1);
|
||||
for(int i=0;i<Ls_out+1;i+=2) coeffs[i] = coeffs[i] = remez.getCoeffDen(i); //even powers
|
||||
for(int i=1;i<Ls_out+1;i+=2) coeffs[i] = coeffs[i] = remez.getCoeffNum(i); //odd powers
|
||||
|
||||
std::vector<std::complex<RealD> > roots(Ls_out);
|
||||
|
||||
//Form the companion matrix
|
||||
Eigen::MatrixXd compn(Ls_out,Ls_out);
|
||||
for(int i=0;i<Ls_out-1;i++) compn(i,0) = 0.;
|
||||
compn(Ls_out - 1, 0) = -coeffs[0];
|
||||
|
||||
for(int j=1;j<Ls_out;j++){
|
||||
for(int i=0;i<Ls_out-1;i++) compn(i,j) = i == j-1 ? 1. : 0.;
|
||||
compn(Ls_out - 1, j) = -coeffs[j];
|
||||
}
|
||||
|
||||
//Eigensolve
|
||||
Eigen::EigenSolver<Eigen::MatrixXd> slv(compn, false);
|
||||
|
||||
const auto & ev = slv.eigenvalues();
|
||||
for(int i=0;i<Ls_out;i++)
|
||||
omega_out[i] = -ev(i);
|
||||
|
||||
//Sort ascending (smallest at start of vector!)
|
||||
std::sort(omega_out.begin(), omega_out.end(),
|
||||
[&](const ComplexD &a, const ComplexD &b){ return a.real() < b.real() || (a.real() == b.real() && a.imag() < b.imag()); });
|
||||
|
||||
//McGlynn thesis pg 122 suggest improved iteration counts if magnitude of omega diminishes towards the center of the 5th dimension
|
||||
std::vector<ComplexD> omega_tmp = omega_out;
|
||||
int s_low=0, s_high=Ls_out-1, ss=0;
|
||||
for(int s_from = Ls_out-1; s_from >= 0; s_from--){ //loop from largest omega
|
||||
int s_to;
|
||||
if(ss % 2 == 0){
|
||||
s_to = s_low++;
|
||||
}else{
|
||||
s_to = s_high--;
|
||||
}
|
||||
omega_out[s_to] = omega_tmp[s_from];
|
||||
++ss;
|
||||
}
|
||||
|
||||
std::cout << "Resulting omega_i:" << std::endl;
|
||||
for(int i=0;i<Ls_out;i++)
|
||||
std::cout << omega_out[i] << std::endl;
|
||||
|
||||
std::cout << "Test result matches the approximate polynomial found by the Remez" << std::endl;
|
||||
std::cout << "<x> <remez approx> <poly approx> <diff poly approx remez approx> <exact> <diff poly approx exact>\n";
|
||||
|
||||
int npt = 60;
|
||||
double dlt = lambda_bound/double(npt-1);
|
||||
|
||||
for (int i =0; i<npt; i++){
|
||||
double x = i*dlt;
|
||||
double r = remez.evaluateApprox(x);
|
||||
double p = epsilonMobius(x, omega_out);
|
||||
double e = epsilonMobius(x, omega_in);
|
||||
|
||||
std::cout << x<< " " << r << " " << p <<" " <<r-p << " " << e << " " << e-p << std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//mobius_param = b+c with b-c=1
|
||||
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound){
|
||||
std::vector<RealD> omega_in(Ls_in, 1./mobius_param);
|
||||
computeZmobiusOmega(omega_out, Ls_out, omega_in, Ls_in, lambda_bound);
|
||||
}
|
||||
|
||||
//ZMobius class takes gamma_i = (b+c) omega_i as its input, where b, c are factored out
|
||||
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out,
|
||||
const RealD mobius_param_out, const int Ls_out,
|
||||
const RealD mobius_param_in, const int Ls_in,
|
||||
const RealD lambda_bound){
|
||||
computeZmobiusOmega(gamma_out, Ls_out, mobius_param_in, Ls_in, lambda_bound);
|
||||
for(int i=0;i<Ls_out;i++) gamma_out[i] = gamma_out[i] * mobius_param_out;
|
||||
}
|
||||
//Assumes mobius_param_out == mobius_param_in
|
||||
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound){
|
||||
computeZmobiusGamma(gamma_out, mobius_param, Ls_out, mobius_param, Ls_in, lambda_bound);
|
||||
}
|
||||
|
||||
NAMESPACE_END(Approx);
|
||||
NAMESPACE_END(Grid);
|
57
Grid/algorithms/approx/ZMobius.h
Normal file
57
Grid/algorithms/approx/ZMobius.h
Normal file
@ -0,0 +1,57 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/approx/ZMobius.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christopher Kelly <ckelly@phys.columbia.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_ZMOBIUS_APPROX_H
|
||||
#define GRID_ZMOBIUS_APPROX_H
|
||||
|
||||
#include <Grid/GridCore.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
NAMESPACE_BEGIN(Approx);
|
||||
|
||||
//Compute the Zmobius Omega parameters suitable for eigenvalue range -lambda_bound <= lambda <= lambda_bound
|
||||
//Note omega_i = 1/(b_i + c_i) where b_i and c_i are the Mobius parameters
|
||||
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out,
|
||||
const std::vector<RealD> &omega_in, const int Ls_in,
|
||||
const RealD lambda_bound);
|
||||
|
||||
//mobius_param = b+c with b-c=1
|
||||
void computeZmobiusOmega(std::vector<ComplexD> &omega_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound);
|
||||
|
||||
//ZMobius class takes gamma_i = (b+c) omega_i as its input, where b, c are factored out
|
||||
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out,
|
||||
const RealD mobius_param_out, const int Ls_out,
|
||||
const RealD mobius_param_in, const int Ls_in,
|
||||
const RealD lambda_bound);
|
||||
|
||||
//Assumes mobius_param_out == mobius_param_in
|
||||
void computeZmobiusGamma(std::vector<ComplexD> &gamma_out, const int Ls_out, const RealD mobius_param, const int Ls_in, const RealD lambda_bound);
|
||||
|
||||
NAMESPACE_END(Approx);
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -293,7 +293,7 @@ static void sncndnFK(INTERNAL_PRECISION u, INTERNAL_PRECISION k,
|
||||
* Set type = 0 for the Zolotarev approximation, which is zero at x = 0, and
|
||||
* type = 1 for the approximation which is infinite at x = 0. */
|
||||
|
||||
zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
|
||||
zolotarev_data* zolotarev(ZOLO_PRECISION epsilon, int n, int type) {
|
||||
INTERNAL_PRECISION A, c, cp, kp, ksq, sn, cn, dn, Kp, Kj, z, z0, t, M, F,
|
||||
l, invlambda, xi, xisq, *tv, s, opl;
|
||||
int m, czero, ts;
|
||||
@ -375,12 +375,12 @@ zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
|
||||
construct_partfrac(d);
|
||||
construct_contfrac(d);
|
||||
|
||||
/* Converting everything to PRECISION for external use only */
|
||||
/* Converting everything to ZOLO_PRECISION for external use only */
|
||||
|
||||
zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
|
||||
zd -> A = (PRECISION) d -> A;
|
||||
zd -> Delta = (PRECISION) d -> Delta;
|
||||
zd -> epsilon = (PRECISION) d -> epsilon;
|
||||
zd -> A = (ZOLO_PRECISION) d -> A;
|
||||
zd -> Delta = (ZOLO_PRECISION) d -> Delta;
|
||||
zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
|
||||
zd -> n = d -> n;
|
||||
zd -> type = d -> type;
|
||||
zd -> dn = d -> dn;
|
||||
@ -390,24 +390,24 @@ zolotarev_data* zolotarev(PRECISION epsilon, int n, int type) {
|
||||
zd -> deg_num = d -> deg_num;
|
||||
zd -> deg_denom = d -> deg_denom;
|
||||
|
||||
zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
|
||||
zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
|
||||
free(d -> a);
|
||||
|
||||
zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
|
||||
zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
|
||||
free(d -> ap);
|
||||
|
||||
zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
|
||||
zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
|
||||
free(d -> alpha);
|
||||
|
||||
zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
|
||||
zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
|
||||
free(d -> beta);
|
||||
|
||||
zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
|
||||
zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
|
||||
free(d -> gamma);
|
||||
|
||||
free(d);
|
||||
@ -426,7 +426,7 @@ void zolotarev_free(zolotarev_data *zdata)
|
||||
}
|
||||
|
||||
|
||||
zolotarev_data* higham(PRECISION epsilon, int n) {
|
||||
zolotarev_data* higham(ZOLO_PRECISION epsilon, int n) {
|
||||
INTERNAL_PRECISION A, M, c, cp, z, z0, t, epssq;
|
||||
int m, czero;
|
||||
zolotarev_data *zd;
|
||||
@ -481,9 +481,9 @@ zolotarev_data* higham(PRECISION epsilon, int n) {
|
||||
/* Converting everything to PRECISION for external use only */
|
||||
|
||||
zd = (zolotarev_data*) malloc(sizeof(zolotarev_data));
|
||||
zd -> A = (PRECISION) d -> A;
|
||||
zd -> Delta = (PRECISION) d -> Delta;
|
||||
zd -> epsilon = (PRECISION) d -> epsilon;
|
||||
zd -> A = (ZOLO_PRECISION) d -> A;
|
||||
zd -> Delta = (ZOLO_PRECISION) d -> Delta;
|
||||
zd -> epsilon = (ZOLO_PRECISION) d -> epsilon;
|
||||
zd -> n = d -> n;
|
||||
zd -> type = d -> type;
|
||||
zd -> dn = d -> dn;
|
||||
@ -493,24 +493,24 @@ zolotarev_data* higham(PRECISION epsilon, int n) {
|
||||
zd -> deg_num = d -> deg_num;
|
||||
zd -> deg_denom = d -> deg_denom;
|
||||
|
||||
zd -> a = (PRECISION*) malloc(zd -> dn * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (PRECISION) d -> a[m];
|
||||
zd -> a = (ZOLO_PRECISION*) malloc(zd -> dn * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> dn; m++) zd -> a[m] = (ZOLO_PRECISION) d -> a[m];
|
||||
free(d -> a);
|
||||
|
||||
zd -> ap = (PRECISION*) malloc(zd -> dd * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (PRECISION) d -> ap[m];
|
||||
zd -> ap = (ZOLO_PRECISION*) malloc(zd -> dd * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> dd; m++) zd -> ap[m] = (ZOLO_PRECISION) d -> ap[m];
|
||||
free(d -> ap);
|
||||
|
||||
zd -> alpha = (PRECISION*) malloc(zd -> da * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (PRECISION) d -> alpha[m];
|
||||
zd -> alpha = (ZOLO_PRECISION*) malloc(zd -> da * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> da; m++) zd -> alpha[m] = (ZOLO_PRECISION) d -> alpha[m];
|
||||
free(d -> alpha);
|
||||
|
||||
zd -> beta = (PRECISION*) malloc(zd -> db * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (PRECISION) d -> beta[m];
|
||||
zd -> beta = (ZOLO_PRECISION*) malloc(zd -> db * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> db; m++) zd -> beta[m] = (ZOLO_PRECISION) d -> beta[m];
|
||||
free(d -> beta);
|
||||
|
||||
zd -> gamma = (PRECISION*) malloc(zd -> n * sizeof(PRECISION));
|
||||
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (PRECISION) d -> gamma[m];
|
||||
zd -> gamma = (ZOLO_PRECISION*) malloc(zd -> n * sizeof(ZOLO_PRECISION));
|
||||
for (m = 0; m < zd -> n; m++) zd -> gamma[m] = (ZOLO_PRECISION) d -> gamma[m];
|
||||
free(d -> gamma);
|
||||
|
||||
free(d);
|
||||
@ -523,17 +523,17 @@ NAMESPACE_END(Grid);
|
||||
#ifdef TEST
|
||||
|
||||
#undef ZERO
|
||||
#define ZERO ((PRECISION) 0)
|
||||
#define ZERO ((ZOLO_PRECISION) 0)
|
||||
#undef ONE
|
||||
#define ONE ((PRECISION) 1)
|
||||
#define ONE ((ZOLO_PRECISION) 1)
|
||||
#undef TWO
|
||||
#define TWO ((PRECISION) 2)
|
||||
#define TWO ((ZOLO_PRECISION) 2)
|
||||
|
||||
/* Evaluate the rational approximation R(x) using the factored form */
|
||||
|
||||
static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
static ZOLO_PRECISION zolotarev_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
||||
int m;
|
||||
PRECISION R;
|
||||
ZOLO_PRECISION R;
|
||||
|
||||
if (rdata -> type == 0) {
|
||||
R = rdata -> A * x;
|
||||
@ -551,9 +551,9 @@ static PRECISION zolotarev_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
|
||||
/* Evaluate the rational approximation R(x) using the partial fraction form */
|
||||
|
||||
static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
static ZOLO_PRECISION zolotarev_partfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
||||
int m;
|
||||
PRECISION R = rdata -> alpha[rdata -> da - 1];
|
||||
ZOLO_PRECISION R = rdata -> alpha[rdata -> da - 1];
|
||||
for (m = 0; m < rdata -> dd; m++)
|
||||
R += rdata -> alpha[m] / (x * x - rdata -> ap[m]);
|
||||
if (rdata -> type == 1) R += rdata -> alpha[rdata -> dd] / (x * x);
|
||||
@ -568,18 +568,18 @@ static PRECISION zolotarev_partfrac_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
* non-signalling overflow this will work correctly since 1/(1/0) = 1/INF = 0,
|
||||
* but with signalling overflow you will get an error message. */
|
||||
|
||||
static PRECISION zolotarev_contfrac_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
static ZOLO_PRECISION zolotarev_contfrac_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
||||
int m;
|
||||
PRECISION R = rdata -> beta[0] * x;
|
||||
ZOLO_PRECISION R = rdata -> beta[0] * x;
|
||||
for (m = 1; m < rdata -> db; m++) R = rdata -> beta[m] * x + ONE / R;
|
||||
return R;
|
||||
}
|
||||
|
||||
/* Evaluate the rational approximation R(x) using Cayley form */
|
||||
|
||||
static PRECISION zolotarev_cayley_eval(PRECISION x, zolotarev_data* rdata) {
|
||||
static ZOLO_PRECISION zolotarev_cayley_eval(ZOLO_PRECISION x, zolotarev_data* rdata) {
|
||||
int m;
|
||||
PRECISION T;
|
||||
ZOLO_PRECISION T;
|
||||
|
||||
T = rdata -> type == 0 ? ONE : -ONE;
|
||||
for (m = 0; m < rdata -> n; m++)
|
||||
@ -607,7 +607,7 @@ int main(int argc, char** argv) {
|
||||
int m, n, plotpts = 5000, type = 0;
|
||||
float eps, x, ypferr, ycferr, ycaylerr, maxypferr, maxycferr, maxycaylerr;
|
||||
zolotarev_data *rdata;
|
||||
PRECISION y;
|
||||
ZOLO_PRECISION y;
|
||||
FILE *plot_function, *plot_error,
|
||||
*plot_partfrac, *plot_contfrac, *plot_cayley;
|
||||
|
||||
@ -626,13 +626,13 @@ int main(int argc, char** argv) {
|
||||
}
|
||||
|
||||
rdata = type == 2
|
||||
? higham((PRECISION) eps, n)
|
||||
: zolotarev((PRECISION) eps, n, type);
|
||||
? higham((ZOLO_PRECISION) eps, n)
|
||||
: zolotarev((ZOLO_PRECISION) eps, n, type);
|
||||
|
||||
printf("Zolotarev Test: R(epsilon = %g, n = %d, type = %d)\n\t"
|
||||
STRINGIFY(VERSION) "\n\t" STRINGIFY(HVERSION)
|
||||
"\n\tINTERNAL_PRECISION = " STRINGIFY(INTERNAL_PRECISION)
|
||||
"\tPRECISION = " STRINGIFY(PRECISION)
|
||||
"\tZOLO_PRECISION = " STRINGIFY(ZOLO_PRECISION)
|
||||
"\n\n\tRational approximation of degree (%d,%d), %s at x = 0\n"
|
||||
"\tDelta = %g (maximum error)\n\n"
|
||||
"\tA = %g (overall factor)\n",
|
||||
@ -681,15 +681,15 @@ int main(int argc, char** argv) {
|
||||
x = 2.4 * (float) m / plotpts - 1.2;
|
||||
if (rdata -> type == 0 || fabs(x) * (float) plotpts > 1.0) {
|
||||
/* skip x = 0 for type 1, as R(0) is singular */
|
||||
y = zolotarev_eval((PRECISION) x, rdata);
|
||||
y = zolotarev_eval((ZOLO_PRECISION) x, rdata);
|
||||
fprintf(plot_function, "%g %g\n", x, (float) y);
|
||||
fprintf(plot_error, "%g %g\n",
|
||||
x, (float)((y - ((x > 0.0 ? ONE : -ONE))) / rdata -> Delta));
|
||||
ypferr = (float)((zolotarev_partfrac_eval((PRECISION) x, rdata) - y)
|
||||
ypferr = (float)((zolotarev_partfrac_eval((ZOLO_PRECISION) x, rdata) - y)
|
||||
/ rdata -> Delta);
|
||||
ycferr = (float)((zolotarev_contfrac_eval((PRECISION) x, rdata) - y)
|
||||
ycferr = (float)((zolotarev_contfrac_eval((ZOLO_PRECISION) x, rdata) - y)
|
||||
/ rdata -> Delta);
|
||||
ycaylerr = (float)((zolotarev_cayley_eval((PRECISION) x, rdata) - y)
|
||||
ycaylerr = (float)((zolotarev_cayley_eval((ZOLO_PRECISION) x, rdata) - y)
|
||||
/ rdata -> Delta);
|
||||
if (fabs(x) < 1.0 && fabs(x) > rdata -> epsilon) {
|
||||
maxypferr = MAX(maxypferr, fabs(ypferr));
|
||||
|
@ -9,10 +9,10 @@ NAMESPACE_BEGIN(Approx);
|
||||
#define HVERSION Header Time-stamp: <14-OCT-2004 09:26:51.00 adk@MISSCONTRARY>
|
||||
|
||||
#ifndef ZOLOTAREV_INTERNAL
|
||||
#ifndef PRECISION
|
||||
#define PRECISION double
|
||||
#ifndef ZOLO_PRECISION
|
||||
#define ZOLO_PRECISION double
|
||||
#endif
|
||||
#define ZPRECISION PRECISION
|
||||
#define ZPRECISION ZOLO_PRECISION
|
||||
#define ZOLOTAREV_DATA zolotarev_data
|
||||
#endif
|
||||
|
||||
@ -77,8 +77,8 @@ typedef struct {
|
||||
* zolotarev_data structure. The arguments must satisfy the constraints that
|
||||
* epsilon > 0, n > 0, and type = 0 or 1. */
|
||||
|
||||
ZOLOTAREV_DATA* higham(PRECISION epsilon, int n) ;
|
||||
ZOLOTAREV_DATA* zolotarev(PRECISION epsilon, int n, int type);
|
||||
ZOLOTAREV_DATA* higham(ZOLO_PRECISION epsilon, int n) ;
|
||||
ZOLOTAREV_DATA* zolotarev(ZOLO_PRECISION epsilon, int n, int type);
|
||||
void zolotarev_free(zolotarev_data *zdata);
|
||||
#endif
|
||||
|
||||
@ -86,3 +86,4 @@ void zolotarev_free(zolotarev_data *zdata);
|
||||
NAMESPACE_END(Approx);
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
||||
|
||||
|
@ -25,6 +25,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#ifndef INCLUDED_BIGFLOAT_DOUBLE_H
|
||||
#define INCLUDED_BIGFLOAT_DOUBLE_H
|
||||
|
||||
#include <math.h>
|
||||
|
||||
typedef double mfloat;
|
||||
@ -186,4 +190,6 @@ public:
|
||||
// friend bigfloat& random(void);
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
@ -2,11 +2,11 @@
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonTMFermion.cc
|
||||
Source file: BatchedBlas.h
|
||||
|
||||
Copyright (C) 2015
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -25,13 +25,10 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/WilsonTMFermion.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonTMFermionImplementation.h>
|
||||
|
||||
#include <Grid/GridCore.h>
|
||||
#include <Grid/algorithms/blas/BatchedBlas.h>
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#include "impl.h"
|
||||
template class WilsonTMFermion<IMPLEMENTATION>;
|
||||
|
||||
gridblasHandle_t GridBLAS::gridblasHandle;
|
||||
int GridBLAS::gridblasInit;
|
||||
NAMESPACE_END(Grid);
|
||||
|
727
Grid/algorithms/blas/BatchedBlas.h
Normal file
727
Grid/algorithms/blas/BatchedBlas.h
Normal file
@ -0,0 +1,727 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: BatchedBlas.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#ifdef GRID_HIP
|
||||
#include <hipblas/hipblas.h>
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
#include <cublas_v2.h>
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
#include <oneapi/mkl.hpp>
|
||||
#endif
|
||||
#if 0
|
||||
#define GRID_ONE_MKL
|
||||
#endif
|
||||
#ifdef GRID_ONE_MKL
|
||||
#include <oneapi/mkl.hpp>
|
||||
#endif
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Need to rearrange lattice data to be in the right format for a
|
||||
// batched multiply. Might as well make these static, dense packed
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
#ifdef GRID_HIP
|
||||
typedef hipblasHandle_t gridblasHandle_t;
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
typedef cublasHandle_t gridblasHandle_t;
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
typedef cl::sycl::queue *gridblasHandle_t;
|
||||
#endif
|
||||
#ifdef GRID_ONE_MKL
|
||||
typedef cl::sycl::queue *gridblasHandle_t;
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
|
||||
typedef int32_t gridblasHandle_t;
|
||||
#endif
|
||||
|
||||
enum GridBLASOperation_t { GridBLAS_OP_N, GridBLAS_OP_T, GridBLAS_OP_C } ;
|
||||
|
||||
class GridBLAS {
|
||||
public:
|
||||
|
||||
|
||||
static gridblasHandle_t gridblasHandle;
|
||||
static int gridblasInit;
|
||||
|
||||
static void Init(void)
|
||||
{
|
||||
if ( ! gridblasInit ) {
|
||||
#ifdef GRID_CUDA
|
||||
std::cout << "cublasCreate"<<std::endl;
|
||||
cublasCreate(&gridblasHandle);
|
||||
cublasSetPointerMode(gridblasHandle, CUBLAS_POINTER_MODE_DEVICE);
|
||||
#endif
|
||||
#ifdef GRID_HIP
|
||||
std::cout << "hipblasCreate"<<std::endl;
|
||||
hipblasCreate(&gridblasHandle);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
gridblasHandle = theGridAccelerator;
|
||||
#endif
|
||||
#ifdef GRID_ONE_MKL
|
||||
cl::sycl::cpu_selector selector;
|
||||
cl::sycl::device selectedDevice { selector };
|
||||
gridblasHandle =new sycl::queue (selectedDevice);
|
||||
#endif
|
||||
gridblasInit=1;
|
||||
}
|
||||
}
|
||||
|
||||
// Force construct once
|
||||
GridBLAS() { Init(); };
|
||||
~GridBLAS() { };
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// BLAS GEMM conventions:
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// - C = alpha A * B + beta C
|
||||
// Dimensions:
|
||||
// - C_m.n
|
||||
// - A_m.k
|
||||
// - B_k.n
|
||||
// - Flops = 8 M N K
|
||||
// - Bytes = 2*sizeof(word) * (MN+MK+KN)
|
||||
// M=60, N=12
|
||||
// Flop/Byte = 8 . 60.60.12 / (60.12+60.60+60.12)/16 = 4 so expect about 4 TF/s on a GCD
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
void synchronise(void)
|
||||
{
|
||||
#ifdef GRID_HIP
|
||||
auto err = hipDeviceSynchronize();
|
||||
assert(err==hipSuccess);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
auto err = cudaDeviceSynchronize();
|
||||
assert(err==cudaSuccess);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
accelerator_barrier();
|
||||
#endif
|
||||
#ifdef GRID_ONE_MKL
|
||||
gridblasHandle->wait();
|
||||
#endif
|
||||
}
|
||||
|
||||
void gemmBatched(int m,int n, int k,
|
||||
ComplexD alpha,
|
||||
deviceVector<ComplexD*> &Amk, // pointer list to matrices
|
||||
deviceVector<ComplexD*> &Bkn,
|
||||
ComplexD beta,
|
||||
deviceVector<ComplexD*> &Cmn)
|
||||
{
|
||||
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
Amk,
|
||||
Bkn,
|
||||
beta,
|
||||
Cmn);
|
||||
}
|
||||
void gemmBatched(int m,int n, int k,
|
||||
ComplexF alpha,
|
||||
deviceVector<ComplexF*> &Amk, // pointer list to matrices
|
||||
deviceVector<ComplexF*> &Bkn,
|
||||
ComplexF beta,
|
||||
deviceVector<ComplexF*> &Cmn)
|
||||
{
|
||||
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
Amk,
|
||||
Bkn,
|
||||
beta,
|
||||
Cmn);
|
||||
}
|
||||
void gemmBatched(int m,int n, int k,
|
||||
RealD alpha,
|
||||
deviceVector<RealD*> &Amk, // pointer list to matrices
|
||||
deviceVector<RealD*> &Bkn,
|
||||
RealD beta,
|
||||
deviceVector<RealD*> &Cmn)
|
||||
{
|
||||
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
Amk,
|
||||
Bkn,
|
||||
beta,
|
||||
Cmn);
|
||||
}
|
||||
void gemmBatched(int m,int n, int k,
|
||||
RealF alpha,
|
||||
deviceVector<RealF*> &Amk, // pointer list to matrices
|
||||
deviceVector<RealF*> &Bkn,
|
||||
RealF beta,
|
||||
deviceVector<RealF*> &Cmn)
|
||||
{
|
||||
gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
Amk,
|
||||
Bkn,
|
||||
beta,
|
||||
Cmn);
|
||||
}
|
||||
|
||||
void gemmBatched(GridBLASOperation_t OpA,
|
||||
GridBLASOperation_t OpB,
|
||||
int m,int n, int k,
|
||||
ComplexD alpha,
|
||||
deviceVector<ComplexD*> &Amk, // pointer list to matrices
|
||||
deviceVector<ComplexD*> &Bkn,
|
||||
ComplexD beta,
|
||||
deviceVector<ComplexD*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
if(OpA!=GridBLAS_OP_N)
|
||||
lda = k;
|
||||
if(OpB!=GridBLAS_OP_N)
|
||||
ldb = n;
|
||||
|
||||
static deviceVector<ComplexD> alpha_p(1);
|
||||
static deviceVector<ComplexD> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
|
||||
RealD t0=usecond();
|
||||
// std::cout << "ZgemmBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
||||
#ifdef GRID_HIP
|
||||
hipblasOperation_t hOpA;
|
||||
hipblasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
||||
auto err = hipblasZgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(hipblasDoubleComplex *) &alpha_p[0],
|
||||
(hipblasDoubleComplex **)&Amk[0], lda,
|
||||
(hipblasDoubleComplex **)&Bkn[0], ldb,
|
||||
(hipblasDoubleComplex *) &beta_p[0],
|
||||
(hipblasDoubleComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
// std::cout << " hipblas return code " <<(int)err<<std::endl;
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasOperation_t hOpA;
|
||||
cublasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
||||
auto err = cublasZgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(cuDoubleComplex *) &alpha_p[0],
|
||||
(cuDoubleComplex **)&Amk[0], lda,
|
||||
(cuDoubleComplex **)&Bkn[0], ldb,
|
||||
(cuDoubleComplex *) &beta_p[0],
|
||||
(cuDoubleComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
// Need a default/reference implementation
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
// synchronise();
|
||||
RealD t1=usecond();
|
||||
RealD flops = 8.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(ComplexD)*(m*k+k*n+m*n)*batchCount;
|
||||
// std::cout <<GridLogMessage<< " batched Blas copy "<<(t0-t2)/1.e3 <<" ms "<<std::endl;
|
||||
// std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< flops/(t1-t0)/1.e3 <<" GF/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
||||
// std::cout <<GridLogMessage<< " batched Blas zGemm call "<<m<<","<<n<<","<<k<<" "<< bytes/(t1-t0)/1.e3 <<" GB/s "<<(t1-t0)/1.e3<<" ms "<<std::endl;
|
||||
}
|
||||
|
||||
void gemmBatched(GridBLASOperation_t OpA,
|
||||
GridBLASOperation_t OpB,
|
||||
int m,int n, int k,
|
||||
ComplexF alpha,
|
||||
deviceVector<ComplexF*> &Amk, // pointer list to matrices
|
||||
deviceVector<ComplexF*> &Bkn,
|
||||
ComplexF beta,
|
||||
deviceVector<ComplexF*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
if(OpA!=GridBLAS_OP_N)
|
||||
lda = k;
|
||||
if(OpB!=GridBLAS_OP_N)
|
||||
ldb = n;
|
||||
static deviceVector<ComplexF> alpha_p(1);
|
||||
static deviceVector<ComplexF> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexF));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexF));
|
||||
RealD t0=usecond();
|
||||
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
#ifdef GRID_HIP
|
||||
hipblasOperation_t hOpA;
|
||||
hipblasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
||||
auto err = hipblasCgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(hipblasComplex *) &alpha_p[0],
|
||||
(hipblasComplex **)&Amk[0], lda,
|
||||
(hipblasComplex **)&Bkn[0], ldb,
|
||||
(hipblasComplex *) &beta_p[0],
|
||||
(hipblasComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasOperation_t hOpA;
|
||||
cublasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
||||
auto err = cublasCgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(cuComplex *) &alpha_p[0],
|
||||
(cuComplex **)&Amk[0], lda,
|
||||
(cuComplex **)&Bkn[0], ldb,
|
||||
(cuComplex *) &beta_p[0],
|
||||
(cuComplex **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
ComplexF alphaf(real(alpha),imag(alpha));
|
||||
ComplexF betaf(real(beta),imag(beta));
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexF c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alphaf)*c_mn + (betaf)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 8.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(ComplexF)*(m*k+k*n+m*n)*batchCount;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Single precision real GEMM
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void gemmBatched(GridBLASOperation_t OpA,
|
||||
GridBLASOperation_t OpB,
|
||||
int m,int n, int k,
|
||||
RealF alpha,
|
||||
deviceVector<RealF*> &Amk, // pointer list to matrices
|
||||
deviceVector<RealF*> &Bkn,
|
||||
RealF beta,
|
||||
deviceVector<RealF*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
if(OpA!=GridBLAS_OP_N)
|
||||
lda = k;
|
||||
if(OpB!=GridBLAS_OP_N)
|
||||
ldb = n;
|
||||
static deviceVector<RealF> alpha_p(1);
|
||||
static deviceVector<RealF> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealF));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealF));
|
||||
RealD t0=usecond();
|
||||
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
#ifdef GRID_HIP
|
||||
hipblasOperation_t hOpA;
|
||||
hipblasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
||||
auto err = hipblasSgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(float *) &alpha_p[0],
|
||||
(float **)&Amk[0], lda,
|
||||
(float **)&Bkn[0], ldb,
|
||||
(float *) &beta_p[0],
|
||||
(float **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasOperation_t hOpA;
|
||||
cublasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
||||
auto err = cublasSgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(float *) &alpha_p[0],
|
||||
(float **)&Amk[0], lda,
|
||||
(float **)&Bkn[0], ldb,
|
||||
(float *) &beta_p[0],
|
||||
(float **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
RealD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 2.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(RealF)*(m*k+k*n+m*n)*batchCount;
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Double precision real GEMM
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void gemmBatched(GridBLASOperation_t OpA,
|
||||
GridBLASOperation_t OpB,
|
||||
int m,int n, int k,
|
||||
RealD alpha,
|
||||
deviceVector<RealD*> &Amk, // pointer list to matrices
|
||||
deviceVector<RealD*> &Bkn,
|
||||
RealD beta,
|
||||
deviceVector<RealD*> &Cmn)
|
||||
{
|
||||
RealD t2=usecond();
|
||||
int32_t batchCount = Amk.size();
|
||||
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
if(OpA!=GridBLAS_OP_N)
|
||||
lda = k;
|
||||
if(OpB!=GridBLAS_OP_N)
|
||||
ldb = n;
|
||||
|
||||
static deviceVector<RealD> alpha_p(1);
|
||||
static deviceVector<RealD> beta_p(1);
|
||||
// can prestore the 1 and the zero on device
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(RealD));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(RealD));
|
||||
RealD t0=usecond();
|
||||
|
||||
assert(Bkn.size()==batchCount);
|
||||
assert(Cmn.size()==batchCount);
|
||||
#ifdef GRID_HIP
|
||||
hipblasOperation_t hOpA;
|
||||
hipblasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = HIPBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = HIPBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = HIPBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = HIPBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = HIPBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = HIPBLAS_OP_C;
|
||||
auto err = hipblasDgemmBatched(gridblasHandle,
|
||||
HIPBLAS_OP_N,
|
||||
HIPBLAS_OP_N,
|
||||
m,n,k,
|
||||
(double *) &alpha_p[0],
|
||||
(double **)&Amk[0], lda,
|
||||
(double **)&Bkn[0], ldb,
|
||||
(double *) &beta_p[0],
|
||||
(double **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasOperation_t hOpA;
|
||||
cublasOperation_t hOpB;
|
||||
if ( OpA == GridBLAS_OP_N ) hOpA = CUBLAS_OP_N;
|
||||
if ( OpA == GridBLAS_OP_T ) hOpA = CUBLAS_OP_T;
|
||||
if ( OpA == GridBLAS_OP_C ) hOpA = CUBLAS_OP_C;
|
||||
if ( OpB == GridBLAS_OP_N ) hOpB = CUBLAS_OP_N;
|
||||
if ( OpB == GridBLAS_OP_T ) hOpB = CUBLAS_OP_T;
|
||||
if ( OpB == GridBLAS_OP_C ) hOpB = CUBLAS_OP_C;
|
||||
auto err = cublasDgemmBatched(gridblasHandle,
|
||||
hOpA,
|
||||
hOpB,
|
||||
m,n,k,
|
||||
(double *) &alpha_p[0],
|
||||
(double **)&Amk[0], lda,
|
||||
(double **)&Bkn[0], ldb,
|
||||
(double *) &beta_p[0],
|
||||
(double **)&Cmn[0], ldc,
|
||||
batchCount);
|
||||
assert(err==CUBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
/*
|
||||
int64_t m64=m;
|
||||
int64_t n64=n;
|
||||
int64_t k64=k;
|
||||
int64_t batchCount64=batchCount;
|
||||
oneapi::mkl::blas::column_major::gemm_batch(*theGridAccelerator,
|
||||
onemkl::transpose::N,
|
||||
onemkl::transpose::N,
|
||||
&m64,&n64,&k64,
|
||||
(double *) &alpha_p[0],
|
||||
(double **)&Amk[0], lda,
|
||||
(double **)&Bkn[0], ldb,
|
||||
(double *) &beta_p[0],
|
||||
(double **)&Cmn[0], ldc,
|
||||
1,&batchCount64);
|
||||
*/
|
||||
//MKL’s cblas_<T>gemm_batch & OneAPI
|
||||
#warning "oneMKL implementation not built "
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP)
|
||||
int sda = lda*k;
|
||||
int sdb = ldb*k;
|
||||
int sdc = ldc*n;
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
RealD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[p][mm + kk*lda ] * Bkn[p][kk + nn*ldb];
|
||||
Cmn[p][mm + nn*ldc] = (alpha)*c_mn + (beta)*Cmn[p][mm + nn*ldc ];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
RealD t1=usecond();
|
||||
RealD flops = 2.0*m*n*k*batchCount;
|
||||
RealD bytes = 1.0*sizeof(RealD)*(m*k+k*n+m*n)*batchCount;
|
||||
}
|
||||
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Strided case used by benchmark, but generally unused in Grid
|
||||
// Keep a code example in double complex, but don't generate the single and real variants for now
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void gemmStridedBatched(int m,int n, int k,
|
||||
ComplexD alpha,
|
||||
ComplexD* Amk, // pointer list to matrices
|
||||
ComplexD* Bkn,
|
||||
ComplexD beta,
|
||||
ComplexD* Cmn,
|
||||
int batchCount)
|
||||
{
|
||||
// Use C-row major storage, so transpose calls
|
||||
int lda = m; // m x k column major
|
||||
int ldb = k; // k x n column major
|
||||
int ldc = m; // m x b column major
|
||||
int sda = m*k;
|
||||
int sdb = k*n;
|
||||
int sdc = m*n;
|
||||
deviceVector<ComplexD> alpha_p(1);
|
||||
deviceVector<ComplexD> beta_p(1);
|
||||
acceleratorCopyToDevice((void *)&alpha,(void *)&alpha_p[0],sizeof(ComplexD));
|
||||
acceleratorCopyToDevice((void *)&beta ,(void *)&beta_p[0],sizeof(ComplexD));
|
||||
// std::cout << "blasZgemmStridedBatched mnk "<<m<<","<<n<<","<<k<<" count "<<batchCount<<std::endl;
|
||||
// std::cout << "blasZgemmStridedBatched ld "<<lda<<","<<ldb<<","<<ldc<<std::endl;
|
||||
// std::cout << "blasZgemmStridedBatched sd "<<sda<<","<<sdb<<","<<sdc<<std::endl;
|
||||
#ifdef GRID_HIP
|
||||
auto err = hipblasZgemmStridedBatched(gridblasHandle,
|
||||
HIPBLAS_OP_N,
|
||||
HIPBLAS_OP_N,
|
||||
m,n,k,
|
||||
(hipblasDoubleComplex *) &alpha_p[0],
|
||||
(hipblasDoubleComplex *) Amk, lda, sda,
|
||||
(hipblasDoubleComplex *) Bkn, ldb, sdb,
|
||||
(hipblasDoubleComplex *) &beta_p[0],
|
||||
(hipblasDoubleComplex *) Cmn, ldc, sdc,
|
||||
batchCount);
|
||||
assert(err==HIPBLAS_STATUS_SUCCESS);
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cublasZgemmStridedBatched(gridblasHandle,
|
||||
CUBLAS_OP_N,
|
||||
CUBLAS_OP_N,
|
||||
m,n,k,
|
||||
(cuDoubleComplex *) &alpha_p[0],
|
||||
(cuDoubleComplex *) Amk, lda, sda,
|
||||
(cuDoubleComplex *) Bkn, ldb, sdb,
|
||||
(cuDoubleComplex *) &beta_p[0],
|
||||
(cuDoubleComplex *) Cmn, ldc, sdc,
|
||||
batchCount);
|
||||
#endif
|
||||
#if defined(GRID_SYCL) || defined(GRID_ONE_MKL)
|
||||
oneapi::mkl::blas::column_major::gemm_batch(*gridblasHandle,
|
||||
oneapi::mkl::transpose::N,
|
||||
oneapi::mkl::transpose::N,
|
||||
m,n,k,
|
||||
alpha,
|
||||
(const ComplexD *)Amk,lda,sda,
|
||||
(const ComplexD *)Bkn,ldb,sdb,
|
||||
beta,
|
||||
(ComplexD *)Cmn,ldc,sdc,
|
||||
batchCount);
|
||||
#endif
|
||||
#if !defined(GRID_SYCL) && !defined(GRID_CUDA) && !defined(GRID_HIP) && !defined(GRID_ONE_MKL)
|
||||
// Need a default/reference implementation
|
||||
for (int p = 0; p < batchCount; ++p) {
|
||||
for (int mm = 0; mm < m; ++mm) {
|
||||
for (int nn = 0; nn < n; ++nn) {
|
||||
ComplexD c_mn(0.0);
|
||||
for (int kk = 0; kk < k; ++kk)
|
||||
c_mn += Amk[mm + kk*lda + p*sda] * Bkn[kk + nn*ldb + p*sdb];
|
||||
Cmn[mm + nn*ldc + p*sdc] = (alpha)*c_mn + (beta)*Cmn[mm + nn*ldc + p*sdc];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
double benchmark(int M, int N, int K, int BATCH)
|
||||
{
|
||||
int32_t N_A = M*K*BATCH;
|
||||
int32_t N_B = K*N*BATCH;
|
||||
int32_t N_C = M*N*BATCH;
|
||||
deviceVector<ComplexD> A(N_A); acceleratorMemSet(&A[0],0,N_A*sizeof(ComplexD));
|
||||
deviceVector<ComplexD> B(N_B); acceleratorMemSet(&B[0],0,N_B*sizeof(ComplexD));
|
||||
deviceVector<ComplexD> C(N_C); acceleratorMemSet(&C[0],0,N_C*sizeof(ComplexD));
|
||||
ComplexD alpha(1.0);
|
||||
ComplexD beta (1.0);
|
||||
RealD flops = 8.0*M*N*K*BATCH;
|
||||
int ncall=10;
|
||||
RealD t0 = usecond();
|
||||
for(int i=0;i<ncall;i++){
|
||||
gemmStridedBatched(M,N,K,
|
||||
alpha,
|
||||
&A[0], // m x k
|
||||
&B[0], // k x n
|
||||
beta,
|
||||
&C[0], // m x n
|
||||
BATCH);
|
||||
}
|
||||
synchronise();
|
||||
RealD t1 = usecond();
|
||||
RealD bytes = 1.0*sizeof(ComplexD)*(M*N*2+N*K+M*K)*BATCH;
|
||||
flops = 8.0*M*N*K*BATCH*ncall;
|
||||
flops = flops/(t1-t0)/1.e3;
|
||||
return flops; // Returns gigaflops
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -33,16 +33,19 @@ namespace Grid {
|
||||
template<class Field>
|
||||
class ZeroGuesser: public LinearFunction<Field> {
|
||||
public:
|
||||
using LinearFunction<Field>::operator();
|
||||
virtual void operator()(const Field &src, Field &guess) { guess = Zero(); };
|
||||
};
|
||||
template<class Field>
|
||||
class DoNothingGuesser: public LinearFunction<Field> {
|
||||
public:
|
||||
using LinearFunction<Field>::operator();
|
||||
virtual void operator()(const Field &src, Field &guess) { };
|
||||
};
|
||||
template<class Field>
|
||||
class SourceGuesser: public LinearFunction<Field> {
|
||||
public:
|
||||
using LinearFunction<Field>::operator();
|
||||
virtual void operator()(const Field &src, Field &guess) { guess = src; };
|
||||
};
|
||||
|
||||
@ -54,15 +57,24 @@ class DeflatedGuesser: public LinearFunction<Field> {
|
||||
private:
|
||||
const std::vector<Field> &evec;
|
||||
const std::vector<RealD> &eval;
|
||||
const unsigned int N;
|
||||
|
||||
public:
|
||||
using LinearFunction<Field>::operator();
|
||||
|
||||
DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval) : evec(_evec), eval(_eval) {};
|
||||
DeflatedGuesser(const std::vector<Field> & _evec,const std::vector<RealD> & _eval)
|
||||
: DeflatedGuesser(_evec, _eval, _evec.size())
|
||||
{}
|
||||
|
||||
DeflatedGuesser(const std::vector<Field> & _evec, const std::vector<RealD> & _eval, const unsigned int _N)
|
||||
: evec(_evec), eval(_eval), N(_N)
|
||||
{
|
||||
assert(evec.size()==eval.size());
|
||||
assert(N <= evec.size());
|
||||
}
|
||||
|
||||
virtual void operator()(const Field &src,Field &guess) {
|
||||
guess = Zero();
|
||||
assert(evec.size()==eval.size());
|
||||
auto N = evec.size();
|
||||
for (int i=0;i<N;i++) {
|
||||
const Field& tmp = evec[i];
|
||||
axpy(guess,TensorRemove(innerProduct(tmp,src)) / eval[i],tmp,guess);
|
||||
@ -79,6 +91,7 @@ private:
|
||||
const std::vector<RealD> &eval_coarse;
|
||||
public:
|
||||
|
||||
using LinearFunction<FineField>::operator();
|
||||
LocalCoherenceDeflatedGuesser(const std::vector<FineField> &_subspace,
|
||||
const std::vector<CoarseField> &_evec_coarse,
|
||||
const std::vector<RealD> &_eval_coarse)
|
||||
@ -100,7 +113,43 @@ public:
|
||||
blockPromote(guess_coarse,guess,subspace);
|
||||
guess.Checkerboard() = src.Checkerboard();
|
||||
};
|
||||
};
|
||||
|
||||
void operator()(const std::vector<FineField> &src,std::vector<FineField> &guess) {
|
||||
int Nevec = (int)evec_coarse.size();
|
||||
int Nsrc = (int)src.size();
|
||||
// make temp variables
|
||||
std::vector<CoarseField> src_coarse(Nsrc,evec_coarse[0].Grid());
|
||||
std::vector<CoarseField> guess_coarse(Nsrc,evec_coarse[0].Grid());
|
||||
//Preporcessing
|
||||
std::cout << GridLogMessage << "Start BlockProject for loop" << std::endl;
|
||||
for (int j=0;j<Nsrc;j++)
|
||||
{
|
||||
guess_coarse[j] = Zero();
|
||||
std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
|
||||
blockProject(src_coarse[j],src[j],subspace);
|
||||
}
|
||||
//deflation set up for eigen vector batchsize 1 and source batch size equal number of sources
|
||||
std::cout << GridLogMessage << "Start ProjectAccum for loop" << std::endl;
|
||||
for (int i=0;i<Nevec;i++)
|
||||
{
|
||||
std::cout << GridLogMessage << "ProjectAccum Nvec: " << i << std::endl;
|
||||
const CoarseField & tmp = evec_coarse[i];
|
||||
for (int j=0;j<Nsrc;j++)
|
||||
{
|
||||
axpy(guess_coarse[j],TensorRemove(innerProduct(tmp,src_coarse[j])) / eval_coarse[i],tmp,guess_coarse[j]);
|
||||
}
|
||||
}
|
||||
//postprocessing
|
||||
std::cout << GridLogMessage << "Start BlockPromote for loop" << std::endl;
|
||||
for (int j=0;j<Nsrc;j++)
|
||||
{
|
||||
std::cout << GridLogMessage << "BlockProject iter: " << j << std::endl;
|
||||
blockPromote(guess_coarse[j],guess[j],subspace);
|
||||
guess[j].Checkerboard() = src[j].Checkerboard();
|
||||
}
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
513
Grid/algorithms/deflation/MultiRHSBlockProject.h
Normal file
513
Grid/algorithms/deflation/MultiRHSBlockProject.h
Normal file
@ -0,0 +1,513 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: MultiRHSDeflation.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
/*
|
||||
MultiRHS block projection
|
||||
|
||||
Import basis -> nblock x nbasis x (block x internal)
|
||||
Import vector of fine lattice objects -> nblock x nrhs x (block x internal)
|
||||
|
||||
=> coarse_(nrhs x nbasis )^block = via batched GEMM
|
||||
|
||||
//template<class vobj,class CComplex,int nbasis,class VLattice>
|
||||
//inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
|
||||
// const VLattice &fineData,
|
||||
// const VLattice &Basis)
|
||||
*/
|
||||
|
||||
template<class Field>
|
||||
class MultiRHSBlockProject
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename Field::scalar_type scalar;
|
||||
typedef typename Field::scalar_object scalar_object;
|
||||
typedef Field Fermion;
|
||||
|
||||
int nbasis;
|
||||
GridBase *coarse_grid;
|
||||
GridBase *fine_grid;
|
||||
uint64_t block_vol;
|
||||
uint64_t fine_vol;
|
||||
uint64_t coarse_vol;
|
||||
uint64_t words;
|
||||
|
||||
// Row major layout "C" order:
|
||||
// BLAS_V[coarse_vol][nbasis][block_vol][words]
|
||||
// BLAS_F[coarse_vol][nrhs][block_vol][words]
|
||||
// BLAS_C[coarse_vol][nrhs][nbasis]
|
||||
/*
|
||||
* in Fortran column major notation (cuBlas order)
|
||||
*
|
||||
* Vxb = [v1(x)][..][vn(x)] ... x coarse vol
|
||||
*
|
||||
* Fxr = [r1(x)][..][rm(x)] ... x coarse vol
|
||||
*
|
||||
* Block project:
|
||||
* C_br = V^dag F x coarse vol
|
||||
*
|
||||
* Block promote:
|
||||
* F_xr = Vxb Cbr x coarse_vol
|
||||
*/
|
||||
deviceVector<scalar> BLAS_V; // words * block_vol * nbasis x coarse_vol
|
||||
deviceVector<scalar> BLAS_F; // nrhs x fine_vol * words -- the sources
|
||||
deviceVector<scalar> BLAS_C; // nrhs x coarse_vol * nbasis -- the coarse coeffs
|
||||
|
||||
RealD blasNorm2(deviceVector<scalar> &blas)
|
||||
{
|
||||
scalar ss(0.0);
|
||||
std::vector<scalar> tmp(blas.size());
|
||||
acceleratorCopyFromDevice(&blas[0],&tmp[0],blas.size()*sizeof(scalar));
|
||||
for(int64_t s=0;s<blas.size();s++){
|
||||
ss=ss+tmp[s]*adj(tmp[s]);
|
||||
}
|
||||
coarse_grid->GlobalSum(ss);
|
||||
return real(ss);
|
||||
}
|
||||
|
||||
MultiRHSBlockProject(){};
|
||||
~MultiRHSBlockProject(){ Deallocate(); };
|
||||
|
||||
void Deallocate(void)
|
||||
{
|
||||
nbasis=0;
|
||||
coarse_grid=nullptr;
|
||||
fine_grid=nullptr;
|
||||
fine_vol=0;
|
||||
block_vol=0;
|
||||
coarse_vol=0;
|
||||
words=0;
|
||||
BLAS_V.resize(0);
|
||||
BLAS_F.resize(0);
|
||||
BLAS_C.resize(0);
|
||||
}
|
||||
void Allocate(int _nbasis,GridBase *_fgrid,GridBase *_cgrid)
|
||||
{
|
||||
nbasis=_nbasis;
|
||||
|
||||
fine_grid=_fgrid;
|
||||
coarse_grid=_cgrid;
|
||||
|
||||
fine_vol = fine_grid->lSites();
|
||||
coarse_vol = coarse_grid->lSites();
|
||||
block_vol = fine_vol/coarse_vol;
|
||||
|
||||
words = sizeof(scalar_object)/sizeof(scalar);
|
||||
|
||||
BLAS_V.resize (fine_vol * words * nbasis );
|
||||
}
|
||||
void ImportFineGridVectors(std::vector <Field > &vecs, deviceVector<scalar> &blas)
|
||||
{
|
||||
int nvec = vecs.size();
|
||||
typedef typename Field::vector_object vobj;
|
||||
// std::cout << GridLogMessage <<" BlockProjector importing "<<nvec<< " fine grid vectors" <<std::endl;
|
||||
|
||||
assert(vecs[0].Grid()==fine_grid);
|
||||
|
||||
subdivides(coarse_grid,fine_grid); // require they map
|
||||
|
||||
int _ndimension = coarse_grid->_ndimension;
|
||||
assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
|
||||
|
||||
Coordinate block_r (_ndimension);
|
||||
for(int d=0 ; d<_ndimension;d++){
|
||||
block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
|
||||
}
|
||||
|
||||
uint64_t sz = blas.size();
|
||||
|
||||
acceleratorMemSet(&blas[0],0,blas.size()*sizeof(scalar));
|
||||
|
||||
Coordinate fine_rdimensions = fine_grid->_rdimensions;
|
||||
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
|
||||
int64_t bv= block_vol;
|
||||
for(int v=0;v<vecs.size();v++){
|
||||
|
||||
// std::cout << " BlockProjector importing vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
|
||||
autoView( fineData , vecs[v], AcceleratorRead);
|
||||
|
||||
auto blasData_p = &blas[0];
|
||||
auto fineData_p = &fineData[0];
|
||||
|
||||
int64_t osites = fine_grid->oSites();
|
||||
|
||||
// loop over fine sites
|
||||
const int Nsimd = vobj::Nsimd();
|
||||
// std::cout << "sz "<<sz<<std::endl;
|
||||
// std::cout << "prod "<<Nsimd * coarse_grid->oSites() * block_vol * nvec * words<<std::endl;
|
||||
assert(sz == Nsimd * coarse_grid->oSites() * block_vol * nvec * words);
|
||||
uint64_t lwords= words; // local variable for copy in to GPU
|
||||
accelerator_for(sf,osites,Nsimd,{
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
|
||||
#else
|
||||
for(int lane=0;lane<Nsimd;lane++) {
|
||||
#endif
|
||||
// One thread per fine site
|
||||
Coordinate coor_f(_ndimension);
|
||||
Coordinate coor_b(_ndimension);
|
||||
Coordinate coor_c(_ndimension);
|
||||
|
||||
// Fine site to fine coor
|
||||
Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
|
||||
|
||||
for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
|
||||
for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
|
||||
|
||||
int sc;// coarse site
|
||||
int sb;// block site
|
||||
Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
|
||||
Lexicographic::IndexFromCoor(coor_b,sb,block_r);
|
||||
|
||||
scalar_object data = extractLane(lane,fineData[sf]);
|
||||
|
||||
// BLAS layout address calculation
|
||||
// words * block_vol * nbasis x coarse_vol
|
||||
// coarse oSite x block vole x lanes
|
||||
int64_t site = (lane*osites + sc*bv)*nvec
|
||||
+ v*bv
|
||||
+ sb;
|
||||
|
||||
// assert(site*lwords<sz);
|
||||
|
||||
scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
|
||||
|
||||
*ptr = data;
|
||||
#ifdef GRID_SIMT
|
||||
}
|
||||
#else
|
||||
}
|
||||
#endif
|
||||
});
|
||||
// std::cout << " import fine Blas norm "<<blasNorm2(blas)<<std::endl;
|
||||
// std::cout << " BlockProjector imported vector"<<v<<std::endl;
|
||||
}
|
||||
}
|
||||
void ExportFineGridVectors(std::vector <Field> &vecs, deviceVector<scalar> &blas)
|
||||
{
|
||||
typedef typename Field::vector_object vobj;
|
||||
|
||||
int nvec = vecs.size();
|
||||
|
||||
assert(vecs[0].Grid()==fine_grid);
|
||||
|
||||
subdivides(coarse_grid,fine_grid); // require they map
|
||||
|
||||
int _ndimension = coarse_grid->_ndimension;
|
||||
assert(block_vol == fine_grid->oSites() / coarse_grid->oSites());
|
||||
|
||||
Coordinate block_r (_ndimension);
|
||||
for(int d=0 ; d<_ndimension;d++){
|
||||
block_r[d] = fine_grid->_rdimensions[d] / coarse_grid->_rdimensions[d];
|
||||
}
|
||||
Coordinate fine_rdimensions = fine_grid->_rdimensions;
|
||||
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
|
||||
|
||||
// std::cout << " export fine Blas norm "<<blasNorm2(blas)<<std::endl;
|
||||
|
||||
int64_t bv= block_vol;
|
||||
for(int v=0;v<vecs.size();v++){
|
||||
|
||||
autoView( fineData , vecs[v], AcceleratorWrite);
|
||||
|
||||
auto blasData_p = &blas[0];
|
||||
auto fineData_p = &fineData[0];
|
||||
|
||||
int64_t osites = fine_grid->oSites();
|
||||
uint64_t lwords = words;
|
||||
// std::cout << " Nsimd is "<<vobj::Nsimd() << std::endl;
|
||||
// std::cout << " lwords is "<<lwords << std::endl;
|
||||
// std::cout << " sizeof(scalar_object) is "<<sizeof(scalar_object) << std::endl;
|
||||
// loop over fine sites
|
||||
accelerator_for(sf,osites,vobj::Nsimd(),{
|
||||
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
int lane=acceleratorSIMTlane(vobj::Nsimd()); // buffer lane
|
||||
#else
|
||||
for(int lane=0;lane<vobj::Nsimd();lane++) {
|
||||
#endif
|
||||
// One thread per fine site
|
||||
Coordinate coor_f(_ndimension);
|
||||
Coordinate coor_b(_ndimension);
|
||||
Coordinate coor_c(_ndimension);
|
||||
|
||||
Lexicographic::CoorFromIndex(coor_f,sf,fine_rdimensions);
|
||||
|
||||
for(int d=0;d<_ndimension;d++) coor_b[d] = coor_f[d]%block_r[d];
|
||||
for(int d=0;d<_ndimension;d++) coor_c[d] = coor_f[d]/block_r[d];
|
||||
|
||||
int sc;
|
||||
int sb;
|
||||
Lexicographic::IndexFromCoor(coor_c,sc,coarse_rdimensions);
|
||||
Lexicographic::IndexFromCoor(coor_b,sb,block_r);
|
||||
|
||||
// BLAS layout address calculation
|
||||
// words * block_vol * nbasis x coarse_vol
|
||||
int64_t site = (lane*osites + sc*bv)*nvec
|
||||
+ v*bv
|
||||
+ sb;
|
||||
|
||||
scalar_object * ptr = (scalar_object *)&blasData_p[site*lwords];
|
||||
|
||||
scalar_object data = *ptr;
|
||||
|
||||
insertLane(lane,fineData[sf],data);
|
||||
#ifdef GRID_SIMT
|
||||
}
|
||||
#else
|
||||
}
|
||||
#endif
|
||||
});
|
||||
}
|
||||
}
|
||||
template<class vobj>
|
||||
void ImportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
|
||||
{
|
||||
int nvec = vecs.size();
|
||||
typedef typename vobj::scalar_object coarse_scalar_object;
|
||||
|
||||
// std::cout << " BlockProjector importing "<<nvec<< " coarse grid vectors" <<std::endl;
|
||||
|
||||
assert(vecs[0].Grid()==coarse_grid);
|
||||
|
||||
int _ndimension = coarse_grid->_ndimension;
|
||||
|
||||
uint64_t sz = blas.size();
|
||||
|
||||
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
|
||||
|
||||
for(int v=0;v<vecs.size();v++){
|
||||
|
||||
// std::cout << " BlockProjector importing coarse vector"<<v<<" "<<norm2(vecs[v])<<std::endl;
|
||||
autoView( coarseData , vecs[v], AcceleratorRead);
|
||||
|
||||
auto blasData_p = &blas[0];
|
||||
auto coarseData_p = &coarseData[0];
|
||||
|
||||
int64_t osites = coarse_grid->oSites();
|
||||
|
||||
// loop over fine sites
|
||||
const int Nsimd = vobj::Nsimd();
|
||||
uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
|
||||
assert(cwords==nbasis);
|
||||
|
||||
accelerator_for(sc,osites,Nsimd,{
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
|
||||
#else
|
||||
for(int lane=0;lane<Nsimd;lane++) {
|
||||
#endif
|
||||
// C_br per site
|
||||
int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
|
||||
|
||||
coarse_scalar_object data = extractLane(lane,coarseData[sc]);
|
||||
|
||||
coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
|
||||
|
||||
*ptr = data;
|
||||
#ifdef GRID_SIMT
|
||||
}
|
||||
#else
|
||||
}
|
||||
#endif
|
||||
});
|
||||
// std::cout << " import coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
|
||||
}
|
||||
}
|
||||
template<class vobj>
|
||||
void ExportCoarseGridVectors(std::vector <Lattice<vobj> > &vecs, deviceVector<scalar> &blas)
|
||||
{
|
||||
int nvec = vecs.size();
|
||||
typedef typename vobj::scalar_object coarse_scalar_object;
|
||||
// std::cout << GridLogMessage<<" BlockProjector exporting "<<nvec<< " coarse grid vectors" <<std::endl;
|
||||
|
||||
assert(vecs[0].Grid()==coarse_grid);
|
||||
|
||||
int _ndimension = coarse_grid->_ndimension;
|
||||
|
||||
uint64_t sz = blas.size();
|
||||
|
||||
Coordinate coarse_rdimensions = coarse_grid->_rdimensions;
|
||||
|
||||
// std::cout << " export coarsee Blas norm "<<blasNorm2(blas)<<std::endl;
|
||||
for(int v=0;v<vecs.size();v++){
|
||||
|
||||
// std::cout << " BlockProjector exporting coarse vector"<<v<<std::endl;
|
||||
autoView( coarseData , vecs[v], AcceleratorWrite);
|
||||
|
||||
auto blasData_p = &blas[0];
|
||||
auto coarseData_p = &coarseData[0];
|
||||
|
||||
int64_t osites = coarse_grid->oSites();
|
||||
|
||||
// loop over fine sites
|
||||
const int Nsimd = vobj::Nsimd();
|
||||
uint64_t cwords=sizeof(typename vobj::scalar_object)/sizeof(scalar);
|
||||
assert(cwords==nbasis);
|
||||
|
||||
accelerator_for(sc,osites,Nsimd,{
|
||||
// Wrap in a macro "FOR_ALL_LANES(lane,{ ... });
|
||||
#ifdef GRID_SIMT
|
||||
{
|
||||
int lane=acceleratorSIMTlane(Nsimd); // buffer lane
|
||||
#else
|
||||
for(int lane=0;lane<Nsimd;lane++) {
|
||||
#endif
|
||||
int64_t blas_site = (lane*osites + sc)*nvec*cwords + v*cwords;
|
||||
coarse_scalar_object * ptr = (coarse_scalar_object *)&blasData_p[blas_site];
|
||||
coarse_scalar_object data = *ptr;
|
||||
insertLane(lane,coarseData[sc],data);
|
||||
#ifdef GRID_SIMT
|
||||
}
|
||||
#else
|
||||
}
|
||||
#endif
|
||||
});
|
||||
}
|
||||
}
|
||||
void ImportBasis(std::vector < Field > &vecs)
|
||||
{
|
||||
// std::cout << " BlockProjector Import basis size "<<vecs.size()<<std::endl;
|
||||
ImportFineGridVectors(vecs,BLAS_V);
|
||||
}
|
||||
|
||||
template<class cobj>
|
||||
void blockProject(std::vector<Field> &fine,std::vector< Lattice<cobj> > & coarse)
|
||||
{
|
||||
int nrhs=fine.size();
|
||||
int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
|
||||
// std::cout << "blockProject nbasis " <<nbasis<<" " << _nbasis<<std::endl;
|
||||
assert(nbasis==_nbasis);
|
||||
|
||||
BLAS_F.resize (fine_vol * words * nrhs );
|
||||
BLAS_C.resize (coarse_vol * nbasis * nrhs );
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Copy in the multi-rhs sources to same data layout
|
||||
/////////////////////////////////////////////
|
||||
// std::cout << "BlockProject import fine"<<std::endl;
|
||||
ImportFineGridVectors(fine,BLAS_F);
|
||||
|
||||
deviceVector<scalar *> Vd(coarse_vol);
|
||||
deviceVector<scalar *> Fd(coarse_vol);
|
||||
deviceVector<scalar *> Cd(coarse_vol);
|
||||
|
||||
// std::cout << "BlockProject pointers"<<std::endl;
|
||||
for(int c=0;c<coarse_vol;c++){
|
||||
// BLAS_V[coarse_vol][nbasis][block_vol][words]
|
||||
// BLAS_F[coarse_vol][nrhs][block_vol][words]
|
||||
// BLAS_C[coarse_vol][nrhs][nbasis]
|
||||
scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
|
||||
scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
|
||||
scalar * Ch = & BLAS_C[c*nrhs*nbasis];
|
||||
|
||||
acceleratorPut(Vd[c],Vh);
|
||||
acceleratorPut(Fd[c],Fh);
|
||||
acceleratorPut(Cd[c],Ch);
|
||||
}
|
||||
|
||||
GridBLAS BLAS;
|
||||
|
||||
// std::cout << "BlockProject BLAS"<<std::endl;
|
||||
int64_t vw = block_vol * words;
|
||||
/////////////////////////////////////////
|
||||
// C_br = V^dag R
|
||||
/////////////////////////////////////////
|
||||
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
|
||||
nbasis,nrhs,vw,
|
||||
ComplexD(1.0),
|
||||
Vd,
|
||||
Fd,
|
||||
ComplexD(0.0), // wipe out C
|
||||
Cd);
|
||||
BLAS.synchronise();
|
||||
// std::cout << "BlockProject done"<<std::endl;
|
||||
ExportCoarseGridVectors(coarse, BLAS_C);
|
||||
// std::cout << "BlockProject done"<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
template<class cobj>
|
||||
void blockPromote(std::vector<Field> &fine,std::vector<Lattice<cobj> > & coarse)
|
||||
{
|
||||
int nrhs=fine.size();
|
||||
int _nbasis = sizeof(typename cobj::scalar_object)/sizeof(scalar);
|
||||
assert(nbasis==_nbasis);
|
||||
|
||||
BLAS_F.resize (fine_vol * words * nrhs );
|
||||
BLAS_C.resize (coarse_vol * nbasis * nrhs );
|
||||
|
||||
ImportCoarseGridVectors(coarse, BLAS_C);
|
||||
|
||||
GridBLAS BLAS;
|
||||
|
||||
deviceVector<scalar *> Vd(coarse_vol);
|
||||
deviceVector<scalar *> Fd(coarse_vol);
|
||||
deviceVector<scalar *> Cd(coarse_vol);
|
||||
|
||||
for(int c=0;c<coarse_vol;c++){
|
||||
// BLAS_V[coarse_vol][nbasis][block_vol][words]
|
||||
// BLAS_F[coarse_vol][nrhs][block_vol][words]
|
||||
// BLAS_C[coarse_vol][nrhs][nbasis]
|
||||
scalar * Vh = & BLAS_V[c*nbasis*block_vol*words];
|
||||
scalar * Fh = & BLAS_F[c*nrhs*block_vol*words];
|
||||
scalar * Ch = & BLAS_C[c*nrhs*nbasis];
|
||||
acceleratorPut(Vd[c],Vh);
|
||||
acceleratorPut(Fd[c],Fh);
|
||||
acceleratorPut(Cd[c],Ch);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////
|
||||
// Block promote:
|
||||
// F_xr = Vxb Cbr (x coarse_vol)
|
||||
/////////////////////////////////////////
|
||||
|
||||
int64_t vw = block_vol * words;
|
||||
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
vw,nrhs,nbasis,
|
||||
ComplexD(1.0),
|
||||
Vd,
|
||||
Cd,
|
||||
ComplexD(0.0), // wipe out C
|
||||
Fd);
|
||||
BLAS.synchronise();
|
||||
// std::cout << " blas call done"<<std::endl;
|
||||
|
||||
ExportFineGridVectors(fine, BLAS_F);
|
||||
// std::cout << " exported "<<std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
233
Grid/algorithms/deflation/MultiRHSDeflation.h
Normal file
233
Grid/algorithms/deflation/MultiRHSDeflation.h
Normal file
@ -0,0 +1,233 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: MultiRHSDeflation.h
|
||||
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
/* Need helper object for BLAS accelerated mrhs projection
|
||||
|
||||
i) MultiRHS Deflation
|
||||
|
||||
Import Evecs -> nev x vol x internal
|
||||
Import vector of Lattice objects -> nrhs x vol x internal
|
||||
=> Cij (nrhs x Nev) via GEMM.
|
||||
=> Guess (nrhs x vol x internal) = C x evecs (via GEMM)
|
||||
Export
|
||||
|
||||
|
||||
ii) MultiRHS block projection
|
||||
|
||||
Import basis -> nblock x nbasis x (block x internal)
|
||||
Import vector of fine lattice objects -> nblock x nrhs x (block x internal)
|
||||
|
||||
=> coarse_(nrhs x nbasis )^block = via batched GEMM
|
||||
|
||||
iii) Alternate interface:
|
||||
Import higher dim Lattice object-> vol x nrhs layout
|
||||
|
||||
*/
|
||||
template<class Field>
|
||||
class MultiRHSDeflation
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename Field::scalar_type scalar;
|
||||
typedef typename Field::scalar_object scalar_object;
|
||||
|
||||
int nev;
|
||||
std::vector<RealD> eval;
|
||||
GridBase *grid;
|
||||
uint64_t vol;
|
||||
uint64_t words;
|
||||
|
||||
deviceVector<scalar> BLAS_E; // nev x vol -- the eigenbasis (up to a 1/sqrt(lambda))
|
||||
deviceVector<scalar> BLAS_R; // nrhs x vol -- the sources
|
||||
deviceVector<scalar> BLAS_G; // nrhs x vol -- the guess
|
||||
deviceVector<scalar> BLAS_C; // nrhs x nev -- the coefficients
|
||||
|
||||
MultiRHSDeflation(){};
|
||||
~MultiRHSDeflation(){ Deallocate(); };
|
||||
|
||||
void Deallocate(void)
|
||||
{
|
||||
nev=0;
|
||||
grid=nullptr;
|
||||
vol=0;
|
||||
words=0;
|
||||
BLAS_E.resize(0);
|
||||
BLAS_R.resize(0);
|
||||
BLAS_C.resize(0);
|
||||
BLAS_G.resize(0);
|
||||
}
|
||||
void Allocate(int _nev,GridBase *_grid)
|
||||
{
|
||||
nev=_nev;
|
||||
grid=_grid;
|
||||
vol = grid->lSites();
|
||||
words = sizeof(scalar_object)/sizeof(scalar);
|
||||
eval.resize(nev);
|
||||
BLAS_E.resize (vol * words * nev );
|
||||
std::cout << GridLogMessage << " Allocate for "<<nev<<" eigenvectors and volume "<<vol<<std::endl;
|
||||
}
|
||||
void ImportEigenVector(Field &evec,RealD &_eval, int ev)
|
||||
{
|
||||
// std::cout << " ev " <<ev<<" eval "<<_eval<< std::endl;
|
||||
assert(ev<eval.size());
|
||||
eval[ev] = _eval;
|
||||
|
||||
int64_t offset = ev*vol*words;
|
||||
autoView(v,evec,AcceleratorRead);
|
||||
acceleratorCopyDeviceToDevice(&v[0],&BLAS_E[offset],sizeof(scalar_object)*vol);
|
||||
|
||||
}
|
||||
void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval)
|
||||
{
|
||||
ImportEigenBasis(evec,_eval,0,evec.size());
|
||||
}
|
||||
// Could use to import a batch of eigenvectors
|
||||
void ImportEigenBasis(std::vector<Field> &evec,std::vector<RealD> &_eval, int _ev0, int _nev)
|
||||
{
|
||||
assert(_ev0+_nev<=evec.size());
|
||||
|
||||
Allocate(_nev,evec[0].Grid());
|
||||
|
||||
// Imports a sub-batch of eigenvectors, _ev0, ..., _ev0+_nev-1
|
||||
for(int e=0;e<nev;e++){
|
||||
std::cout << "Importing eigenvector "<<e<<" evalue "<<_eval[_ev0+e]<<std::endl;
|
||||
ImportEigenVector(evec[_ev0+e],_eval[_ev0+e],e);
|
||||
}
|
||||
}
|
||||
void DeflateSources(std::vector<Field> &source,std::vector<Field> & guess)
|
||||
{
|
||||
int nrhs = source.size();
|
||||
assert(source.size()==guess.size());
|
||||
assert(grid == guess[0].Grid());
|
||||
conformable(guess[0],source[0]);
|
||||
|
||||
int64_t vw = vol * words;
|
||||
|
||||
RealD t0 = usecond();
|
||||
BLAS_R.resize(nrhs * vw); // cost free if size doesn't change
|
||||
BLAS_G.resize(nrhs * vw); // cost free if size doesn't change
|
||||
BLAS_C.resize(nev * nrhs);// cost free if size doesn't change
|
||||
|
||||
/////////////////////////////////////////////
|
||||
// Copy in the multi-rhs sources
|
||||
/////////////////////////////////////////////
|
||||
// for(int r=0;r<nrhs;r++){
|
||||
// std::cout << " source["<<r<<"] = "<<norm2(source[r])<<std::endl;
|
||||
// }
|
||||
for(int r=0;r<nrhs;r++){
|
||||
int64_t offset = r*vw;
|
||||
autoView(v,source[r],AcceleratorRead);
|
||||
acceleratorCopyDeviceToDevice(&v[0],&BLAS_R[offset],sizeof(scalar_object)*vol);
|
||||
}
|
||||
|
||||
/*
|
||||
* in Fortran column major notation (cuBlas order)
|
||||
*
|
||||
* Exe = [e1(x)][..][en(x)]
|
||||
*
|
||||
* Rxr = [r1(x)][..][rm(x)]
|
||||
*
|
||||
* C_er = E^dag R
|
||||
* C_er = C_er / lambda_e
|
||||
* G_xr = Exe Cer
|
||||
*/
|
||||
deviceVector<scalar *> Ed(1);
|
||||
deviceVector<scalar *> Rd(1);
|
||||
deviceVector<scalar *> Cd(1);
|
||||
deviceVector<scalar *> Gd(1);
|
||||
|
||||
scalar * Eh = & BLAS_E[0];
|
||||
scalar * Rh = & BLAS_R[0];
|
||||
scalar * Ch = & BLAS_C[0];
|
||||
scalar * Gh = & BLAS_G[0];
|
||||
|
||||
acceleratorPut(Ed[0],Eh);
|
||||
acceleratorPut(Rd[0],Rh);
|
||||
acceleratorPut(Cd[0],Ch);
|
||||
acceleratorPut(Gd[0],Gh);
|
||||
|
||||
GridBLAS BLAS;
|
||||
|
||||
/////////////////////////////////////////
|
||||
// C_er = E^dag R
|
||||
/////////////////////////////////////////
|
||||
BLAS.gemmBatched(GridBLAS_OP_C,GridBLAS_OP_N,
|
||||
nev,nrhs,vw,
|
||||
ComplexD(1.0),
|
||||
Ed,
|
||||
Rd,
|
||||
ComplexD(0.0), // wipe out C
|
||||
Cd);
|
||||
BLAS.synchronise();
|
||||
|
||||
assert(BLAS_C.size()==nev*nrhs);
|
||||
|
||||
std::vector<scalar> HOST_C(BLAS_C.size()); // nrhs . nev -- the coefficients
|
||||
acceleratorCopyFromDevice(&BLAS_C[0],&HOST_C[0],BLAS_C.size()*sizeof(scalar));
|
||||
grid->GlobalSumVector(&HOST_C[0],nev*nrhs);
|
||||
for(int e=0;e<nev;e++){
|
||||
RealD lam(1.0/eval[e]);
|
||||
for(int r=0;r<nrhs;r++){
|
||||
int off = e+nev*r;
|
||||
HOST_C[off]=HOST_C[off] * lam;
|
||||
// std::cout << "C["<<e<<"]["<<r<<"] ="<<HOST_C[off]<< " eval[e] "<<eval[e] <<std::endl;
|
||||
}
|
||||
}
|
||||
acceleratorCopyToDevice(&HOST_C[0],&BLAS_C[0],BLAS_C.size()*sizeof(scalar));
|
||||
|
||||
|
||||
/////////////////////////////////////////
|
||||
// Guess G_xr = Exe Cer
|
||||
/////////////////////////////////////////
|
||||
BLAS.gemmBatched(GridBLAS_OP_N,GridBLAS_OP_N,
|
||||
vw,nrhs,nev,
|
||||
ComplexD(1.0),
|
||||
Ed, // x . nev
|
||||
Cd, // nev . nrhs
|
||||
ComplexD(0.0),
|
||||
Gd);
|
||||
BLAS.synchronise();
|
||||
|
||||
///////////////////////////////////////
|
||||
// Copy out the multirhs
|
||||
///////////////////////////////////////
|
||||
for(int r=0;r<nrhs;r++){
|
||||
int64_t offset = r*vw;
|
||||
autoView(v,guess[r],AcceleratorWrite);
|
||||
acceleratorCopyDeviceToDevice(&BLAS_G[offset],&v[0],sizeof(scalar_object)*vol);
|
||||
}
|
||||
RealD t1 = usecond();
|
||||
std::cout << GridLogMessage << "MultiRHSDeflation for "<<nrhs<<" sources with "<<nev<<" eigenvectors took " << (t1-t0)/1e3 <<" ms"<<std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -33,109 +33,111 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
* Script A = SolverMatrix
|
||||
* Script P = Preconditioner
|
||||
*
|
||||
* Deflation methods considered
|
||||
* -- Solve P A x = P b [ like Luscher ]
|
||||
* DEF-1 M P A x = M P b [i.e. left precon]
|
||||
* DEF-2 P^T M A x = P^T M b
|
||||
* ADEF-1 Preconditioner = M P + Q [ Q + M + M A Q]
|
||||
* ADEF-2 Preconditioner = P^T M + Q
|
||||
* BNN Preconditioner = P^T M P + Q
|
||||
* BNN2 Preconditioner = M P + P^TM +Q - M P A M
|
||||
*
|
||||
* Implement ADEF-2
|
||||
*
|
||||
* Vstart = P^Tx + Qb
|
||||
* M1 = P^TM + Q
|
||||
* M2=M3=1
|
||||
* Vout = x
|
||||
*/
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// abstract base
|
||||
template<class Field, class CoarseField>
|
||||
class TwoLevelFlexiblePcg : public LinearFunction<Field>
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelCG : public LinearFunction<Field>
|
||||
{
|
||||
public:
|
||||
int verbose;
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
const int mmax = 5;
|
||||
GridBase *grid;
|
||||
GridBase *coarsegrid;
|
||||
|
||||
LinearOperatorBase<Field> *_Linop
|
||||
OperatorFunction<Field> *_Smoother,
|
||||
LinearFunction<CoarseField> *_CoarseSolver;
|
||||
|
||||
// Need somthing that knows how to get from Coarse to fine and back again
|
||||
// Fine operator, Smoother, CoarseSolver
|
||||
LinearOperatorBase<Field> &_FineLinop;
|
||||
LinearFunction<Field> &_Smoother;
|
||||
|
||||
// more most opertor functions
|
||||
TwoLevelFlexiblePcg(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> *Linop,
|
||||
LinearOperatorBase<Field> *SmootherLinop,
|
||||
OperatorFunction<Field> *Smoother,
|
||||
OperatorFunction<CoarseField> CoarseLinop
|
||||
) :
|
||||
TwoLevelCG(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> &FineLinop,
|
||||
LinearFunction<Field> &Smoother,
|
||||
GridBase *fine) :
|
||||
Tolerance(tol),
|
||||
MaxIterations(maxit),
|
||||
_Linop(Linop),
|
||||
_PreconditionerLinop(PrecLinop),
|
||||
_Preconditioner(Preconditioner)
|
||||
{
|
||||
verbose=0;
|
||||
_FineLinop(FineLinop),
|
||||
_Smoother(Smoother)
|
||||
{
|
||||
grid = fine;
|
||||
};
|
||||
|
||||
// The Pcg routine is common to all, but the various matrices differ from derived
|
||||
// implementation to derived implmentation
|
||||
void operator() (const Field &src, Field &psi){
|
||||
void operator() (const Field &src, Field &psi){
|
||||
|
||||
psi.Checkerboard() = src.Checkerboard();
|
||||
grid = src.Grid();
|
||||
|
||||
|
||||
virtual void operator() (const Field &src, Field &x)
|
||||
{
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg starting single RHS"<<std::endl;
|
||||
RealD f;
|
||||
RealD rtzp,rtz,a,d,b;
|
||||
RealD rptzp;
|
||||
RealD tn;
|
||||
RealD guess = norm2(psi);
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = ssq*Tolerance*Tolerance;
|
||||
|
||||
|
||||
/////////////////////////////
|
||||
// Set up history vectors
|
||||
/////////////////////////////
|
||||
std::vector<Field> p (mmax,grid);
|
||||
int mmax = 5;
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
|
||||
std::vector<Field> p(mmax,grid);
|
||||
std::vector<Field> mmp(mmax,grid);
|
||||
std::vector<RealD> pAp(mmax);
|
||||
|
||||
Field x (grid); x = psi;
|
||||
Field z (grid);
|
||||
Field z(grid);
|
||||
Field tmp(grid);
|
||||
Field r (grid);
|
||||
Field mu (grid);
|
||||
|
||||
Field mp (grid);
|
||||
Field r (grid);
|
||||
Field mu (grid);
|
||||
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated"<<std::endl;
|
||||
//Initial residual computation & set up
|
||||
RealD guess = norm2(x);
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg guess nrm "<<guess<<std::endl;
|
||||
RealD src_nrm = norm2(src);
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg src nrm "<<src_nrm<<std::endl;
|
||||
|
||||
if ( src_nrm == 0.0 ) {
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg given trivial source norm "<<src_nrm<<std::endl;
|
||||
x=Zero();
|
||||
}
|
||||
RealD tn;
|
||||
|
||||
GridStopWatch HDCGTimer;
|
||||
HDCGTimer.Start();
|
||||
//////////////////////////
|
||||
// x0 = Vstart -- possibly modify guess
|
||||
//////////////////////////
|
||||
x=src;
|
||||
Vstart(x,src);
|
||||
|
||||
|
||||
// r0 = b -A x0
|
||||
HermOp(x,mmp); // Shouldn't this be something else?
|
||||
_FineLinop.HermOp(x,mmp[0]);
|
||||
axpy (r, -1.0,mmp[0], src); // Recomputes r=src-Ax0
|
||||
{
|
||||
double n1 = norm2(x);
|
||||
double n2 = norm2(mmp[0]);
|
||||
double n3 = norm2(r);
|
||||
std::cout<<GridLogMessage<<"x,vstart,r = "<<n1<<" "<<n2<<" "<<n3<<std::endl;
|
||||
}
|
||||
|
||||
//////////////////////////////////
|
||||
// Compute z = M1 x
|
||||
//////////////////////////////////
|
||||
M1(r,z,tmp,mp,SmootherMirs);
|
||||
PcgM1(r,z);
|
||||
rtzp =real(innerProduct(r,z));
|
||||
|
||||
|
||||
///////////////////////////////////////
|
||||
// Solve for Mss mu = P A z and set p = z-mu
|
||||
// Def2: p = 1 - Q Az = Pright z
|
||||
// Def2 p = 1 - Q Az = Pright z
|
||||
// Other algos M2 is trivial
|
||||
///////////////////////////////////////
|
||||
M2(z,p[0]);
|
||||
PcgM2(z,p[0]);
|
||||
|
||||
RealD ssq = norm2(src);
|
||||
RealD rsq = ssq*Tolerance*Tolerance;
|
||||
|
||||
std::cout << GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" rsq "<<rsq<<"\n";
|
||||
|
||||
Field pp(grid);
|
||||
|
||||
for (int k=0;k<=MaxIterations;k++){
|
||||
|
||||
@ -143,31 +145,46 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field>
|
||||
int peri_kp = (k+1) % mmax;
|
||||
|
||||
rtz=rtzp;
|
||||
d= M3(p[peri_k],mp,mmp[peri_k],tmp);
|
||||
d= PcgM3(p[peri_k],mmp[peri_k]);
|
||||
a = rtz/d;
|
||||
|
||||
// Memorise this
|
||||
pAp[peri_k] = d;
|
||||
|
||||
|
||||
axpy(x,a,p[peri_k],x);
|
||||
RealD rn = axpy_norm(r,-a,mmp[peri_k],r);
|
||||
|
||||
// Compute z = M x
|
||||
M1(r,z,tmp,mp);
|
||||
|
||||
PcgM1(r,z);
|
||||
|
||||
{
|
||||
RealD n1,n2;
|
||||
n1=norm2(r);
|
||||
n2=norm2(z);
|
||||
std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : vector r,z "<<n1<<" "<<n2<<"\n";
|
||||
}
|
||||
rtzp =real(innerProduct(r,z));
|
||||
std::cout << GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : inner rtzp "<<rtzp<<"\n";
|
||||
|
||||
M2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
|
||||
// PcgM2(z,p[0]);
|
||||
PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
|
||||
|
||||
p[peri_kp]=mu;
|
||||
|
||||
p[peri_kp]=p[peri_k];
|
||||
|
||||
// Standard search direction p -> z + b p ; b =
|
||||
// Standard search direction p -> z + b p
|
||||
b = (rtzp)/rtz;
|
||||
|
||||
|
||||
int northog;
|
||||
// k=zero <=> peri_kp=1; northog = 1
|
||||
// k=1 <=> peri_kp=2; northog = 2
|
||||
// ... ... ...
|
||||
// k=mmax-2<=> peri_kp=mmax-1; northog = mmax-1
|
||||
// k=mmax-1<=> peri_kp=0; northog = 1
|
||||
|
||||
// northog = (peri_kp==0)?1:peri_kp; // This is the fCG(mmax) algorithm
|
||||
northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
|
||||
|
||||
std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
|
||||
for(int back=0; back < northog; back++){
|
||||
int peri_back = (k-back)%mmax;
|
||||
RealD pbApk= real(innerProduct(mmp[peri_back],p[peri_kp]));
|
||||
@ -176,75 +193,324 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field>
|
||||
}
|
||||
|
||||
RealD rrn=sqrt(rn/ssq);
|
||||
std::cout<<GridLogMessage<<"TwoLevelfPcg: k= "<<k<<" residual = "<<rrn<<std::endl;
|
||||
RealD rtn=sqrt(rtz/ssq);
|
||||
RealD rtnp=sqrt(rtzp/ssq);
|
||||
|
||||
std::cout<<GridLogMessage<<"HDCG: fPcg k= "<<k<<" residual = "<<rrn<<"\n";
|
||||
|
||||
// Stopping condition
|
||||
if ( rn <= rsq ) {
|
||||
|
||||
HermOp(x,mmp); // Shouldn't this be something else?
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
|
||||
|
||||
_FineLinop.HermOp(x,mmp[0]);
|
||||
axpy(tmp,-1.0,src,mmp[0]);
|
||||
|
||||
RealD psinorm = sqrt(norm2(x));
|
||||
RealD srcnorm = sqrt(norm2(src));
|
||||
RealD tmpnorm = sqrt(norm2(tmp));
|
||||
RealD true_residual = tmpnorm/srcnorm;
|
||||
std::cout<<GridLogMessage<<"TwoLevelfPcg: true residual is "<<true_residual<<std::endl;
|
||||
std::cout<<GridLogMessage<<"TwoLevelfPcg: target residual was"<<Tolerance<<std::endl;
|
||||
return k;
|
||||
RealD mmpnorm = sqrt(norm2(mmp[0]));
|
||||
RealD xnorm = sqrt(norm2(x));
|
||||
RealD srcnorm = sqrt(norm2(src));
|
||||
RealD tmpnorm = sqrt(norm2(tmp));
|
||||
RealD true_residual = tmpnorm/srcnorm;
|
||||
std::cout<<GridLogMessage
|
||||
<<"HDCG: true residual is "<<true_residual
|
||||
<<" solution "<<xnorm
|
||||
<<" source "<<srcnorm
|
||||
<<" mmp "<<mmpnorm
|
||||
<<std::endl;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
// Non-convergence
|
||||
assert(0);
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
|
||||
RealD xnorm = sqrt(norm2(x));
|
||||
RealD srcnorm = sqrt(norm2(src));
|
||||
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
|
||||
}
|
||||
|
||||
|
||||
|
||||
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
|
||||
{
|
||||
std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
int nrhs = src.size();
|
||||
std::vector<RealD> f(nrhs);
|
||||
std::vector<RealD> rtzp(nrhs);
|
||||
std::vector<RealD> rtz(nrhs);
|
||||
std::vector<RealD> a(nrhs);
|
||||
std::vector<RealD> d(nrhs);
|
||||
std::vector<RealD> b(nrhs);
|
||||
std::vector<RealD> rptzp(nrhs);
|
||||
/////////////////////////////
|
||||
// Set up history vectors
|
||||
/////////////////////////////
|
||||
int mmax = 3;
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg allocating"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
std::vector<std::vector<Field> > p(nrhs); for(int r=0;r<nrhs;r++) p[r].resize(mmax,grid);
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated p"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated mmp"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated pAp"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
std::vector<Field> z(nrhs,grid);
|
||||
std::vector<Field> mp (nrhs,grid);
|
||||
std::vector<Field> r (nrhs,grid);
|
||||
std::vector<Field> mu (nrhs,grid);
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg allocated z,mp,r,mu"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
|
||||
//Initial residual computation & set up
|
||||
std::vector<RealD> src_nrm(nrhs);
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
src_nrm[rhs]=norm2(src[rhs]);
|
||||
assert(src_nrm[rhs]!=0.0);
|
||||
}
|
||||
std::vector<RealD> tn(nrhs);
|
||||
|
||||
GridStopWatch HDCGTimer;
|
||||
HDCGTimer.Start();
|
||||
//////////////////////////
|
||||
// x0 = Vstart -- possibly modify guess
|
||||
//////////////////////////
|
||||
Vstart(x,src);
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
// r0 = b -A x0
|
||||
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
|
||||
axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]); // Recomputes r=src-Ax0
|
||||
}
|
||||
|
||||
//////////////////////////////////
|
||||
// Compute z = M1 x
|
||||
//////////////////////////////////
|
||||
// This needs a multiRHS version for acceleration
|
||||
PcgM1(r,z);
|
||||
|
||||
std::vector<RealD> ssq(nrhs);
|
||||
std::vector<RealD> rsq(nrhs);
|
||||
std::vector<Field> pp(nrhs,grid);
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
|
||||
p[rhs][0]=z[rhs];
|
||||
ssq[rhs]=norm2(src[rhs]);
|
||||
rsq[rhs]= ssq[rhs]*Tolerance*Tolerance;
|
||||
std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
|
||||
}
|
||||
|
||||
std::vector<RealD> rn(nrhs);
|
||||
for (int k=0;k<=MaxIterations;k++){
|
||||
|
||||
int peri_k = k % mmax;
|
||||
int peri_kp = (k+1) % mmax;
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
rtz[rhs]=rtzp[rhs];
|
||||
d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
|
||||
a[rhs] = rtz[rhs]/d[rhs];
|
||||
|
||||
// Memorise this
|
||||
pAp[rhs][peri_k] = d[rhs];
|
||||
|
||||
axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
|
||||
rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
|
||||
}
|
||||
|
||||
// Compute z = M x (for *all* RHS)
|
||||
PcgM1(r,z);
|
||||
std::cout << GridLogMessage<<"HDCG::fPcg M1 complete"<<std::endl;
|
||||
grid->Barrier();
|
||||
|
||||
RealD max_rn=0.0;
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
|
||||
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
|
||||
|
||||
std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
|
||||
|
||||
mu[rhs]=z[rhs];
|
||||
|
||||
p[rhs][peri_kp]=mu[rhs];
|
||||
|
||||
// Standard search direction p == z + b p
|
||||
b[rhs] = (rtzp[rhs])/rtz[rhs];
|
||||
|
||||
int northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
|
||||
std::cout<<GridLogMessage<<"HDCG::fPcg iteration "<<k<<" : orthogonalising to last "<<northog<<" vectors\n";
|
||||
for(int back=0; back < northog; back++){
|
||||
int peri_back = (k-back)%mmax;
|
||||
RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
|
||||
RealD beta = -pbApk/pAp[rhs][peri_back];
|
||||
axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
|
||||
}
|
||||
|
||||
RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
|
||||
RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
|
||||
RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
|
||||
|
||||
std::cout<<GridLogMessage<<"HDCG: rhs "<<rhs<<"fPcg k= "<<k<<" residual = "<<rrn<<"\n";
|
||||
if ( rrn > max_rn ) max_rn = rrn;
|
||||
}
|
||||
|
||||
// Stopping condition based on worst case
|
||||
if ( max_rn <= Tolerance ) {
|
||||
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
|
||||
Field tmp(grid);
|
||||
axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
|
||||
|
||||
RealD mmpnorm = sqrt(norm2(mmp[rhs][0]));
|
||||
RealD xnorm = sqrt(norm2(x[rhs]));
|
||||
RealD srcnorm = sqrt(norm2(src[rhs]));
|
||||
RealD tmpnorm = sqrt(norm2(tmp));
|
||||
RealD true_residual = tmpnorm/srcnorm;
|
||||
std::cout<<GridLogMessage
|
||||
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
|
||||
<<" solution "<<xnorm
|
||||
<<" source "<<srcnorm
|
||||
<<" mmp "<<mmpnorm
|
||||
<<std::endl;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
RealD xnorm = sqrt(norm2(x[rhs]));
|
||||
RealD srcnorm = sqrt(norm2(src[rhs]));
|
||||
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public:
|
||||
|
||||
virtual void M(Field & in,Field & out,Field & tmp) {
|
||||
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out)
|
||||
{
|
||||
std::cout << "PcgM1 default (cheat) mrhs version"<<std::endl;
|
||||
for(int rhs=0;rhs<in.size();rhs++){
|
||||
this->PcgM1(in[rhs],out[rhs]);
|
||||
}
|
||||
}
|
||||
virtual void PcgM1(Field & in, Field & out) =0;
|
||||
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
|
||||
{
|
||||
std::cout << "Vstart default (cheat) mrhs version"<<std::endl;
|
||||
for(int rhs=0;rhs<x.size();rhs++){
|
||||
this->Vstart(x[rhs],src[rhs]);
|
||||
}
|
||||
}
|
||||
virtual void Vstart(Field & x,const Field & src)=0;
|
||||
|
||||
virtual void PcgM2(const Field & in, Field & out) {
|
||||
out=in;
|
||||
}
|
||||
|
||||
virtual void M1(Field & in, Field & out) {// the smoother
|
||||
virtual RealD PcgM3(const Field & p, Field & mmp){
|
||||
RealD dd;
|
||||
_FineLinop.HermOp(p,mmp);
|
||||
ComplexD dot = innerProduct(p,mmp);
|
||||
dd=real(dot);
|
||||
return dd;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Only Def1 has non-trivial Vout.
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
|
||||
};
|
||||
|
||||
template<class Field, class CoarseField, class Aggregation>
|
||||
class TwoLevelADEF2 : public TwoLevelCG<Field>
|
||||
{
|
||||
public:
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
// Need something that knows how to get from Coarse to fine and back again
|
||||
// void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
|
||||
// void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
GridBase *coarsegrid;
|
||||
Aggregation &_Aggregates;
|
||||
LinearFunction<CoarseField> &_CoarseSolver;
|
||||
LinearFunction<CoarseField> &_CoarseSolverPrecise;
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// more most opertor functions
|
||||
TwoLevelADEF2(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> &FineLinop,
|
||||
LinearFunction<Field> &Smoother,
|
||||
LinearFunction<CoarseField> &CoarseSolver,
|
||||
LinearFunction<CoarseField> &CoarseSolverPrecise,
|
||||
Aggregation &Aggregates
|
||||
) :
|
||||
TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid),
|
||||
_CoarseSolver(CoarseSolver),
|
||||
_CoarseSolverPrecise(CoarseSolverPrecise),
|
||||
_Aggregates(Aggregates)
|
||||
{
|
||||
coarsegrid = Aggregates.CoarseGrid;
|
||||
};
|
||||
|
||||
virtual void PcgM1(Field & in, Field & out)
|
||||
{
|
||||
GRID_TRACE("MultiGridPreconditioner ");
|
||||
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
|
||||
Field tmp(grid);
|
||||
Field Min(grid);
|
||||
|
||||
PcgM(in,Min); // Smoother call
|
||||
Field tmp(this->grid);
|
||||
Field Min(this->grid);
|
||||
CoarseField PleftProj(this->coarsegrid);
|
||||
CoarseField PleftMss_proj(this->coarsegrid);
|
||||
|
||||
HermOp(Min,out);
|
||||
GridStopWatch SmootherTimer;
|
||||
GridStopWatch MatrixTimer;
|
||||
SmootherTimer.Start();
|
||||
this->_Smoother(in,Min);
|
||||
SmootherTimer.Stop();
|
||||
|
||||
MatrixTimer.Start();
|
||||
this->_FineLinop.HermOp(Min,out);
|
||||
MatrixTimer.Stop();
|
||||
axpy(tmp,-1.0,out,in); // tmp = in - A Min
|
||||
|
||||
ProjectToSubspace(tmp,PleftProj);
|
||||
ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
|
||||
PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
|
||||
GridStopWatch ProjTimer;
|
||||
GridStopWatch CoarseTimer;
|
||||
GridStopWatch PromTimer;
|
||||
ProjTimer.Start();
|
||||
this->_Aggregates.ProjectToSubspace(PleftProj,tmp);
|
||||
ProjTimer.Stop();
|
||||
CoarseTimer.Start();
|
||||
this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
|
||||
CoarseTimer.Stop();
|
||||
PromTimer.Start();
|
||||
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
|
||||
PromTimer.Stop();
|
||||
std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl;
|
||||
std::cout << GridLogPerformance << "\tSmoother " << SmootherTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tProj " << ProjTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tCoarse " << CoarseTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tProm " << PromTimer.Elapsed() <<std::endl;
|
||||
|
||||
axpy(out,1.0,Min,tmp); // Min+tmp
|
||||
}
|
||||
|
||||
virtual void M2(const Field & in, Field & out) {
|
||||
out=in;
|
||||
// Must override for Def2 only
|
||||
// case PcgDef2:
|
||||
// Pright(in,out);
|
||||
// break;
|
||||
}
|
||||
|
||||
virtual RealD M3(const Field & p, Field & mmp){
|
||||
double d,dd;
|
||||
HermOpAndNorm(p,mmp,d,dd);
|
||||
return dd;
|
||||
// Must override for Def1 only
|
||||
// case PcgDef1:
|
||||
// d=linop_d->Mprec(p,mmp,tmp,0,1);// Dag no
|
||||
// linop_d->Mprec(mmp,mp,tmp,1);// Dag yes
|
||||
// Pleft(mp,mmp);
|
||||
// d=real(linop_d->inner(p,mmp));
|
||||
}
|
||||
|
||||
virtual void VstartDef2(Field & xconst Field & src){
|
||||
//case PcgDef2:
|
||||
//case PcgAdef2:
|
||||
//case PcgAdef2f:
|
||||
//case PcgV11f:
|
||||
virtual void Vstart(Field & x,const Field & src)
|
||||
{
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg Vstart "<<std::endl;
|
||||
///////////////////////////////////
|
||||
// Choose x_0 such that
|
||||
// x_0 = guess + (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
|
||||
@ -256,142 +522,78 @@ class TwoLevelFlexiblePcg : public LinearFunction<Field>
|
||||
// = src_s - (A guess)_s - src_s + (A guess)_s
|
||||
// = 0
|
||||
///////////////////////////////////
|
||||
Field r(grid);
|
||||
Field mmp(grid);
|
||||
|
||||
HermOp(x,mmp);
|
||||
axpy (r, -1.0, mmp, src); // r_{-1} = src - A x
|
||||
ProjectToSubspace(r,PleftProj);
|
||||
ApplyInverseCG(PleftProj,PleftMss_proj); // Ass^{-1} r_s
|
||||
PromoteFromSubspace(PleftMss_proj,mmp);
|
||||
x=x+mmp;
|
||||
Field r(this->grid);
|
||||
Field mmp(this->grid);
|
||||
CoarseField PleftProj(this->coarsegrid);
|
||||
CoarseField PleftMss_proj(this->coarsegrid);
|
||||
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg Vstart projecting "<<std::endl;
|
||||
this->_Aggregates.ProjectToSubspace(PleftProj,src);
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg Vstart coarse solve "<<std::endl;
|
||||
this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s
|
||||
std::cout << GridLogMessage<<"HDCG: fPcg Vstart promote "<<std::endl;
|
||||
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);
|
||||
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelADEF1defl : public TwoLevelCG<Field>
|
||||
{
|
||||
public:
|
||||
const std::vector<Field> &evec;
|
||||
const std::vector<RealD> &eval;
|
||||
|
||||
TwoLevelADEF1defl(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> &FineLinop,
|
||||
LinearFunction<Field> &Smoother,
|
||||
std::vector<Field> &_evec,
|
||||
std::vector<RealD> &_eval) :
|
||||
TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()),
|
||||
evec(_evec),
|
||||
eval(_eval)
|
||||
{};
|
||||
|
||||
// Can just inherit existing M2
|
||||
// Can just inherit existing M3
|
||||
|
||||
// Simple vstart - do nothing
|
||||
virtual void Vstart(Field & x,const Field & src){
|
||||
return;
|
||||
x=src; // Could apply Q
|
||||
};
|
||||
|
||||
// Override PcgM1
|
||||
virtual void PcgM1(Field & in, Field & out)
|
||||
{
|
||||
GRID_TRACE("EvecPreconditioner ");
|
||||
int N=evec.size();
|
||||
Field Pin(this->grid);
|
||||
Field Qin(this->grid);
|
||||
|
||||
//MP + Q = M(1-AQ) + Q = M
|
||||
// // If we are eigenvector deflating in coarse space
|
||||
// // Q = Sum_i |phi_i> 1/lambda_i <phi_i|
|
||||
// // A Q = Sum_i |phi_i> <phi_i|
|
||||
// // M(1-AQ) = M(1-proj) + Q
|
||||
Qin.Checkerboard()=in.Checkerboard();
|
||||
Qin = Zero();
|
||||
Pin = in;
|
||||
for (int i=0;i<N;i++) {
|
||||
const Field& tmp = evec[i];
|
||||
auto ip = TensorRemove(innerProduct(tmp,in));
|
||||
axpy(Qin, ip / eval[i],tmp,Qin);
|
||||
axpy(Pin, -ip ,tmp,Pin);
|
||||
}
|
||||
|
||||
this->_Smoother(Pin,out);
|
||||
|
||||
out = out + Qin;
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Only Def1 has non-trivial Vout. Override in Def1
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
virtual void Vout (Field & in, Field & out,Field & src){
|
||||
out = in;
|
||||
//case PcgDef1:
|
||||
// //Qb + PT x
|
||||
// ProjectToSubspace(src,PleftProj);
|
||||
// ApplyInverse(PleftProj,PleftMss_proj); // Ass^{-1} r_s
|
||||
// PromoteFromSubspace(PleftMss_proj,tmp);
|
||||
//
|
||||
// Pright(in,out);
|
||||
//
|
||||
// linop_d->axpy(out,tmp,out,1.0);
|
||||
// break;
|
||||
}
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Pright and Pleft are common to all implementations
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
virtual void Pright(Field & in,Field & out){
|
||||
// P_R = [ 1 0 ]
|
||||
// [ -Mss^-1 Msb 0 ]
|
||||
Field in_sbar(grid);
|
||||
|
||||
ProjectToSubspace(in,PleftProj);
|
||||
PromoteFromSubspace(PleftProj,out);
|
||||
axpy(in_sbar,-1.0,out,in); // in_sbar = in - in_s
|
||||
|
||||
HermOp(in_sbar,out);
|
||||
ProjectToSubspace(out,PleftProj); // Mssbar in_sbar (project)
|
||||
|
||||
ApplyInverse (PleftProj,PleftMss_proj); // Mss^{-1} Mssbar
|
||||
PromoteFromSubspace(PleftMss_proj,out); //
|
||||
|
||||
axpy(out,-1.0,out,in_sbar); // in_sbar - Mss^{-1} Mssbar in_sbar
|
||||
}
|
||||
virtual void Pleft (Field & in,Field & out){
|
||||
// P_L = [ 1 -Mbs Mss^-1]
|
||||
// [ 0 0 ]
|
||||
Field in_sbar(grid);
|
||||
Field tmp2(grid);
|
||||
Field Mtmp(grid);
|
||||
|
||||
ProjectToSubspace(in,PleftProj);
|
||||
PromoteFromSubspace(PleftProj,out);
|
||||
axpy(in_sbar,-1.0,out,in); // in_sbar = in - in_s
|
||||
|
||||
ApplyInverse(PleftProj,PleftMss_proj); // Mss^{-1} in_s
|
||||
PromoteFromSubspace(PleftMss_proj,out);
|
||||
|
||||
HermOp(out,Mtmp);
|
||||
|
||||
ProjectToSubspace(Mtmp,PleftProj); // Msbar s Mss^{-1}
|
||||
PromoteFromSubspace(PleftProj,tmp2);
|
||||
|
||||
axpy(out,-1.0,tmp2,Mtmp);
|
||||
axpy(out,-1.0,out,in_sbar); // in_sbar - Msbars Mss^{-1} in_s
|
||||
}
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelFlexiblePcgADef2 : public TwoLevelFlexiblePcg<Field> {
|
||||
public:
|
||||
virtual void M(Field & in,Field & out,Field & tmp){
|
||||
|
||||
}
|
||||
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp){
|
||||
|
||||
}
|
||||
virtual void M2(Field & in, Field & out){
|
||||
|
||||
}
|
||||
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp){
|
||||
|
||||
}
|
||||
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp){
|
||||
|
||||
}
|
||||
}
|
||||
/*
|
||||
template<class Field>
|
||||
class TwoLevelFlexiblePcgAD : public TwoLevelFlexiblePcg<Field> {
|
||||
public:
|
||||
virtual void M(Field & in,Field & out,Field & tmp);
|
||||
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||
virtual void M2(Field & in, Field & out);
|
||||
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelFlexiblePcgDef1 : public TwoLevelFlexiblePcg<Field> {
|
||||
public:
|
||||
virtual void M(Field & in,Field & out,Field & tmp);
|
||||
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||
virtual void M2(Field & in, Field & out);
|
||||
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||
virtual void Vout (Field & in, Field & out,Field & src,Field & tmp);
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelFlexiblePcgDef2 : public TwoLevelFlexiblePcg<Field> {
|
||||
public:
|
||||
virtual void M(Field & in,Field & out,Field & tmp);
|
||||
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||
virtual void M2(Field & in, Field & out);
|
||||
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelFlexiblePcgV11: public TwoLevelFlexiblePcg<Field> {
|
||||
public:
|
||||
virtual void M(Field & in,Field & out,Field & tmp);
|
||||
virtual void M1(Field & in, Field & out,Field & tmp,Field & mp);
|
||||
virtual void M2(Field & in, Field & out);
|
||||
virtual RealD M3(Field & p, Field & mp,Field & mmp, Field & tmp);
|
||||
virtual void Vstart(Field & in, Field & src, Field & r, Field & mp, Field & mmp, Field & tmp);
|
||||
}
|
||||
*/
|
||||
#endif
|
||||
|
414
Grid/algorithms/iterative/AdefMrhs.h
Normal file
414
Grid/algorithms/iterative/AdefMrhs.h
Normal file
@ -0,0 +1,414 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/AdefGeneric.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
|
||||
/*
|
||||
* Compared to Tang-2009: P=Pleft. P^T = PRight Q=MssInv.
|
||||
* Script A = SolverMatrix
|
||||
* Script P = Preconditioner
|
||||
*
|
||||
* Implement ADEF-2
|
||||
*
|
||||
* Vstart = P^Tx + Qb
|
||||
* M1 = P^TM + Q
|
||||
* M2=M3=1
|
||||
*/
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
template<class Field>
|
||||
class TwoLevelCGmrhs
|
||||
{
|
||||
public:
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
GridBase *grid;
|
||||
|
||||
// Fine operator, Smoother, CoarseSolver
|
||||
LinearOperatorBase<Field> &_FineLinop;
|
||||
LinearFunction<Field> &_Smoother;
|
||||
|
||||
GridStopWatch ProjectTimer;
|
||||
GridStopWatch PromoteTimer;
|
||||
GridStopWatch DeflateTimer;
|
||||
GridStopWatch CoarseTimer;
|
||||
GridStopWatch FineTimer;
|
||||
GridStopWatch SmoothTimer;
|
||||
GridStopWatch InsertTimer;
|
||||
|
||||
|
||||
// more most opertor functions
|
||||
TwoLevelCGmrhs(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> &FineLinop,
|
||||
LinearFunction<Field> &Smoother,
|
||||
GridBase *fine) :
|
||||
Tolerance(tol),
|
||||
MaxIterations(maxit),
|
||||
_FineLinop(FineLinop),
|
||||
_Smoother(Smoother)
|
||||
{
|
||||
grid = fine;
|
||||
};
|
||||
|
||||
// Vector case
|
||||
virtual void operator() (std::vector<Field> &src, std::vector<Field> &x)
|
||||
{
|
||||
std::cout << GridLogMessage<<"HDCG: mrhs fPcg starting"<<std::endl;
|
||||
src[0].Grid()->Barrier();
|
||||
int nrhs = src.size();
|
||||
std::vector<RealD> f(nrhs);
|
||||
std::vector<RealD> rtzp(nrhs);
|
||||
std::vector<RealD> rtz(nrhs);
|
||||
std::vector<RealD> a(nrhs);
|
||||
std::vector<RealD> d(nrhs);
|
||||
std::vector<RealD> b(nrhs);
|
||||
std::vector<RealD> rptzp(nrhs);
|
||||
/////////////////////////////
|
||||
// Set up history vectors
|
||||
/////////////////////////////
|
||||
int mmax = 3;
|
||||
|
||||
std::vector<std::vector<Field> > p(nrhs); for(int r=0;r<nrhs;r++) p[r].resize(mmax,grid);
|
||||
std::vector<std::vector<Field> > mmp(nrhs); for(int r=0;r<nrhs;r++) mmp[r].resize(mmax,grid);
|
||||
std::vector<std::vector<RealD> > pAp(nrhs); for(int r=0;r<nrhs;r++) pAp[r].resize(mmax);
|
||||
|
||||
std::vector<Field> z(nrhs,grid);
|
||||
std::vector<Field> mp (nrhs,grid);
|
||||
std::vector<Field> r (nrhs,grid);
|
||||
std::vector<Field> mu (nrhs,grid);
|
||||
|
||||
//Initial residual computation & set up
|
||||
std::vector<RealD> src_nrm(nrhs);
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
src_nrm[rhs]=norm2(src[rhs]);
|
||||
assert(src_nrm[rhs]!=0.0);
|
||||
}
|
||||
std::vector<RealD> tn(nrhs);
|
||||
|
||||
GridStopWatch HDCGTimer;
|
||||
//////////////////////////
|
||||
// x0 = Vstart -- possibly modify guess
|
||||
//////////////////////////
|
||||
Vstart(x,src);
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
// r0 = b -A x0
|
||||
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
|
||||
axpy (r[rhs], -1.0,mmp[rhs][0], src[rhs]); // Recomputes r=src-Ax0
|
||||
}
|
||||
|
||||
//////////////////////////////////
|
||||
// Compute z = M1 x
|
||||
//////////////////////////////////
|
||||
// This needs a multiRHS version for acceleration
|
||||
PcgM1(r,z);
|
||||
|
||||
std::vector<RealD> ssq(nrhs);
|
||||
std::vector<RealD> rsq(nrhs);
|
||||
std::vector<Field> pp(nrhs,grid);
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
|
||||
p[rhs][0]=z[rhs];
|
||||
ssq[rhs]=norm2(src[rhs]);
|
||||
rsq[rhs]= ssq[rhs]*Tolerance*Tolerance;
|
||||
// std::cout << GridLogMessage<<"mrhs HDCG: "<<rhs<<" k=0 residual "<<rtzp[rhs]<<" rsq "<<rsq[rhs]<<"\n";
|
||||
}
|
||||
|
||||
ProjectTimer.Reset();
|
||||
PromoteTimer.Reset();
|
||||
DeflateTimer.Reset();
|
||||
CoarseTimer.Reset();
|
||||
SmoothTimer.Reset();
|
||||
FineTimer.Reset();
|
||||
InsertTimer.Reset();
|
||||
|
||||
GridStopWatch M1Timer;
|
||||
GridStopWatch M2Timer;
|
||||
GridStopWatch M3Timer;
|
||||
GridStopWatch LinalgTimer;
|
||||
|
||||
HDCGTimer.Start();
|
||||
|
||||
std::vector<RealD> rn(nrhs);
|
||||
for (int k=0;k<=MaxIterations;k++){
|
||||
|
||||
int peri_k = k % mmax;
|
||||
int peri_kp = (k+1) % mmax;
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
rtz[rhs]=rtzp[rhs];
|
||||
M3Timer.Start();
|
||||
d[rhs]= PcgM3(p[rhs][peri_k],mmp[rhs][peri_k]);
|
||||
M3Timer.Stop();
|
||||
a[rhs] = rtz[rhs]/d[rhs];
|
||||
|
||||
LinalgTimer.Start();
|
||||
// Memorise this
|
||||
pAp[rhs][peri_k] = d[rhs];
|
||||
|
||||
axpy(x[rhs],a[rhs],p[rhs][peri_k],x[rhs]);
|
||||
rn[rhs] = axpy_norm(r[rhs],-a[rhs],mmp[rhs][peri_k],r[rhs]);
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
|
||||
// Compute z = M x (for *all* RHS)
|
||||
M1Timer.Start();
|
||||
PcgM1(r,z);
|
||||
M1Timer.Stop();
|
||||
|
||||
RealD max_rn=0.0;
|
||||
LinalgTimer.Start();
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
|
||||
rtzp[rhs] =real(innerProduct(r[rhs],z[rhs]));
|
||||
|
||||
// std::cout << GridLogMessage<<"HDCG::fPcg rhs"<<rhs<<" iteration "<<k<<" : inner rtzp "<<rtzp[rhs]<<"\n";
|
||||
mu[rhs]=z[rhs];
|
||||
|
||||
p[rhs][peri_kp]=mu[rhs];
|
||||
|
||||
// Standard search direction p == z + b p
|
||||
b[rhs] = (rtzp[rhs])/rtz[rhs];
|
||||
|
||||
int northog = (k>mmax-1)?(mmax-1):k; // This is the fCG-Tr(mmax-1) algorithm
|
||||
for(int back=0; back < northog; back++){
|
||||
int peri_back = (k-back)%mmax;
|
||||
RealD pbApk= real(innerProduct(mmp[rhs][peri_back],p[rhs][peri_kp]));
|
||||
RealD beta = -pbApk/pAp[rhs][peri_back];
|
||||
axpy(p[rhs][peri_kp],beta,p[rhs][peri_back],p[rhs][peri_kp]);
|
||||
}
|
||||
|
||||
RealD rrn=sqrt(rn[rhs]/ssq[rhs]);
|
||||
RealD rtn=sqrt(rtz[rhs]/ssq[rhs]);
|
||||
RealD rtnp=sqrt(rtzp[rhs]/ssq[rhs]);
|
||||
|
||||
std::cout<<GridLogMessage<<"HDCG:fPcg rhs "<<rhs<<" k= "<<k<<" residual = "<<rrn<<"\n";
|
||||
if ( rrn > max_rn ) max_rn = rrn;
|
||||
}
|
||||
LinalgTimer.Stop();
|
||||
|
||||
// Stopping condition based on worst case
|
||||
if ( max_rn <= Tolerance ) {
|
||||
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Linalg "<<LinalgTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : fine M3 "<<M3Timer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : prec M1 "<<M1Timer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"**** M1 breakdown:"<<std::endl;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Project "<<ProjectTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Promote "<<PromoteTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Deflate "<<DeflateTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Coarse "<<CoarseTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Fine "<<FineTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Smooth "<<SmoothTimer.Elapsed()<<std::endl;;
|
||||
std::cout<<GridLogMessage<<"HDCG: mrhs fPcg : Insert "<<InsertTimer.Elapsed()<<std::endl;;
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
_FineLinop.HermOp(x[rhs],mmp[rhs][0]);
|
||||
Field tmp(grid);
|
||||
axpy(tmp,-1.0,src[rhs],mmp[rhs][0]);
|
||||
|
||||
RealD mmpnorm = sqrt(norm2(mmp[rhs][0]));
|
||||
RealD xnorm = sqrt(norm2(x[rhs]));
|
||||
RealD srcnorm = sqrt(norm2(src[rhs]));
|
||||
RealD tmpnorm = sqrt(norm2(tmp));
|
||||
RealD true_residual = tmpnorm/srcnorm;
|
||||
std::cout<<GridLogMessage
|
||||
<<"HDCG: true residual ["<<rhs<<"] is "<<true_residual
|
||||
<<" solution "<<xnorm
|
||||
<<" source "<<srcnorm
|
||||
<<" mmp "<<mmpnorm
|
||||
<<std::endl;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
HDCGTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"HDCG: not converged "<<HDCGTimer.Elapsed()<<std::endl;
|
||||
for(int rhs=0;rhs<nrhs;rhs++){
|
||||
RealD xnorm = sqrt(norm2(x[rhs]));
|
||||
RealD srcnorm = sqrt(norm2(src[rhs]));
|
||||
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public:
|
||||
|
||||
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out) = 0;
|
||||
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src) = 0;
|
||||
virtual void PcgM2(const Field & in, Field & out) {
|
||||
out=in;
|
||||
}
|
||||
|
||||
virtual RealD PcgM3(const Field & p, Field & mmp){
|
||||
RealD dd;
|
||||
_FineLinop.HermOp(p,mmp);
|
||||
ComplexD dot = innerProduct(p,mmp);
|
||||
dd=real(dot);
|
||||
return dd;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
template<class Field, class CoarseField>
|
||||
class TwoLevelADEF2mrhs : public TwoLevelCGmrhs<Field>
|
||||
{
|
||||
public:
|
||||
GridBase *coarsegrid;
|
||||
GridBase *coarsegridmrhs;
|
||||
LinearFunction<CoarseField> &_CoarseSolverMrhs;
|
||||
LinearFunction<CoarseField> &_CoarseSolverPreciseMrhs;
|
||||
MultiRHSBlockProject<Field> &_Projector;
|
||||
MultiRHSDeflation<CoarseField> &_Deflator;
|
||||
|
||||
|
||||
TwoLevelADEF2mrhs(RealD tol,
|
||||
Integer maxit,
|
||||
LinearOperatorBase<Field> &FineLinop,
|
||||
LinearFunction<Field> &Smoother,
|
||||
LinearFunction<CoarseField> &CoarseSolverMrhs,
|
||||
LinearFunction<CoarseField> &CoarseSolverPreciseMrhs,
|
||||
MultiRHSBlockProject<Field> &Projector,
|
||||
MultiRHSDeflation<CoarseField> &Deflator,
|
||||
GridBase *_coarsemrhsgrid) :
|
||||
TwoLevelCGmrhs<Field>(tol, maxit,FineLinop,Smoother,Projector.fine_grid),
|
||||
_CoarseSolverMrhs(CoarseSolverMrhs),
|
||||
_CoarseSolverPreciseMrhs(CoarseSolverPreciseMrhs),
|
||||
_Projector(Projector),
|
||||
_Deflator(Deflator)
|
||||
{
|
||||
coarsegrid = Projector.coarse_grid;
|
||||
coarsegridmrhs = _coarsemrhsgrid;// Thi could be in projector
|
||||
};
|
||||
|
||||
// Override Vstart
|
||||
virtual void Vstart(std::vector<Field> & x,std::vector<Field> & src)
|
||||
{
|
||||
int nrhs=x.size();
|
||||
///////////////////////////////////
|
||||
// Choose x_0 such that
|
||||
// x_0 = guess + (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
|
||||
// = [1 - Ass_inv A] Guess + Assinv src
|
||||
// = P^T guess + Assinv src
|
||||
// = Vstart [Tang notation]
|
||||
// This gives:
|
||||
// W^T (src - A x_0) = src_s - A guess_s - r_s
|
||||
// = src_s - (A guess)_s - src_s + (A guess)_s
|
||||
// = 0
|
||||
///////////////////////////////////
|
||||
std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
|
||||
std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
|
||||
CoarseField PleftProjMrhs(this->coarsegridmrhs);
|
||||
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
|
||||
|
||||
this->_Projector.blockProject(src,PleftProj);
|
||||
this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
|
||||
InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
|
||||
}
|
||||
|
||||
this->_CoarseSolverPreciseMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} r_s
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
|
||||
}
|
||||
this->_Projector.blockPromote(x,PleftMss_proj);
|
||||
}
|
||||
|
||||
virtual void PcgM1(std::vector<Field> & in,std::vector<Field> & out){
|
||||
|
||||
int nrhs=in.size();
|
||||
|
||||
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
|
||||
std::vector<Field> tmp(nrhs,this->grid);
|
||||
std::vector<Field> Min(nrhs,this->grid);
|
||||
|
||||
std::vector<CoarseField> PleftProj(nrhs,this->coarsegrid);
|
||||
std::vector<CoarseField> PleftMss_proj(nrhs,this->coarsegrid);
|
||||
|
||||
CoarseField PleftProjMrhs(this->coarsegridmrhs);
|
||||
CoarseField PleftMss_projMrhs(this->coarsegridmrhs);
|
||||
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
|
||||
this->SmoothTimer.Start();
|
||||
this->_Smoother(in[rhs],Min[rhs]);
|
||||
this->SmoothTimer.Stop();
|
||||
|
||||
this->FineTimer.Start();
|
||||
this->_FineLinop.HermOp(Min[rhs],out[rhs]);
|
||||
|
||||
axpy(tmp[rhs],-1.0,out[rhs],in[rhs]); // resid = in - A Min
|
||||
this->FineTimer.Stop();
|
||||
|
||||
}
|
||||
|
||||
this->ProjectTimer.Start();
|
||||
this->_Projector.blockProject(tmp,PleftProj);
|
||||
this->ProjectTimer.Stop();
|
||||
this->DeflateTimer.Start();
|
||||
this->_Deflator.DeflateSources(PleftProj,PleftMss_proj);
|
||||
this->DeflateTimer.Stop();
|
||||
this->InsertTimer.Start();
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
InsertSliceFast(PleftProj[rhs],PleftProjMrhs,rhs,0);
|
||||
InsertSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0); // the guess
|
||||
}
|
||||
this->InsertTimer.Stop();
|
||||
|
||||
this->CoarseTimer.Start();
|
||||
this->_CoarseSolverMrhs(PleftProjMrhs,PleftMss_projMrhs); // Ass^{-1} [in - A Min]_s
|
||||
this->CoarseTimer.Stop();
|
||||
|
||||
this->InsertTimer.Start();
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
ExtractSliceFast(PleftMss_proj[rhs],PleftMss_projMrhs,rhs,0);
|
||||
}
|
||||
this->InsertTimer.Stop();
|
||||
this->PromoteTimer.Start();
|
||||
this->_Projector.blockPromote(tmp,PleftMss_proj);// tmp= Q[in - A Min]
|
||||
this->PromoteTimer.Stop();
|
||||
this->FineTimer.Start();
|
||||
for(int rhs=0;rhs<nrhs;rhs++) {
|
||||
axpy(out[rhs],1.0,Min[rhs],tmp[rhs]); // Min+tmp
|
||||
}
|
||||
this->FineTimer.Stop();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
234
Grid/algorithms/iterative/BiCGSTAB.h
Normal file
234
Grid/algorithms/iterative/BiCGSTAB.h
Normal file
@ -0,0 +1,234 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/BiCGSTAB.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: juettner <juettner@soton.ac.uk>
|
||||
Author: David Murphy <djmurphy@mit.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#ifndef GRID_BICGSTAB_H
|
||||
#define GRID_BICGSTAB_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Base classes for iterative processes based on operators
|
||||
// single input vec, single output vec.
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
template <class Field>
|
||||
class BiCGSTAB : public OperatorFunction<Field>
|
||||
{
|
||||
public:
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
|
||||
// Defaults true.
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||
|
||||
BiCGSTAB(RealD tol, Integer maxit, bool err_on_no_conv = true) :
|
||||
Tolerance(tol), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv){};
|
||||
|
||||
void operator()(LinearOperatorBase<Field>& Linop, const Field& src, Field& psi)
|
||||
{
|
||||
psi.Checkerboard() = src.Checkerboard();
|
||||
conformable(psi, src);
|
||||
|
||||
RealD cp(0), rho(1), rho_prev(0), alpha(1), beta(0), omega(1);
|
||||
RealD a(0), bo(0), b(0), ssq(0);
|
||||
|
||||
Field p(src);
|
||||
Field r(src);
|
||||
Field rhat(src);
|
||||
Field v(src);
|
||||
Field s(src);
|
||||
Field t(src);
|
||||
Field h(src);
|
||||
|
||||
v = Zero();
|
||||
p = Zero();
|
||||
|
||||
// Initial residual computation & set up
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
Linop.Op(psi, v);
|
||||
b = norm2(v);
|
||||
|
||||
r = src - v;
|
||||
rhat = r;
|
||||
a = norm2(r);
|
||||
ssq = norm2(src);
|
||||
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: src " << ssq << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: mp " << b << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: r " << a << std::endl;
|
||||
|
||||
RealD rsq = Tolerance * Tolerance * ssq;
|
||||
|
||||
// Check if guess is really REALLY good :)
|
||||
if(a <= rsq){ return; }
|
||||
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "BiCGSTAB: k=0 residual " << a << " target " << rsq << std::endl;
|
||||
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch InnerTimer;
|
||||
GridStopWatch AxpyNormTimer;
|
||||
GridStopWatch LinearCombTimer;
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch SolverTimer;
|
||||
|
||||
SolverTimer.Start();
|
||||
int k;
|
||||
for (k = 1; k <= MaxIterations; k++)
|
||||
{
|
||||
rho_prev = rho;
|
||||
|
||||
LinalgTimer.Start();
|
||||
InnerTimer.Start();
|
||||
ComplexD Crho = innerProduct(rhat,r);
|
||||
InnerTimer.Stop();
|
||||
rho = Crho.real();
|
||||
|
||||
beta = (rho / rho_prev) * (alpha / omega);
|
||||
|
||||
LinearCombTimer.Start();
|
||||
bo = beta * omega;
|
||||
{
|
||||
autoView( p_v , p, AcceleratorWrite);
|
||||
autoView( r_v , r, AcceleratorRead);
|
||||
autoView( v_v , v, AcceleratorRead);
|
||||
accelerator_for(ss, p_v.size(), Field::vector_object::Nsimd(),{
|
||||
coalescedWrite(p_v[ss], beta*p_v(ss) - bo*v_v(ss) + r_v(ss));
|
||||
});
|
||||
}
|
||||
LinearCombTimer.Stop();
|
||||
LinalgTimer.Stop();
|
||||
|
||||
MatrixTimer.Start();
|
||||
Linop.Op(p,v);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
InnerTimer.Start();
|
||||
ComplexD Calpha = innerProduct(rhat,v);
|
||||
InnerTimer.Stop();
|
||||
alpha = rho / Calpha.real();
|
||||
|
||||
LinearCombTimer.Start();
|
||||
{
|
||||
autoView( p_v , p, AcceleratorRead);
|
||||
autoView( r_v , r, AcceleratorRead);
|
||||
autoView( v_v , v, AcceleratorRead);
|
||||
autoView( psi_v,psi, AcceleratorRead);
|
||||
autoView( h_v , h, AcceleratorWrite);
|
||||
autoView( s_v , s, AcceleratorWrite);
|
||||
accelerator_for(ss, h_v.size(), Field::vector_object::Nsimd(),{
|
||||
coalescedWrite(h_v[ss], alpha*p_v(ss) + psi_v(ss));
|
||||
});
|
||||
accelerator_for(ss, s_v.size(), Field::vector_object::Nsimd(),{
|
||||
coalescedWrite(s_v[ss], -alpha*v_v(ss) + r_v(ss));
|
||||
});
|
||||
}
|
||||
LinearCombTimer.Stop();
|
||||
LinalgTimer.Stop();
|
||||
|
||||
MatrixTimer.Start();
|
||||
Linop.Op(s,t);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
InnerTimer.Start();
|
||||
ComplexD Comega = innerProduct(t,s);
|
||||
InnerTimer.Stop();
|
||||
omega = Comega.real() / norm2(t);
|
||||
|
||||
LinearCombTimer.Start();
|
||||
{
|
||||
autoView( psi_v,psi, AcceleratorWrite);
|
||||
autoView( r_v , r, AcceleratorWrite);
|
||||
autoView( h_v , h, AcceleratorRead);
|
||||
autoView( s_v , s, AcceleratorRead);
|
||||
autoView( t_v , t, AcceleratorRead);
|
||||
accelerator_for(ss, psi_v.size(), Field::vector_object::Nsimd(),{
|
||||
coalescedWrite(psi_v[ss], h_v(ss) + omega * s_v(ss));
|
||||
coalescedWrite(r_v[ss], -omega * t_v(ss) + s_v(ss));
|
||||
});
|
||||
}
|
||||
LinearCombTimer.Stop();
|
||||
|
||||
cp = norm2(r);
|
||||
LinalgTimer.Stop();
|
||||
|
||||
std::cout << GridLogIterative << "BiCGSTAB: Iteration " << k << " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
|
||||
|
||||
// Stopping condition
|
||||
if(cp <= rsq)
|
||||
{
|
||||
SolverTimer.Stop();
|
||||
Linop.Op(psi, v);
|
||||
p = v - src;
|
||||
|
||||
RealD srcnorm = sqrt(norm2(src));
|
||||
RealD resnorm = sqrt(norm2(p));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "BiCGSTAB Converged on iteration " << k << std::endl;
|
||||
std::cout << GridLogMessage << "\tComputed residual " << sqrt(cp/ssq) << std::endl;
|
||||
std::cout << GridLogMessage << "\tTrue residual " << true_residual << std::endl;
|
||||
std::cout << GridLogMessage << "\tTarget " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "Time breakdown " << std::endl;
|
||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "\tInner " << InnerTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "\tAxpyNorm " << AxpyNormTimer.Elapsed() << std::endl;
|
||||
std::cout << GridLogMessage << "\tLinearComb " << LinearCombTimer.Elapsed() << std::endl;
|
||||
|
||||
if(ErrorOnNoConverge){ assert(true_residual / Tolerance < 10000.0); }
|
||||
|
||||
IterationsToComplete = k;
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "BiCGSTAB did NOT converge" << std::endl;
|
||||
|
||||
if(ErrorOnNoConverge){ assert(0); }
|
||||
IterationsToComplete = k;
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
159
Grid/algorithms/iterative/BiCGSTABMixedPrec.h
Normal file
159
Grid/algorithms/iterative/BiCGSTABMixedPrec.h
Normal file
@ -0,0 +1,159 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/BiCGSTABMixedPrec.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Christopher Kelly <ckelly@phys.columbia.edu>
|
||||
Author: David Murphy <djmurphy@mit.edu>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#ifndef GRID_BICGSTAB_MIXED_PREC_H
|
||||
#define GRID_BICGSTAB_MIXED_PREC_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// Mixed precision restarted defect correction BiCGSTAB
|
||||
template<class FieldD, class FieldF, typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0, typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
class MixedPrecisionBiCGSTAB : public LinearFunction<FieldD>
|
||||
{
|
||||
public:
|
||||
using LinearFunction<FieldD>::operator();
|
||||
RealD Tolerance;
|
||||
RealD InnerTolerance; // Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
||||
Integer MaxInnerIterations;
|
||||
Integer MaxOuterIterations;
|
||||
GridBase* SinglePrecGrid; // Grid for single-precision fields
|
||||
RealD OuterLoopNormMult; // Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
|
||||
LinearOperatorBase<FieldF> &Linop_f;
|
||||
LinearOperatorBase<FieldD> &Linop_d;
|
||||
|
||||
Integer TotalInnerIterations; //Number of inner CG iterations
|
||||
Integer TotalOuterIterations; //Number of restarts
|
||||
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
||||
|
||||
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
|
||||
LinearFunction<FieldF> *guesser;
|
||||
|
||||
MixedPrecisionBiCGSTAB(RealD tol, Integer maxinnerit, Integer maxouterit, GridBase* _sp_grid,
|
||||
LinearOperatorBase<FieldF>& _Linop_f, LinearOperatorBase<FieldD>& _Linop_d) :
|
||||
Linop_f(_Linop_f), Linop_d(_Linop_d), Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit),
|
||||
MaxOuterIterations(maxouterit), SinglePrecGrid(_sp_grid), OuterLoopNormMult(100.), guesser(NULL) {};
|
||||
|
||||
void useGuesser(LinearFunction<FieldF>& g){
|
||||
guesser = &g;
|
||||
}
|
||||
|
||||
void operator() (const FieldD& src_d_in, FieldD& sol_d)
|
||||
{
|
||||
TotalInnerIterations = 0;
|
||||
|
||||
GridStopWatch TotalTimer;
|
||||
TotalTimer.Start();
|
||||
|
||||
int cb = src_d_in.Checkerboard();
|
||||
sol_d.Checkerboard() = cb;
|
||||
|
||||
RealD src_norm = norm2(src_d_in);
|
||||
RealD stop = src_norm * Tolerance*Tolerance;
|
||||
|
||||
GridBase* DoublePrecGrid = src_d_in.Grid();
|
||||
FieldD tmp_d(DoublePrecGrid);
|
||||
tmp_d.Checkerboard() = cb;
|
||||
|
||||
FieldD tmp2_d(DoublePrecGrid);
|
||||
tmp2_d.Checkerboard() = cb;
|
||||
|
||||
FieldD src_d(DoublePrecGrid);
|
||||
src_d = src_d_in; //source for next inner iteration, computed from residual during operation
|
||||
|
||||
RealD inner_tol = InnerTolerance;
|
||||
|
||||
FieldF src_f(SinglePrecGrid);
|
||||
src_f.Checkerboard() = cb;
|
||||
|
||||
FieldF sol_f(SinglePrecGrid);
|
||||
sol_f.Checkerboard() = cb;
|
||||
|
||||
BiCGSTAB<FieldF> CG_f(inner_tol, MaxInnerIterations);
|
||||
CG_f.ErrorOnNoConverge = false;
|
||||
|
||||
GridStopWatch InnerCGtimer;
|
||||
|
||||
GridStopWatch PrecChangeTimer;
|
||||
|
||||
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
|
||||
|
||||
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++)
|
||||
{
|
||||
// Compute double precision rsd and also new RHS vector.
|
||||
Linop_d.Op(sol_d, tmp_d);
|
||||
RealD norm = axpy_norm(src_d, -1., tmp_d, src_d_in); //src_d is residual vector
|
||||
|
||||
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Outer iteration " << outer_iter << " residual " << norm << " target " << stop << std::endl;
|
||||
|
||||
if(norm < OuterLoopNormMult * stop){
|
||||
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Outer iteration converged on iteration " << outer_iter << std::endl;
|
||||
break;
|
||||
}
|
||||
while(norm * inner_tol * inner_tol < stop){ inner_tol *= 2; } // inner_tol = sqrt(stop/norm) ??
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(src_f, src_d);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
sol_f = Zero();
|
||||
|
||||
//Optionally improve inner solver guess (eg using known eigenvectors)
|
||||
if(guesser != NULL){ (*guesser)(src_f, sol_f); }
|
||||
|
||||
//Inner CG
|
||||
CG_f.Tolerance = inner_tol;
|
||||
InnerCGtimer.Start();
|
||||
CG_f(Linop_f, src_f, sol_f);
|
||||
InnerCGtimer.Stop();
|
||||
TotalInnerIterations += CG_f.IterationsToComplete;
|
||||
|
||||
//Convert sol back to double and add to double prec solution
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(tmp_d, sol_f);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
axpy(sol_d, 1.0, tmp_d, sol_d);
|
||||
}
|
||||
|
||||
//Final trial CG
|
||||
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Starting final patch-up double-precision solve" << std::endl;
|
||||
|
||||
BiCGSTAB<FieldD> CG_d(Tolerance, MaxInnerIterations);
|
||||
CG_d(Linop_d, src_d_in, sol_d);
|
||||
TotalFinalStepIterations = CG_d.IterationsToComplete;
|
||||
|
||||
TotalTimer.Stop();
|
||||
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
|
||||
std::cout << GridLogMessage << "MixedPrecisionBiCGSTAB: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -52,6 +52,7 @@ class BlockConjugateGradient : public OperatorFunction<Field> {
|
||||
Integer MaxIterations;
|
||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||
Integer PrintInterval; //GridLogMessages or Iterative
|
||||
RealD TrueResidual;
|
||||
|
||||
BlockConjugateGradient(BlockCGtype cgtype,int _Orthog,RealD tol, Integer maxit, bool err_on_no_conv = true)
|
||||
: Tolerance(tol), CGtype(cgtype), blockDim(_Orthog), MaxIterations(maxit), ErrorOnNoConverge(err_on_no_conv),PrintInterval(100)
|
||||
@ -306,7 +307,8 @@ void BlockCGrQsolve(LinearOperatorBase<Field> &Linop, const Field &B, Field &X)
|
||||
|
||||
Linop.HermOp(X, AD);
|
||||
AD = AD-B;
|
||||
std::cout << GridLogMessage <<"\t True residual is " << std::sqrt(norm2(AD)/norm2(B)) <<std::endl;
|
||||
TrueResidual = std::sqrt(norm2(AD)/norm2(B));
|
||||
std::cout << GridLogMessage <<"\tTrue residual is " << TrueResidual <<std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
|
||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
@ -442,7 +444,8 @@ void CGmultiRHSsolve(LinearOperatorBase<Field> &Linop, const Field &Src, Field &
|
||||
|
||||
Linop.HermOp(Psi, AP);
|
||||
AP = AP-Src;
|
||||
std::cout <<GridLogMessage << "\tTrue residual is " << std::sqrt(norm2(AP)/norm2(Src)) <<std::endl;
|
||||
TrueResidual = std::sqrt(norm2(AP)/norm2(Src));
|
||||
std::cout <<GridLogMessage << "\tTrue residual is " << TrueResidual <<std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
|
||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
@ -653,7 +656,7 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
|
||||
if ( rr > max_resid ) max_resid = rr;
|
||||
}
|
||||
|
||||
std::cout << GridLogIterative << "\t Block Iteration "<<k<<" ave resid "<< sqrt(rrsum/sssum) << " max "<< sqrt(max_resid) <<std::endl;
|
||||
std::cout << GridLogIterative << "\t Block Iteration "<<k<<" ave resid "<< std::sqrt(rrsum/sssum) << " max "<< std::sqrt(max_resid) <<std::endl;
|
||||
|
||||
if ( max_resid < Tolerance*Tolerance ) {
|
||||
|
||||
@ -668,7 +671,8 @@ void BlockCGrQsolveVec(LinearOperatorBase<Field> &Linop, const std::vector<Field
|
||||
|
||||
for(int b=0;b<Nblock;b++) Linop.HermOp(X[b], AD[b]);
|
||||
for(int b=0;b<Nblock;b++) AD[b] = AD[b]-B[b];
|
||||
std::cout << GridLogMessage <<"\t True residual is " << std::sqrt(normv(AD)/normv(B)) <<std::endl;
|
||||
TrueResidual = std::sqrt(normv(AD)/normv(B));
|
||||
std::cout << GridLogMessage << "\tTrue residual is " << TrueResidual <<std::endl;
|
||||
|
||||
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
|
||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
|
@ -49,14 +49,19 @@ public:
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||
RealD TrueResidual;
|
||||
|
||||
ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
|
||||
: Tolerance(tol),
|
||||
MaxIterations(maxit),
|
||||
ErrorOnNoConverge(err_on_no_conv){};
|
||||
ErrorOnNoConverge(err_on_no_conv)
|
||||
{};
|
||||
|
||||
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
|
||||
|
||||
GRID_TRACE("ConjugateGradient");
|
||||
GridStopWatch PreambleTimer;
|
||||
PreambleTimer.Start();
|
||||
psi.Checkerboard() = src.Checkerboard();
|
||||
|
||||
conformable(psi, src);
|
||||
@ -64,22 +69,34 @@ public:
|
||||
RealD cp, c, a, d, b, ssq, qq;
|
||||
//RealD b_pred;
|
||||
|
||||
Field p(src);
|
||||
Field mmp(src);
|
||||
Field r(src);
|
||||
// Was doing copies
|
||||
Field p(src.Grid());
|
||||
Field mmp(src.Grid());
|
||||
Field r(src.Grid());
|
||||
|
||||
// Initial residual computation & set up
|
||||
ssq = norm2(src);
|
||||
RealD guess = norm2(psi);
|
||||
assert(std::isnan(guess) == 0);
|
||||
|
||||
Linop.HermOpAndNorm(psi, mmp, d, b);
|
||||
|
||||
r = src - mmp;
|
||||
p = r;
|
||||
|
||||
a = norm2(p);
|
||||
if ( guess == 0.0 ) {
|
||||
r = src;
|
||||
p = r;
|
||||
a = ssq;
|
||||
} else {
|
||||
Linop.HermOpAndNorm(psi, mmp, d, b);
|
||||
r = src - mmp;
|
||||
p = r;
|
||||
a = norm2(p);
|
||||
}
|
||||
cp = a;
|
||||
ssq = norm2(src);
|
||||
|
||||
// Handle trivial case of zero src
|
||||
if (ssq == 0.){
|
||||
psi = Zero();
|
||||
IterationsToComplete = 1;
|
||||
TrueResidual = 0.;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: guess " << guess << std::endl;
|
||||
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: src " << ssq << std::endl;
|
||||
@ -92,6 +109,7 @@ public:
|
||||
|
||||
// Check if guess is really REALLY good :)
|
||||
if (cp <= rsq) {
|
||||
TrueResidual = std::sqrt(a/ssq);
|
||||
std::cout << GridLogMessage << "ConjugateGradient guess is converged already " << std::endl;
|
||||
IterationsToComplete = 0;
|
||||
return;
|
||||
@ -100,6 +118,7 @@ public:
|
||||
std::cout << GridLogIterative << std::setprecision(8)
|
||||
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
|
||||
|
||||
PreambleTimer.Stop();
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch InnerTimer;
|
||||
GridStopWatch AxpyNormTimer;
|
||||
@ -107,9 +126,13 @@ public:
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch SolverTimer;
|
||||
|
||||
RealD usecs = -usecond();
|
||||
SolverTimer.Start();
|
||||
int k;
|
||||
for (k = 1; k <= MaxIterations; k++) {
|
||||
|
||||
GridStopWatch IterationTimer;
|
||||
IterationTimer.Start();
|
||||
c = cp;
|
||||
|
||||
MatrixTimer.Start();
|
||||
@ -130,50 +153,80 @@ public:
|
||||
b = cp / c;
|
||||
|
||||
LinearCombTimer.Start();
|
||||
auto psi_v = psi.View();
|
||||
auto p_v = p.View();
|
||||
auto r_v = r.View();
|
||||
accelerator_for(ss,p_v.size(), Field::vector_object::Nsimd(),{
|
||||
coalescedWrite(psi_v[ss], a * p_v(ss) + psi_v(ss));
|
||||
coalescedWrite(p_v[ss] , b * p_v(ss) + r_v (ss));
|
||||
});
|
||||
{
|
||||
autoView( psi_v , psi, AcceleratorWrite);
|
||||
autoView( p_v , p, AcceleratorWrite);
|
||||
autoView( r_v , r, AcceleratorWrite);
|
||||
accelerator_for(ss,p_v.size(), Field::vector_object::Nsimd(),{
|
||||
coalescedWrite(psi_v[ss], a * p_v(ss) + psi_v(ss));
|
||||
coalescedWrite(p_v[ss] , b * p_v(ss) + r_v (ss));
|
||||
});
|
||||
}
|
||||
LinearCombTimer.Stop();
|
||||
LinalgTimer.Stop();
|
||||
|
||||
std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
|
||||
<< " residual^2 " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
|
||||
IterationTimer.Stop();
|
||||
if ( (k % 500) == 0 ) {
|
||||
std::cout << GridLogMessage << "ConjugateGradient: Iteration " << k
|
||||
<< " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
|
||||
} else {
|
||||
std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
|
||||
<< " residual " << sqrt(cp/ssq) << " target " << Tolerance << " took " << IterationTimer.Elapsed() << std::endl;
|
||||
}
|
||||
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
usecs +=usecond();
|
||||
SolverTimer.Stop();
|
||||
Linop.HermOpAndNorm(psi, mmp, d, qq);
|
||||
p = mmp - src;
|
||||
|
||||
GridBase *grid = src.Grid();
|
||||
RealD DwfFlops = (1452. )*grid->gSites()*4*k
|
||||
+ (8+4+8+4+4)*12*grid->gSites()*k; // CG linear algebra
|
||||
RealD srcnorm = std::sqrt(norm2(src));
|
||||
RealD resnorm = std::sqrt(norm2(p));
|
||||
RealD true_residual = resnorm / srcnorm;
|
||||
|
||||
std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k
|
||||
<< "\tComputed residual " << std::sqrt(cp / ssq)
|
||||
<< "\tTrue residual " << true_residual
|
||||
<< "\tTarget " << Tolerance << std::endl;
|
||||
|
||||
std::cout << GridLogIterative << "Time breakdown "<<std::endl;
|
||||
std::cout << GridLogIterative << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogIterative << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogIterative << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogIterative << "\tInner " << InnerTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogIterative << "\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogIterative << "\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
||||
// std::cout << GridLogMessage << "\tPreamble " << PreambleTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tSolver Elapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "Time breakdown "<<std::endl;
|
||||
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tInner " << InnerTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
||||
|
||||
std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
|
||||
|
||||
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
|
||||
|
||||
IterationsToComplete = k;
|
||||
TrueResidual = true_residual;
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations<< std::endl;
|
||||
// Failed. Calculate true residual before giving up
|
||||
// Linop.HermOpAndNorm(psi, mmp, d, qq);
|
||||
// p = mmp - src;
|
||||
//TrueResidual = sqrt(norm2(p)/ssq);
|
||||
// TrueResidual = 1;
|
||||
|
||||
std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations
|
||||
<<" residual "<< std::sqrt(cp / ssq)<< std::endl;
|
||||
SolverTimer.Stop();
|
||||
std::cout << GridLogMessage << "\tPreamble " << PreambleTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "Solver breakdown "<<std::endl;
|
||||
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage<< "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tInner " << InnerTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
||||
|
||||
if (ErrorOnNoConverge) assert(0);
|
||||
IterationsToComplete = k;
|
||||
|
@ -35,7 +35,8 @@ NAMESPACE_BEGIN(Grid);
|
||||
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
|
||||
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
class MixedPrecisionConjugateGradient : public LinearFunction<FieldD> {
|
||||
public:
|
||||
public:
|
||||
using LinearFunction<FieldD>::operator();
|
||||
RealD Tolerance;
|
||||
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
||||
Integer MaxInnerIterations;
|
||||
@ -48,6 +49,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
Integer TotalInnerIterations; //Number of inner CG iterations
|
||||
Integer TotalOuterIterations; //Number of restarts
|
||||
Integer TotalFinalStepIterations; //Number of CG iterations in final patch-up step
|
||||
RealD TrueResidual;
|
||||
|
||||
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
|
||||
LinearFunction<FieldF> *guesser;
|
||||
@ -67,6 +69,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
}
|
||||
|
||||
void operator() (const FieldD &src_d_in, FieldD &sol_d){
|
||||
std::cout << GridLogMessage << "MixedPrecisionConjugateGradient: Starting mixed precision CG with outer tolerance " << Tolerance << " and inner tolerance " << InnerTolerance << std::endl;
|
||||
TotalInnerIterations = 0;
|
||||
|
||||
GridStopWatch TotalTimer;
|
||||
@ -96,6 +99,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
FieldF sol_f(SinglePrecGrid);
|
||||
sol_f.Checkerboard() = cb;
|
||||
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Starting initial inner CG with tolerance " << inner_tol << std::endl;
|
||||
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
|
||||
CG_f.ErrorOnNoConverge = false;
|
||||
|
||||
@ -104,7 +108,10 @@ NAMESPACE_BEGIN(Grid);
|
||||
GridStopWatch PrecChangeTimer;
|
||||
|
||||
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
|
||||
|
||||
|
||||
precisionChangeWorkspace pc_wk_sp_to_dp(DoublePrecGrid, SinglePrecGrid);
|
||||
precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, DoublePrecGrid);
|
||||
|
||||
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
|
||||
//Compute double precision rsd and also new RHS vector.
|
||||
Linop_d.HermOp(sol_d, tmp_d);
|
||||
@ -119,7 +126,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
while(norm * inner_tol * inner_tol < stop) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(src_f, src_d);
|
||||
precisionChange(src_f, src_d, pc_wk_dp_to_sp);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
sol_f = Zero();
|
||||
@ -129,6 +136,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
(*guesser)(src_f, sol_f);
|
||||
|
||||
//Inner CG
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Outer iteration " << outer_iter << " starting inner CG with tolerance " << inner_tol << std::endl;
|
||||
CG_f.Tolerance = inner_tol;
|
||||
InnerCGtimer.Start();
|
||||
CG_f(Linop_f, src_f, sol_f);
|
||||
@ -137,7 +145,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
//Convert sol back to double and add to double prec solution
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(tmp_d, sol_f);
|
||||
precisionChange(tmp_d, sol_f, pc_wk_sp_to_dp);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
axpy(sol_d, 1.0, tmp_d, sol_d);
|
||||
@ -149,6 +157,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
ConjugateGradient<FieldD> CG_d(Tolerance, MaxInnerIterations);
|
||||
CG_d(Linop_d, src_d_in, sol_d);
|
||||
TotalFinalStepIterations = CG_d.IterationsToComplete;
|
||||
TrueResidual = CG_d.TrueResidual;
|
||||
|
||||
TotalTimer.Stop();
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradient: Inner CG iterations " << TotalInnerIterations << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations << std::endl;
|
||||
|
213
Grid/algorithms/iterative/ConjugateGradientMixedPrecBatched.h
Normal file
213
Grid/algorithms/iterative/ConjugateGradientMixedPrecBatched.h
Normal file
@ -0,0 +1,213 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ConjugateGradientMixedPrecBatched.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Raoul Hodgson <raoul.hodgson@ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H
|
||||
#define GRID_CONJUGATE_GRADIENT_MIXED_PREC_BATCHED_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
//Mixed precision restarted defect correction CG
|
||||
template<class FieldD,class FieldF,
|
||||
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
|
||||
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
class MixedPrecisionConjugateGradientBatched : public LinearFunction<FieldD> {
|
||||
public:
|
||||
using LinearFunction<FieldD>::operator();
|
||||
RealD Tolerance;
|
||||
RealD InnerTolerance; //Initial tolerance for inner CG. Defaults to Tolerance but can be changed
|
||||
Integer MaxInnerIterations;
|
||||
Integer MaxOuterIterations;
|
||||
Integer MaxPatchupIterations;
|
||||
GridBase* SinglePrecGrid; //Grid for single-precision fields
|
||||
RealD OuterLoopNormMult; //Stop the outer loop and move to a final double prec solve when the residual is OuterLoopNormMult * Tolerance
|
||||
LinearOperatorBase<FieldF> &Linop_f;
|
||||
LinearOperatorBase<FieldD> &Linop_d;
|
||||
|
||||
//Option to speed up *inner single precision* solves using a LinearFunction that produces a guess
|
||||
LinearFunction<FieldF> *guesser;
|
||||
bool updateResidual;
|
||||
|
||||
MixedPrecisionConjugateGradientBatched(RealD tol,
|
||||
Integer maxinnerit,
|
||||
Integer maxouterit,
|
||||
Integer maxpatchit,
|
||||
GridBase* _sp_grid,
|
||||
LinearOperatorBase<FieldF> &_Linop_f,
|
||||
LinearOperatorBase<FieldD> &_Linop_d,
|
||||
bool _updateResidual=true) :
|
||||
Linop_f(_Linop_f), Linop_d(_Linop_d),
|
||||
Tolerance(tol), InnerTolerance(tol), MaxInnerIterations(maxinnerit), MaxOuterIterations(maxouterit), MaxPatchupIterations(maxpatchit), SinglePrecGrid(_sp_grid),
|
||||
OuterLoopNormMult(100.), guesser(NULL), updateResidual(_updateResidual) { };
|
||||
|
||||
void useGuesser(LinearFunction<FieldF> &g){
|
||||
guesser = &g;
|
||||
}
|
||||
|
||||
void operator() (const FieldD &src_d_in, FieldD &sol_d){
|
||||
std::vector<FieldD> srcs_d_in{src_d_in};
|
||||
std::vector<FieldD> sols_d{sol_d};
|
||||
|
||||
(*this)(srcs_d_in,sols_d);
|
||||
|
||||
sol_d = sols_d[0];
|
||||
}
|
||||
|
||||
void operator() (const std::vector<FieldD> &src_d_in, std::vector<FieldD> &sol_d){
|
||||
assert(src_d_in.size() == sol_d.size());
|
||||
int NBatch = src_d_in.size();
|
||||
|
||||
std::cout << GridLogMessage << "NBatch = " << NBatch << std::endl;
|
||||
|
||||
Integer TotalOuterIterations = 0; //Number of restarts
|
||||
std::vector<Integer> TotalInnerIterations(NBatch,0); //Number of inner CG iterations
|
||||
std::vector<Integer> TotalFinalStepIterations(NBatch,0); //Number of CG iterations in final patch-up step
|
||||
|
||||
GridStopWatch TotalTimer;
|
||||
TotalTimer.Start();
|
||||
|
||||
GridStopWatch InnerCGtimer;
|
||||
GridStopWatch PrecChangeTimer;
|
||||
|
||||
int cb = src_d_in[0].Checkerboard();
|
||||
|
||||
std::vector<RealD> src_norm;
|
||||
std::vector<RealD> norm;
|
||||
std::vector<RealD> stop;
|
||||
|
||||
GridBase* DoublePrecGrid = src_d_in[0].Grid();
|
||||
FieldD tmp_d(DoublePrecGrid);
|
||||
tmp_d.Checkerboard() = cb;
|
||||
|
||||
FieldD tmp2_d(DoublePrecGrid);
|
||||
tmp2_d.Checkerboard() = cb;
|
||||
|
||||
std::vector<FieldD> src_d;
|
||||
std::vector<FieldF> src_f;
|
||||
std::vector<FieldF> sol_f;
|
||||
|
||||
for (int i=0; i<NBatch; i++) {
|
||||
sol_d[i].Checkerboard() = cb;
|
||||
|
||||
src_norm.push_back(norm2(src_d_in[i]));
|
||||
norm.push_back(0.);
|
||||
stop.push_back(src_norm[i] * Tolerance*Tolerance);
|
||||
|
||||
src_d.push_back(src_d_in[i]); //source for next inner iteration, computed from residual during operation
|
||||
|
||||
src_f.push_back(SinglePrecGrid);
|
||||
src_f[i].Checkerboard() = cb;
|
||||
|
||||
sol_f.push_back(SinglePrecGrid);
|
||||
sol_f[i].Checkerboard() = cb;
|
||||
}
|
||||
|
||||
RealD inner_tol = InnerTolerance;
|
||||
|
||||
ConjugateGradient<FieldF> CG_f(inner_tol, MaxInnerIterations);
|
||||
CG_f.ErrorOnNoConverge = false;
|
||||
|
||||
Integer &outer_iter = TotalOuterIterations; //so it will be equal to the final iteration count
|
||||
|
||||
for(outer_iter = 0; outer_iter < MaxOuterIterations; outer_iter++){
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
std::cout << GridLogMessage << "Outer iteration " << outer_iter << std::endl;
|
||||
|
||||
bool allConverged = true;
|
||||
|
||||
for (int i=0; i<NBatch; i++) {
|
||||
//Compute double precision rsd and also new RHS vector.
|
||||
Linop_d.HermOp(sol_d[i], tmp_d);
|
||||
norm[i] = axpy_norm(src_d[i], -1., tmp_d, src_d_in[i]); //src_d is residual vector
|
||||
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Outer iteration " << outer_iter <<" solve " << i << " residual "<< norm[i] << " target "<< stop[i] <<std::endl;
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(src_f[i], src_d[i]);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
sol_f[i] = Zero();
|
||||
|
||||
if(norm[i] > OuterLoopNormMult * stop[i]) {
|
||||
allConverged = false;
|
||||
}
|
||||
}
|
||||
if (allConverged) break;
|
||||
|
||||
if (updateResidual) {
|
||||
RealD normMax = *std::max_element(std::begin(norm), std::end(norm));
|
||||
RealD stopMax = *std::max_element(std::begin(stop), std::end(stop));
|
||||
while( normMax * inner_tol * inner_tol < stopMax) inner_tol *= 2; // inner_tol = sqrt(stop/norm) ??
|
||||
CG_f.Tolerance = inner_tol;
|
||||
}
|
||||
|
||||
//Optionally improve inner solver guess (eg using known eigenvectors)
|
||||
if(guesser != NULL) {
|
||||
(*guesser)(src_f, sol_f);
|
||||
}
|
||||
|
||||
for (int i=0; i<NBatch; i++) {
|
||||
//Inner CG
|
||||
InnerCGtimer.Start();
|
||||
CG_f(Linop_f, src_f[i], sol_f[i]);
|
||||
InnerCGtimer.Stop();
|
||||
TotalInnerIterations[i] += CG_f.IterationsToComplete;
|
||||
|
||||
//Convert sol back to double and add to double prec solution
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(tmp_d, sol_f[i]);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
axpy(sol_d[i], 1.0, tmp_d, sol_d[i]);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//Final trial CG
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Starting final patch-up double-precision solve"<<std::endl;
|
||||
|
||||
for (int i=0; i<NBatch; i++) {
|
||||
ConjugateGradient<FieldD> CG_d(Tolerance, MaxPatchupIterations);
|
||||
CG_d(Linop_d, src_d_in[i], sol_d[i]);
|
||||
TotalFinalStepIterations[i] += CG_d.IterationsToComplete;
|
||||
}
|
||||
|
||||
TotalTimer.Stop();
|
||||
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
for (int i=0; i<NBatch; i++) {
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: solve " << i << " Inner CG iterations " << TotalInnerIterations[i] << " Restarts " << TotalOuterIterations << " Final CG iterations " << TotalFinalStepIterations[i] << std::endl;
|
||||
}
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
std::cout<<GridLogMessage<<"MixedPrecisionConjugateGradientBatched: Total time " << TotalTimer.Elapsed() << " Precision change " << PrecChangeTimer.Elapsed() << " Inner CG total " << InnerCGtimer.Elapsed() << std::endl;
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -44,17 +44,21 @@ public:
|
||||
|
||||
using OperatorFunction<Field>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
// RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
|
||||
int verbose;
|
||||
MultiShiftFunction shifts;
|
||||
std::vector<RealD> TrueResidualShift;
|
||||
|
||||
ConjugateGradientMultiShift(Integer maxit,MultiShiftFunction &_shifts) :
|
||||
ConjugateGradientMultiShift(Integer maxit, const MultiShiftFunction &_shifts) :
|
||||
MaxIterations(maxit),
|
||||
shifts(_shifts)
|
||||
{
|
||||
verbose=1;
|
||||
IterationsToCompleteShift.resize(_shifts.order);
|
||||
TrueResidualShift.resize(_shifts.order);
|
||||
}
|
||||
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
|
||||
@ -80,6 +84,7 @@ public:
|
||||
|
||||
void operator() (LinearOperatorBase<Field> &Linop, const Field &src, std::vector<Field> &psi)
|
||||
{
|
||||
GRID_TRACE("ConjugateGradientMultiShift");
|
||||
|
||||
GridBase *grid = src.Grid();
|
||||
|
||||
@ -125,10 +130,21 @@ public:
|
||||
// Residuals "r" are src
|
||||
// First search direction "p" is also src
|
||||
cp = norm2(src);
|
||||
|
||||
// Handle trivial case of zero src.
|
||||
if( cp == 0. ){
|
||||
for(int s=0;s<nshift;s++){
|
||||
psi[s] = Zero();
|
||||
IterationsToCompleteShift[s] = 1;
|
||||
TrueResidualShift[s] = 0.;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
for(int s=0;s<nshift;s++){
|
||||
rsq[s] = cp * mresidual[s] * mresidual[s];
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShift: shift "<<s
|
||||
<<" target resid "<<rsq[s]<<std::endl;
|
||||
<<" target resid^2 "<<rsq[s]<<std::endl;
|
||||
ps[s] = src;
|
||||
}
|
||||
// r and p for primary
|
||||
@ -167,6 +183,9 @@ public:
|
||||
for(int s=0;s<nshift;s++) {
|
||||
axpby(psi[s],0.,-bs[s]*alpha[s],src,src);
|
||||
}
|
||||
|
||||
std::cout << GridLogIterative << "ConjugateGradientMultiShift: initial rn (|src|^2) =" << rn << " qq (|MdagM src|^2) =" << qq << " d ( dot(src, [MdagM + m_0]src) ) =" << d << " c=" << c << std::endl;
|
||||
|
||||
|
||||
///////////////////////////////////////
|
||||
// Timers
|
||||
@ -270,6 +289,7 @@ public:
|
||||
for(int s=0;s<nshift;s++){
|
||||
|
||||
if ( (!converged[s]) ){
|
||||
IterationsToCompleteShift[s] = k;
|
||||
|
||||
RealD css = c * z[s][iz]* z[s][iz];
|
||||
|
||||
@ -299,13 +319,14 @@ public:
|
||||
axpy(r,-alpha[s],src,tmp);
|
||||
RealD rn = norm2(r);
|
||||
RealD cn = norm2(src);
|
||||
std::cout<<GridLogMessage<<"CGMultiShift: shift["<<s<<"] true residual "<<std::sqrt(rn/cn)<<std::endl;
|
||||
TrueResidualShift[s] = std::sqrt(rn/cn);
|
||||
std::cout<<GridLogMessage<<"CGMultiShift: shift["<<s<<"] true residual "<< TrueResidualShift[s] <<std::endl;
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "Time Breakdown "<<std::endl;
|
||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tMarix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tShift " << ShiftTimer.Elapsed() <<std::endl;
|
||||
|
||||
IterationsToComplete = k;
|
||||
|
373
Grid/algorithms/iterative/ConjugateGradientMultiShiftCleanup.h
Normal file
373
Grid/algorithms/iterative/ConjugateGradientMultiShiftCleanup.h
Normal file
@ -0,0 +1,373 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.
|
||||
//The residual is stored in single precision, but the search directions and solution are stored in double precision.
|
||||
//Every update_freq iterations the residual is corrected in double precision.
|
||||
//For safety the a final regular CG is applied to clean up if necessary
|
||||
|
||||
//PB Pure single, then double fixup
|
||||
|
||||
template<class FieldD, class FieldF,
|
||||
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
|
||||
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
class ConjugateGradientMultiShiftMixedPrecCleanup : public OperatorMultiFunction<FieldD>,
|
||||
public OperatorFunction<FieldD>
|
||||
{
|
||||
public:
|
||||
|
||||
using OperatorFunction<FieldD>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
Integer MaxIterationsMshift;
|
||||
Integer MaxIterations;
|
||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
|
||||
int verbose;
|
||||
MultiShiftFunction shifts;
|
||||
std::vector<RealD> TrueResidualShift;
|
||||
|
||||
int ReliableUpdateFreq; //number of iterations between reliable updates
|
||||
|
||||
GridBase* SinglePrecGrid; //Grid for single-precision fields
|
||||
LinearOperatorBase<FieldF> &Linop_f; //single precision
|
||||
|
||||
ConjugateGradientMultiShiftMixedPrecCleanup(Integer maxit, const MultiShiftFunction &_shifts,
|
||||
GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
|
||||
int _ReliableUpdateFreq) :
|
||||
MaxIterationsMshift(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq),
|
||||
MaxIterations(20000)
|
||||
{
|
||||
verbose=1;
|
||||
IterationsToCompleteShift.resize(_shifts.order);
|
||||
TrueResidualShift.resize(_shifts.order);
|
||||
}
|
||||
|
||||
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
|
||||
{
|
||||
GridBase *grid = src.Grid();
|
||||
int nshift = shifts.order;
|
||||
std::vector<FieldD> results(nshift,grid);
|
||||
(*this)(Linop,src,results,psi);
|
||||
}
|
||||
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
|
||||
{
|
||||
int nshift = shifts.order;
|
||||
|
||||
(*this)(Linop,src,results);
|
||||
|
||||
psi = shifts.norm*src;
|
||||
for(int i=0;i<nshift;i++){
|
||||
psi = psi + shifts.residues[i]*results[i];
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
|
||||
{
|
||||
GRID_TRACE("ConjugateGradientMultiShiftMixedPrecCleanup");
|
||||
GridBase *DoublePrecGrid = src_d.Grid();
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Convenience references to the info stored in "MultiShiftFunction"
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
int nshift = shifts.order;
|
||||
|
||||
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
|
||||
std::vector<RealD> &mresidual(shifts.tolerances);
|
||||
std::vector<RealD> alpha(nshift,1.0);
|
||||
|
||||
//Double precision search directions
|
||||
FieldD p_d(DoublePrecGrid);
|
||||
std::vector<FieldF> ps_f (nshift, SinglePrecGrid);// Search directions (single precision)
|
||||
std::vector<FieldF> psi_f(nshift, SinglePrecGrid);// solutions (single precision)
|
||||
|
||||
FieldD tmp_d(DoublePrecGrid);
|
||||
FieldD r_d(DoublePrecGrid);
|
||||
FieldF r_f(SinglePrecGrid);
|
||||
FieldD mmp_d(DoublePrecGrid);
|
||||
|
||||
assert(psi_d.size()==nshift);
|
||||
assert(mass.size()==nshift);
|
||||
assert(mresidual.size()==nshift);
|
||||
|
||||
// dynamic sized arrays on stack; 2d is a pain with vector
|
||||
RealD bs[nshift];
|
||||
RealD rsq[nshift];
|
||||
RealD rsqf[nshift];
|
||||
RealD z[nshift][2];
|
||||
int converged[nshift];
|
||||
|
||||
const int primary =0;
|
||||
|
||||
//Primary shift fields CG iteration
|
||||
RealD a,b,c,d;
|
||||
RealD cp,bp,qq; //prev
|
||||
|
||||
// Matrix mult fields
|
||||
FieldF p_f(SinglePrecGrid);
|
||||
FieldF mmp_f(SinglePrecGrid);
|
||||
|
||||
// Check lightest mass
|
||||
for(int s=0;s<nshift;s++){
|
||||
assert( mass[s]>= mass[primary] );
|
||||
converged[s]=0;
|
||||
}
|
||||
|
||||
// Wire guess to zero
|
||||
// Residuals "r" are src
|
||||
// First search direction "p" is also src
|
||||
cp = norm2(src_d);
|
||||
|
||||
// Handle trivial case of zero src.
|
||||
if( cp == 0. ){
|
||||
for(int s=0;s<nshift;s++){
|
||||
psi_d[s] = Zero();
|
||||
psi_f[s] = Zero();
|
||||
IterationsToCompleteShift[s] = 1;
|
||||
TrueResidualShift[s] = 0.;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
for(int s=0;s<nshift;s++){
|
||||
rsq[s] = cp * mresidual[s] * mresidual[s];
|
||||
rsqf[s] =rsq[s];
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
|
||||
// ps_d[s] = src_d;
|
||||
precisionChange(ps_f[s],src_d);
|
||||
}
|
||||
// r and p for primary
|
||||
p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
|
||||
r_d = p_d;
|
||||
|
||||
//MdagM+m[0]
|
||||
precisionChange(p_f,p_d);
|
||||
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
||||
precisionChange(tmp_d,mmp_f);
|
||||
Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
||||
tmp_d = tmp_d - mmp_d;
|
||||
std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
|
||||
// assert(norm2(tmp_d)< 1.0e-4);
|
||||
|
||||
axpy(mmp_d,mass[0],p_d,mmp_d);
|
||||
RealD rn = norm2(p_d);
|
||||
d += rn*mass[0];
|
||||
|
||||
b = -cp /d;
|
||||
|
||||
// Set up the various shift variables
|
||||
int iz=0;
|
||||
z[0][1-iz] = 1.0;
|
||||
z[0][iz] = 1.0;
|
||||
bs[0] = b;
|
||||
for(int s=1;s<nshift;s++){
|
||||
z[s][1-iz] = 1.0;
|
||||
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
|
||||
bs[s] = b*z[s][iz];
|
||||
}
|
||||
|
||||
// r += b[0] A.p[0]
|
||||
// c= norm(r)
|
||||
c=axpy_norm(r_d,b,mmp_d,r_d);
|
||||
|
||||
for(int s=0;s<nshift;s++) {
|
||||
axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
|
||||
precisionChange(psi_f[s],psi_d[s]);
|
||||
}
|
||||
|
||||
///////////////////////////////////////
|
||||
// Timers
|
||||
///////////////////////////////////////
|
||||
GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
|
||||
|
||||
SolverTimer.Start();
|
||||
|
||||
// Iteration loop
|
||||
int k;
|
||||
|
||||
for (k=1;k<=MaxIterationsMshift;k++){
|
||||
|
||||
a = c /cp;
|
||||
AXPYTimer.Start();
|
||||
axpy(p_d,a,p_d,r_d);
|
||||
AXPYTimer.Stop();
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(r_f, r_d);
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
AXPYTimer.Start();
|
||||
for(int s=0;s<nshift;s++){
|
||||
if ( ! converged[s] ) {
|
||||
if (s==0){
|
||||
axpy(ps_f[s],a,ps_f[s],r_f);
|
||||
} else{
|
||||
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
|
||||
axpby(ps_f[s],z[s][iz],as,r_f,ps_f[s]);
|
||||
}
|
||||
}
|
||||
}
|
||||
AXPYTimer.Stop();
|
||||
|
||||
cp=c;
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(p_f, p_d); //get back single prec search direction for linop
|
||||
PrecChangeTimer.Stop();
|
||||
MatrixTimer.Start();
|
||||
Linop_f.HermOp(p_f,mmp_f);
|
||||
MatrixTimer.Stop();
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(mmp_d, mmp_f); // From Float to Double
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
d=real(innerProduct(p_d,mmp_d));
|
||||
axpy(mmp_d,mass[0],p_d,mmp_d);
|
||||
RealD rn = norm2(p_d);
|
||||
d += rn*mass[0];
|
||||
|
||||
bp=b;
|
||||
b=-cp/d;
|
||||
|
||||
// Toggle the recurrence history
|
||||
bs[0] = b;
|
||||
iz = 1-iz;
|
||||
ShiftTimer.Start();
|
||||
for(int s=1;s<nshift;s++){
|
||||
if((!converged[s])){
|
||||
RealD z0 = z[s][1-iz];
|
||||
RealD z1 = z[s][iz];
|
||||
z[s][iz] = z0*z1*bp
|
||||
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
|
||||
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
|
||||
}
|
||||
}
|
||||
ShiftTimer.Stop();
|
||||
|
||||
//Update single precision solutions
|
||||
AXPYTimer.Start();
|
||||
for(int s=0;s<nshift;s++){
|
||||
int ss = s;
|
||||
if( (!converged[s]) ) {
|
||||
axpy(psi_f[ss],-bs[s]*alpha[s],ps_f[s],psi_f[ss]);
|
||||
}
|
||||
}
|
||||
c = axpy_norm(r_d,b,mmp_d,r_d);
|
||||
AXPYTimer.Stop();
|
||||
|
||||
// Convergence checks
|
||||
int all_converged = 1;
|
||||
for(int s=0;s<nshift;s++){
|
||||
|
||||
if ( (!converged[s]) ){
|
||||
IterationsToCompleteShift[s] = k;
|
||||
|
||||
RealD css = c * z[s][iz]* z[s][iz];
|
||||
|
||||
if(css<rsqf[s]){
|
||||
if ( ! converged[s] )
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
|
||||
converged[s]=1;
|
||||
} else {
|
||||
all_converged=0;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
if ( all_converged || k == MaxIterationsMshift-1){
|
||||
|
||||
SolverTimer.Stop();
|
||||
|
||||
for(int s=0;s<nshift;s++){
|
||||
precisionChange(psi_d[s],psi_f[s]);
|
||||
}
|
||||
|
||||
|
||||
if ( all_converged ){
|
||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: All shifts have converged iteration "<<k<<std::endl;
|
||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Checking solutions"<<std::endl;
|
||||
} else {
|
||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrecCleanup: Not all shifts have converged iteration "<<k<<std::endl;
|
||||
}
|
||||
|
||||
// Check answers
|
||||
for(int s=0; s < nshift; s++) {
|
||||
Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
|
||||
axpy(tmp_d,mass[s],psi_d[s],mmp_d);
|
||||
axpy(r_d,-alpha[s],src_d,tmp_d);
|
||||
RealD rn = norm2(r_d);
|
||||
RealD cn = norm2(src_d);
|
||||
TrueResidualShift[s] = std::sqrt(rn/cn);
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
|
||||
|
||||
//If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
|
||||
if(rn >= rsq[s]){
|
||||
CleanupTimer.Start();
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrecCleanup: performing cleanup step for shift " << s << std::endl;
|
||||
|
||||
//Setup linear operators for final cleanup
|
||||
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
|
||||
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
|
||||
|
||||
MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);
|
||||
cg(src_d, psi_d[s]);
|
||||
|
||||
TrueResidualShift[s] = cg.TrueResidual;
|
||||
CleanupTimer.Stop();
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrecCleanup: Time Breakdown for body"<<std::endl;
|
||||
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tShift " << ShiftTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
|
||||
|
||||
IterationsToComplete = k;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
|
||||
assert(0);
|
||||
}
|
||||
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
|
416
Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h
Normal file
416
Grid/algorithms/iterative/ConjugateGradientMultiShiftMixedPrec.h
Normal file
@ -0,0 +1,416 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/ConjugateGradientMultiShift.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Christopher Kelly <ckelly@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
|
||||
#define GRID_CONJUGATE_GRADIENT_MULTI_SHIFT_MIXEDPREC_H
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
//CK 2020: A variant of the multi-shift conjugate gradient with the matrix multiplication in single precision.
|
||||
//The residual is stored in single precision, but the search directions and solution are stored in double precision.
|
||||
//Every update_freq iterations the residual is corrected in double precision.
|
||||
|
||||
//For safety the a final regular CG is applied to clean up if necessary
|
||||
|
||||
//Linop to add shift to input linop, used in cleanup CG
|
||||
namespace ConjugateGradientMultiShiftMixedPrecSupport{
|
||||
template<typename Field>
|
||||
class ShiftedLinop: public LinearOperatorBase<Field>{
|
||||
public:
|
||||
LinearOperatorBase<Field> &linop_base;
|
||||
RealD shift;
|
||||
|
||||
ShiftedLinop(LinearOperatorBase<Field> &_linop_base, RealD _shift): linop_base(_linop_base), shift(_shift){}
|
||||
|
||||
void OpDiag (const Field &in, Field &out){ assert(0); }
|
||||
void OpDir (const Field &in, Field &out,int dir,int disp){ assert(0); }
|
||||
void OpDirAll (const Field &in, std::vector<Field> &out){ assert(0); }
|
||||
|
||||
void Op (const Field &in, Field &out){ assert(0); }
|
||||
void AdjOp (const Field &in, Field &out){ assert(0); }
|
||||
|
||||
void HermOp(const Field &in, Field &out){
|
||||
linop_base.HermOp(in, out);
|
||||
axpy(out, shift, in, out);
|
||||
}
|
||||
|
||||
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
|
||||
HermOp(in,out);
|
||||
ComplexD dot = innerProduct(in,out);
|
||||
n1=real(dot);
|
||||
n2=norm2(out);
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
template<class FieldD, class FieldF,
|
||||
typename std::enable_if< getPrecision<FieldD>::value == 2, int>::type = 0,
|
||||
typename std::enable_if< getPrecision<FieldF>::value == 1, int>::type = 0>
|
||||
class ConjugateGradientMultiShiftMixedPrec : public OperatorMultiFunction<FieldD>,
|
||||
public OperatorFunction<FieldD>
|
||||
{
|
||||
public:
|
||||
|
||||
using OperatorFunction<FieldD>::operator();
|
||||
|
||||
RealD Tolerance;
|
||||
Integer MaxIterationsMshift;
|
||||
Integer MaxIterations;
|
||||
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
||||
std::vector<int> IterationsToCompleteShift; // Iterations for this shift
|
||||
int verbose;
|
||||
MultiShiftFunction shifts;
|
||||
std::vector<RealD> TrueResidualShift;
|
||||
|
||||
int ReliableUpdateFreq; //number of iterations between reliable updates
|
||||
|
||||
GridBase* SinglePrecGrid; //Grid for single-precision fields
|
||||
LinearOperatorBase<FieldF> &Linop_f; //single precision
|
||||
|
||||
ConjugateGradientMultiShiftMixedPrec(Integer maxit, const MultiShiftFunction &_shifts,
|
||||
GridBase* _SinglePrecGrid, LinearOperatorBase<FieldF> &_Linop_f,
|
||||
int _ReliableUpdateFreq) :
|
||||
MaxIterationsMshift(maxit), shifts(_shifts), SinglePrecGrid(_SinglePrecGrid), Linop_f(_Linop_f), ReliableUpdateFreq(_ReliableUpdateFreq),
|
||||
MaxIterations(20000)
|
||||
{
|
||||
verbose=1;
|
||||
IterationsToCompleteShift.resize(_shifts.order);
|
||||
TrueResidualShift.resize(_shifts.order);
|
||||
}
|
||||
|
||||
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, FieldD &psi)
|
||||
{
|
||||
GridBase *grid = src.Grid();
|
||||
int nshift = shifts.order;
|
||||
std::vector<FieldD> results(nshift,grid);
|
||||
(*this)(Linop,src,results,psi);
|
||||
}
|
||||
void operator() (LinearOperatorBase<FieldD> &Linop, const FieldD &src, std::vector<FieldD> &results, FieldD &psi)
|
||||
{
|
||||
int nshift = shifts.order;
|
||||
|
||||
(*this)(Linop,src,results);
|
||||
|
||||
psi = shifts.norm*src;
|
||||
for(int i=0;i<nshift;i++){
|
||||
psi = psi + shifts.residues[i]*results[i];
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
void operator() (LinearOperatorBase<FieldD> &Linop_d, const FieldD &src_d, std::vector<FieldD> &psi_d)
|
||||
{
|
||||
GRID_TRACE("ConjugateGradientMultiShiftMixedPrec");
|
||||
GridBase *DoublePrecGrid = src_d.Grid();
|
||||
|
||||
precisionChangeWorkspace pc_wk_s_to_d(DoublePrecGrid,SinglePrecGrid);
|
||||
precisionChangeWorkspace pc_wk_d_to_s(SinglePrecGrid,DoublePrecGrid);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Convenience references to the info stored in "MultiShiftFunction"
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
int nshift = shifts.order;
|
||||
|
||||
std::vector<RealD> &mass(shifts.poles); // Make references to array in "shifts"
|
||||
std::vector<RealD> &mresidual(shifts.tolerances);
|
||||
std::vector<RealD> alpha(nshift,1.0);
|
||||
|
||||
//Double precision search directions
|
||||
FieldD p_d(DoublePrecGrid);
|
||||
std::vector<FieldD> ps_d(nshift, DoublePrecGrid);// Search directions (double precision)
|
||||
|
||||
FieldD tmp_d(DoublePrecGrid);
|
||||
FieldD r_d(DoublePrecGrid);
|
||||
FieldD mmp_d(DoublePrecGrid);
|
||||
|
||||
assert(psi_d.size()==nshift);
|
||||
assert(mass.size()==nshift);
|
||||
assert(mresidual.size()==nshift);
|
||||
|
||||
// dynamic sized arrays on stack; 2d is a pain with vector
|
||||
RealD bs[nshift];
|
||||
RealD rsq[nshift];
|
||||
RealD rsqf[nshift];
|
||||
RealD z[nshift][2];
|
||||
int converged[nshift];
|
||||
|
||||
const int primary =0;
|
||||
|
||||
//Primary shift fields CG iteration
|
||||
RealD a,b,c,d;
|
||||
RealD cp,bp,qq; //prev
|
||||
|
||||
// Matrix mult fields
|
||||
FieldF p_f(SinglePrecGrid);
|
||||
FieldF mmp_f(SinglePrecGrid);
|
||||
|
||||
// Check lightest mass
|
||||
for(int s=0;s<nshift;s++){
|
||||
assert( mass[s]>= mass[primary] );
|
||||
converged[s]=0;
|
||||
}
|
||||
|
||||
// Wire guess to zero
|
||||
// Residuals "r" are src
|
||||
// First search direction "p" is also src
|
||||
cp = norm2(src_d);
|
||||
|
||||
// Handle trivial case of zero src.
|
||||
if( cp == 0. ){
|
||||
for(int s=0;s<nshift;s++){
|
||||
psi_d[s] = Zero();
|
||||
IterationsToCompleteShift[s] = 1;
|
||||
TrueResidualShift[s] = 0.;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
for(int s=0;s<nshift;s++){
|
||||
rsq[s] = cp * mresidual[s] * mresidual[s];
|
||||
rsqf[s] =rsq[s];
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift "<< s <<" target resid "<<rsq[s]<<std::endl;
|
||||
ps_d[s] = src_d;
|
||||
}
|
||||
// r and p for primary
|
||||
p_d = src_d; //primary copy --- make this a reference to ps_d to save axpys
|
||||
r_d = p_d;
|
||||
|
||||
//MdagM+m[0]
|
||||
precisionChange(p_f, p_d, pc_wk_d_to_s);
|
||||
|
||||
Linop_f.HermOpAndNorm(p_f,mmp_f,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
||||
precisionChange(tmp_d, mmp_f, pc_wk_s_to_d);
|
||||
Linop_d.HermOpAndNorm(p_d,mmp_d,d,qq); // mmp = MdagM p d=real(dot(p, mmp)), qq=norm2(mmp)
|
||||
tmp_d = tmp_d - mmp_d;
|
||||
std::cout << " Testing operators match "<<norm2(mmp_d)<<" f "<<norm2(mmp_f)<<" diff "<< norm2(tmp_d)<<std::endl;
|
||||
assert(norm2(tmp_d)< 1.0);
|
||||
|
||||
axpy(mmp_d,mass[0],p_d,mmp_d);
|
||||
RealD rn = norm2(p_d);
|
||||
d += rn*mass[0];
|
||||
|
||||
b = -cp /d;
|
||||
|
||||
// Set up the various shift variables
|
||||
int iz=0;
|
||||
z[0][1-iz] = 1.0;
|
||||
z[0][iz] = 1.0;
|
||||
bs[0] = b;
|
||||
for(int s=1;s<nshift;s++){
|
||||
z[s][1-iz] = 1.0;
|
||||
z[s][iz] = 1.0/( 1.0 - b*(mass[s]-mass[0]));
|
||||
bs[s] = b*z[s][iz];
|
||||
}
|
||||
|
||||
// r += b[0] A.p[0]
|
||||
// c= norm(r)
|
||||
c=axpy_norm(r_d,b,mmp_d,r_d);
|
||||
|
||||
for(int s=0;s<nshift;s++) {
|
||||
axpby(psi_d[s],0.,-bs[s]*alpha[s],src_d,src_d);
|
||||
}
|
||||
|
||||
///////////////////////////////////////
|
||||
// Timers
|
||||
///////////////////////////////////////
|
||||
GridStopWatch AXPYTimer, ShiftTimer, QRTimer, MatrixTimer, SolverTimer, PrecChangeTimer, CleanupTimer;
|
||||
|
||||
SolverTimer.Start();
|
||||
|
||||
// Iteration loop
|
||||
int k;
|
||||
|
||||
for (k=1;k<=MaxIterationsMshift;k++){
|
||||
|
||||
a = c /cp;
|
||||
AXPYTimer.Start();
|
||||
axpy(p_d,a,p_d,r_d);
|
||||
|
||||
for(int s=0;s<nshift;s++){
|
||||
if ( ! converged[s] ) {
|
||||
if (s==0){
|
||||
axpy(ps_d[s],a,ps_d[s],r_d);
|
||||
} else{
|
||||
RealD as =a *z[s][iz]*bs[s] /(z[s][1-iz]*b);
|
||||
axpby(ps_d[s],z[s][iz],as,r_d,ps_d[s]);
|
||||
}
|
||||
}
|
||||
}
|
||||
AXPYTimer.Stop();
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(p_f, p_d, pc_wk_d_to_s); //get back single prec search direction for linop
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
cp=c;
|
||||
MatrixTimer.Start();
|
||||
Linop_f.HermOp(p_f,mmp_f);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(mmp_d, mmp_f, pc_wk_s_to_d); // From Float to Double
|
||||
PrecChangeTimer.Stop();
|
||||
|
||||
AXPYTimer.Start();
|
||||
d=real(innerProduct(p_d,mmp_d));
|
||||
axpy(mmp_d,mass[0],p_d,mmp_d);
|
||||
AXPYTimer.Stop();
|
||||
RealD rn = norm2(p_d);
|
||||
d += rn*mass[0];
|
||||
|
||||
bp=b;
|
||||
b=-cp/d;
|
||||
|
||||
// Toggle the recurrence history
|
||||
bs[0] = b;
|
||||
iz = 1-iz;
|
||||
ShiftTimer.Start();
|
||||
for(int s=1;s<nshift;s++){
|
||||
if((!converged[s])){
|
||||
RealD z0 = z[s][1-iz];
|
||||
RealD z1 = z[s][iz];
|
||||
z[s][iz] = z0*z1*bp
|
||||
/ (b*a*(z1-z0) + z1*bp*(1- (mass[s]-mass[0])*b));
|
||||
bs[s] = b*z[s][iz]/z0; // NB sign rel to Mike
|
||||
}
|
||||
}
|
||||
ShiftTimer.Stop();
|
||||
|
||||
//Update double precision solutions
|
||||
AXPYTimer.Start();
|
||||
for(int s=0;s<nshift;s++){
|
||||
int ss = s;
|
||||
if( (!converged[s]) ) {
|
||||
axpy(psi_d[ss],-bs[s]*alpha[s],ps_d[s],psi_d[ss]);
|
||||
}
|
||||
}
|
||||
|
||||
//Perform reliable update if necessary; otherwise update residual from single-prec mmp
|
||||
c = axpy_norm(r_d,b,mmp_d,r_d);
|
||||
|
||||
AXPYTimer.Stop();
|
||||
|
||||
if(k % ReliableUpdateFreq == 0){
|
||||
RealD c_old = c;
|
||||
//Replace r with true residual
|
||||
MatrixTimer.Start();
|
||||
Linop_d.HermOp(psi_d[0],mmp_d);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
AXPYTimer.Start();
|
||||
axpy(mmp_d,mass[0],psi_d[0],mmp_d);
|
||||
|
||||
c = axpy_norm(r_d, -1.0, mmp_d, src_d);
|
||||
AXPYTimer.Stop();
|
||||
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<< ", replaced |r|^2 = "<<c_old <<" with |r|^2 = "<<c<<std::endl;
|
||||
}
|
||||
|
||||
// Convergence checks
|
||||
int all_converged = 1;
|
||||
for(int s=0;s<nshift;s++){
|
||||
|
||||
if ( (!converged[s]) ){
|
||||
IterationsToCompleteShift[s] = k;
|
||||
|
||||
RealD css = c * z[s][iz]* z[s][iz];
|
||||
|
||||
if(css<rsqf[s]){
|
||||
if ( ! converged[s] )
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec k="<<k<<" Shift "<<s<<" has converged"<<std::endl;
|
||||
converged[s]=1;
|
||||
} else {
|
||||
all_converged=0;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
if ( all_converged || k == MaxIterationsMshift-1){
|
||||
|
||||
SolverTimer.Stop();
|
||||
|
||||
if ( all_converged ){
|
||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: All shifts have converged iteration "<<k<<std::endl;
|
||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Checking solutions"<<std::endl;
|
||||
} else {
|
||||
std::cout<<GridLogMessage<< "ConjugateGradientMultiShiftMixedPrec: Not all shifts have converged iteration "<<k<<std::endl;
|
||||
}
|
||||
|
||||
// Check answers
|
||||
for(int s=0; s < nshift; s++) {
|
||||
Linop_d.HermOpAndNorm(psi_d[s],mmp_d,d,qq);
|
||||
axpy(tmp_d,mass[s],psi_d[s],mmp_d);
|
||||
axpy(r_d,-alpha[s],src_d,tmp_d);
|
||||
RealD rn = norm2(r_d);
|
||||
RealD cn = norm2(src_d);
|
||||
TrueResidualShift[s] = std::sqrt(rn/cn);
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: shift["<<s<<"] true residual "<< TrueResidualShift[s] << " target " << mresidual[s] << std::endl;
|
||||
|
||||
//If we have not reached the desired tolerance, do a (mixed precision) CG cleanup
|
||||
if(rn >= rsq[s]){
|
||||
CleanupTimer.Start();
|
||||
std::cout<<GridLogMessage<<"ConjugateGradientMultiShiftMixedPrec: performing cleanup step for shift " << s << std::endl;
|
||||
|
||||
//Setup linear operators for final cleanup
|
||||
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldD> Linop_shift_d(Linop_d, mass[s]);
|
||||
ConjugateGradientMultiShiftMixedPrecSupport::ShiftedLinop<FieldF> Linop_shift_f(Linop_f, mass[s]);
|
||||
|
||||
MixedPrecisionConjugateGradient<FieldD,FieldF> cg(mresidual[s], MaxIterations, MaxIterations, SinglePrecGrid, Linop_shift_f, Linop_shift_d);
|
||||
cg(src_d, psi_d[s]);
|
||||
|
||||
TrueResidualShift[s] = cg.TrueResidual;
|
||||
CleanupTimer.Stop();
|
||||
}
|
||||
}
|
||||
|
||||
std::cout << GridLogMessage << "ConjugateGradientMultiShiftMixedPrec: Time Breakdown for body"<<std::endl;
|
||||
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tAXPY " << AXPYTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tShift " << ShiftTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\t\tPrecision Change " << PrecChangeTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tFinal Cleanup " << CleanupTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tSolver+Cleanup " << SolverTimer.Elapsed() + CleanupTimer.Elapsed() << std::endl;
|
||||
|
||||
IterationsToComplete = k;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
std::cout<<GridLogMessage<<"CG multi shift did not converge"<<std::endl;
|
||||
assert(0);
|
||||
}
|
||||
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -48,7 +48,7 @@ public:
|
||||
LinearOperatorBase<FieldF> &Linop_f;
|
||||
LinearOperatorBase<FieldD> &Linop_d;
|
||||
GridBase* SinglePrecGrid;
|
||||
RealD Delta; //reliable update parameter
|
||||
RealD Delta; //reliable update parameter. A reliable update is performed when the residual drops by a factor of Delta relative to its value at the last update
|
||||
|
||||
//Optional ability to switch to a different linear operator once the tolerance reaches a certain point. Useful for single/half -> single/single
|
||||
LinearOperatorBase<FieldF> *Linop_fallback;
|
||||
@ -65,7 +65,9 @@ public:
|
||||
ErrorOnNoConverge(err_on_no_conv),
|
||||
DoFinalCleanup(true),
|
||||
Linop_fallback(NULL)
|
||||
{};
|
||||
{
|
||||
assert(Delta > 0. && Delta < 1. && "Expect 0 < Delta < 1");
|
||||
};
|
||||
|
||||
void setFallbackLinop(LinearOperatorBase<FieldF> &_Linop_fallback, const RealD _fallback_transition_tol){
|
||||
Linop_fallback = &_Linop_fallback;
|
||||
@ -73,6 +75,7 @@ public:
|
||||
}
|
||||
|
||||
void operator()(const FieldD &src, FieldD &psi) {
|
||||
GRID_TRACE("ConjugateGradientReliableUpdate");
|
||||
LinearOperatorBase<FieldF> *Linop_f_use = &Linop_f;
|
||||
bool using_fallback = false;
|
||||
|
||||
@ -115,9 +118,12 @@ public:
|
||||
}
|
||||
|
||||
//Single prec initialization
|
||||
precisionChangeWorkspace pc_wk_sp_to_dp(src.Grid(), SinglePrecGrid);
|
||||
precisionChangeWorkspace pc_wk_dp_to_sp(SinglePrecGrid, src.Grid());
|
||||
|
||||
FieldF r_f(SinglePrecGrid);
|
||||
r_f.Checkerboard() = r.Checkerboard();
|
||||
precisionChange(r_f, r);
|
||||
precisionChange(r_f, r, pc_wk_dp_to_sp);
|
||||
|
||||
FieldF psi_f(r_f);
|
||||
psi_f = Zero();
|
||||
@ -133,7 +139,8 @@ public:
|
||||
GridStopWatch LinalgTimer;
|
||||
GridStopWatch MatrixTimer;
|
||||
GridStopWatch SolverTimer;
|
||||
|
||||
GridStopWatch PrecChangeTimer;
|
||||
|
||||
SolverTimer.Start();
|
||||
int k = 0;
|
||||
int l = 0;
|
||||
@ -172,7 +179,9 @@ public:
|
||||
// Stopping condition
|
||||
if (cp <= rsq) {
|
||||
//Although not written in the paper, I assume that I have to add on the final solution
|
||||
precisionChange(mmp, psi_f);
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(mmp, psi_f, pc_wk_sp_to_dp);
|
||||
PrecChangeTimer.Stop();
|
||||
psi = psi + mmp;
|
||||
|
||||
|
||||
@ -193,7 +202,10 @@ public:
|
||||
std::cout << GridLogMessage << "\tElapsed " << SolverTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tPrecChange " << PrecChangeTimer.Elapsed() <<std::endl;
|
||||
std::cout << GridLogMessage << "\tPrecChange avg time " << PrecChangeTimer.Elapsed()/(2*l+1) <<std::endl;
|
||||
|
||||
|
||||
IterationsToComplete = k;
|
||||
ReliableUpdatesPerformed = l;
|
||||
|
||||
@ -213,14 +225,21 @@ public:
|
||||
else if(cp < Delta * MaxResidSinceLastRelUp) { //reliable update
|
||||
std::cout << GridLogMessage << "ConjugateGradientReliableUpdate "
|
||||
<< cp << "(residual) < " << Delta << "(Delta) * " << MaxResidSinceLastRelUp << "(MaxResidSinceLastRelUp) on iteration " << k << " : performing reliable update\n";
|
||||
precisionChange(mmp, psi_f);
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(mmp, psi_f, pc_wk_sp_to_dp);
|
||||
PrecChangeTimer.Stop();
|
||||
psi = psi + mmp;
|
||||
|
||||
MatrixTimer.Start();
|
||||
Linop_d.HermOpAndNorm(psi, mmp, d, qq);
|
||||
MatrixTimer.Stop();
|
||||
|
||||
r = src - mmp;
|
||||
|
||||
psi_f = Zero();
|
||||
precisionChange(r_f, r);
|
||||
PrecChangeTimer.Start();
|
||||
precisionChange(r_f, r, pc_wk_dp_to_sp);
|
||||
PrecChangeTimer.Stop();
|
||||
cp = norm2(r);
|
||||
MaxResidSinceLastRelUp = cp;
|
||||
|
||||
|
1412
Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h
Normal file
1412
Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczos.h
Normal file
File diff suppressed because it is too large
Load Diff
1212
Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h
Normal file
1212
Grid/algorithms/iterative/ImplicitlyRestartedBlockLanczosCoarse.h
Normal file
File diff suppressed because it is too large
Load Diff
@ -37,211 +37,6 @@ Author: Christoph Lehner <clehner@bnl.gov>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Move following 100 LOC to lattice/Lattice_basis.h
|
||||
////////////////////////////////////////////////////////
|
||||
template<class Field>
|
||||
void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)
|
||||
{
|
||||
// If assume basis[j] are already orthonormal,
|
||||
// can take all inner products in parallel saving 2x bandwidth
|
||||
// Save 3x bandwidth on the second line of loop.
|
||||
// perhaps 2.5x speed up.
|
||||
// 2x overall in Multigrid Lanczos
|
||||
for(int j=0; j<k; ++j){
|
||||
auto ip = innerProduct(basis[j],w);
|
||||
w = w - ip*basis[j];
|
||||
}
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
void basisRotate(std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j0, int j1, int k0,int k1,int Nm)
|
||||
{
|
||||
typedef decltype(basis[0].View()) View;
|
||||
auto tmp_v = basis[0].View();
|
||||
Vector<View> basis_v(basis.size(),tmp_v);
|
||||
typedef typename Field::vector_object vobj;
|
||||
GridBase* grid = basis[0].Grid();
|
||||
|
||||
for(int k=0;k<basis.size();k++){
|
||||
basis_v[k] = basis[k].View();
|
||||
}
|
||||
#if 0
|
||||
std::vector < vobj , commAllocator<vobj> > Bt(thread_max() * Nm); // Thread private
|
||||
thread_region
|
||||
{
|
||||
vobj* B = Bt.data() + Nm * thread_num();
|
||||
|
||||
thread_for_in_region(ss, grid->oSites(),{
|
||||
for(int j=j0; j<j1; ++j) B[j]=0.;
|
||||
|
||||
for(int j=j0; j<j1; ++j){
|
||||
for(int k=k0; k<k1; ++k){
|
||||
B[j] +=Qt(j,k) * basis_v[k][ss];
|
||||
}
|
||||
}
|
||||
for(int j=j0; j<j1; ++j){
|
||||
basis_v[j][ss] = B[j];
|
||||
}
|
||||
});
|
||||
}
|
||||
#else
|
||||
|
||||
int nrot = j1-j0;
|
||||
|
||||
|
||||
uint64_t oSites =grid->oSites();
|
||||
uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
|
||||
|
||||
// printf("BasisRotate %d %d nrot %d siteBlock %d\n",j0,j1,nrot,siteBlock);
|
||||
|
||||
Vector <vobj> Bt(siteBlock * nrot);
|
||||
auto Bp=&Bt[0];
|
||||
|
||||
// GPU readable copy of Eigen matrix
|
||||
Vector<double> Qt_jv(Nm*Nm);
|
||||
double *Qt_p = & Qt_jv[0];
|
||||
for(int k=0;k<Nm;++k){
|
||||
for(int j=0;j<Nm;++j){
|
||||
Qt_p[j*Nm+k]=Qt(j,k);
|
||||
}
|
||||
}
|
||||
|
||||
// Block the loop to keep storage footprint down
|
||||
vobj zz=Zero();
|
||||
for(uint64_t s=0;s<oSites;s+=siteBlock){
|
||||
|
||||
// remaining work in this block
|
||||
int ssites=MIN(siteBlock,oSites-s);
|
||||
|
||||
// zero out the accumulators
|
||||
accelerator_for(ss,siteBlock*nrot,vobj::Nsimd(),{
|
||||
auto z=coalescedRead(zz);
|
||||
coalescedWrite(Bp[ss],z);
|
||||
});
|
||||
|
||||
accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
|
||||
|
||||
int j =sj%nrot;
|
||||
int jj =j0+j;
|
||||
int ss =sj/nrot;
|
||||
int sss=ss+s;
|
||||
|
||||
for(int k=k0; k<k1; ++k){
|
||||
auto tmp = coalescedRead(Bp[ss*nrot+j]);
|
||||
coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_v[k][sss]));
|
||||
}
|
||||
});
|
||||
|
||||
accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
|
||||
int j =sj%nrot;
|
||||
int jj =j0+j;
|
||||
int ss =sj/nrot;
|
||||
int sss=ss+s;
|
||||
coalescedWrite(basis_v[jj][sss],coalescedRead(Bp[ss*nrot+j]));
|
||||
});
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
// Extract a single rotated vector
|
||||
template<class Field>
|
||||
void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)
|
||||
{
|
||||
typedef decltype(basis[0].View()) View;
|
||||
typedef typename Field::vector_object vobj;
|
||||
GridBase* grid = basis[0].Grid();
|
||||
|
||||
result.Checkerboard() = basis[0].Checkerboard();
|
||||
auto result_v=result.View();
|
||||
Vector<View> basis_v(basis.size(),result_v);
|
||||
for(int k=0;k<basis.size();k++){
|
||||
basis_v[k] = basis[k].View();
|
||||
}
|
||||
vobj zz=Zero();
|
||||
Vector<double> Qt_jv(Nm);
|
||||
double * Qt_j = & Qt_jv[0];
|
||||
for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
|
||||
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
|
||||
auto B=coalescedRead(zz);
|
||||
for(int k=k0; k<k1; ++k){
|
||||
B +=Qt_j[k] * coalescedRead(basis_v[k][ss]);
|
||||
}
|
||||
coalescedWrite(result_v[ss], B);
|
||||
});
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, std::vector<int>& idx)
|
||||
{
|
||||
int vlen = idx.size();
|
||||
|
||||
assert(vlen>=1);
|
||||
assert(vlen<=sort_vals.size());
|
||||
assert(vlen<=_v.size());
|
||||
|
||||
for (size_t i=0;i<vlen;i++) {
|
||||
|
||||
if (idx[i] != i) {
|
||||
|
||||
//////////////////////////////////////
|
||||
// idx[i] is a table of desired sources giving a permutation.
|
||||
// Swap v[i] with v[idx[i]].
|
||||
// Find j>i for which _vnew[j] = _vold[i],
|
||||
// track the move idx[j] => idx[i]
|
||||
// track the move idx[i] => i
|
||||
//////////////////////////////////////
|
||||
size_t j;
|
||||
for (j=i;j<idx.size();j++)
|
||||
if (idx[j]==i)
|
||||
break;
|
||||
|
||||
assert(idx[i] > i); assert(j!=idx.size()); assert(idx[j]==i);
|
||||
|
||||
swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy
|
||||
std::swap(sort_vals[i],sort_vals[idx[i]]);
|
||||
|
||||
idx[j] = idx[i];
|
||||
idx[i] = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
inline std::vector<int> basisSortGetIndex(std::vector<RealD>& sort_vals)
|
||||
{
|
||||
std::vector<int> idx(sort_vals.size());
|
||||
std::iota(idx.begin(), idx.end(), 0);
|
||||
|
||||
// sort indexes based on comparing values in v
|
||||
std::sort(idx.begin(), idx.end(), [&sort_vals](int i1, int i2) {
|
||||
return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);
|
||||
});
|
||||
return idx;
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, bool reverse)
|
||||
{
|
||||
std::vector<int> idx = basisSortGetIndex(sort_vals);
|
||||
if (reverse)
|
||||
std::reverse(idx.begin(), idx.end());
|
||||
|
||||
basisReorderInPlace(_v,sort_vals,idx);
|
||||
}
|
||||
|
||||
// PAB: faster to compute the inner products first then fuse loops.
|
||||
// If performance critical can improve.
|
||||
template<class Field>
|
||||
void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
|
||||
result = Zero();
|
||||
assert(_v.size()==eval.size());
|
||||
int N = (int)_v.size();
|
||||
for (int i=0;i<N;i++) {
|
||||
Field& tmp = _v[i];
|
||||
axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Implicitly restarted lanczos
|
||||
/////////////////////////////////////////////////////////////
|
||||
@ -284,14 +79,16 @@ template<class Field> class ImplicitlyRestartedLanczosHermOpTester : public Imp
|
||||
RealD vv = norm2(v) / ::pow(evalMaxApprox,2.0);
|
||||
|
||||
std::cout.precision(13);
|
||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||
<<std::endl;
|
||||
|
||||
int conv=0;
|
||||
if( (vv<eresid*eresid) ) conv = 1;
|
||||
|
||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||
<<" target " << eresid*eresid << " conv " <<conv
|
||||
<<std::endl;
|
||||
|
||||
return conv;
|
||||
}
|
||||
};
|
||||
@ -624,14 +421,15 @@ until convergence
|
||||
}
|
||||
}
|
||||
|
||||
if ( Nconv < Nstop )
|
||||
if ( Nconv < Nstop ) {
|
||||
std::cout << GridLogIRL << "Nconv ("<<Nconv<<") < Nstop ("<<Nstop<<")"<<std::endl;
|
||||
|
||||
std::cout << GridLogIRL << "returning Nstop vectors, the last "<< Nstop-Nconv << "of which might meet convergence criterion only approximately" <<std::endl;
|
||||
}
|
||||
eval=eval2;
|
||||
|
||||
//Keep only converged
|
||||
eval.resize(Nconv);// Nstop?
|
||||
evec.resize(Nconv,grid);// Nstop?
|
||||
eval.resize(Nstop);// was Nconv
|
||||
evec.resize(Nstop,grid);// was Nconv
|
||||
basisSortInPlace(evec,eval,reverse);
|
||||
|
||||
}
|
||||
@ -661,7 +459,7 @@ until convergence
|
||||
std::vector<Field>& evec,
|
||||
Field& w,int Nm,int k)
|
||||
{
|
||||
std::cout<<GridLogIRL << "Lanczos step " <<k<<std::endl;
|
||||
std::cout<<GridLogDebug << "Lanczos step " <<k<<std::endl;
|
||||
const RealD tiny = 1.0e-20;
|
||||
assert( k< Nm );
|
||||
|
||||
@ -669,7 +467,7 @@ until convergence
|
||||
|
||||
Field& evec_k = evec[k];
|
||||
|
||||
_PolyOp(evec_k,w); std::cout<<GridLogIRL << "PolyOp" <<std::endl;
|
||||
_PolyOp(evec_k,w); std::cout<<GridLogDebug << "PolyOp" <<std::endl;
|
||||
|
||||
if(k>0) w -= lme[k-1] * evec[k-1];
|
||||
|
||||
@ -684,18 +482,18 @@ until convergence
|
||||
lme[k] = beta;
|
||||
|
||||
if ( (k>0) && ( (k % orth_period) == 0 )) {
|
||||
std::cout<<GridLogIRL << "Orthogonalising " <<k<<std::endl;
|
||||
std::cout<<GridLogDebug << "Orthogonalising " <<k<<std::endl;
|
||||
orthogonalize(w,evec,k); // orthonormalise
|
||||
std::cout<<GridLogIRL << "Orthogonalised " <<k<<std::endl;
|
||||
std::cout<<GridLogDebug << "Orthogonalised " <<k<<std::endl;
|
||||
}
|
||||
|
||||
if(k < Nm-1) evec[k+1] = w;
|
||||
|
||||
std::cout<<GridLogIRL << "alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
|
||||
std::cout<<GridLogIRL << "Lanczos step alpha[" << k << "] = " << zalph << " beta[" << k << "] = "<<beta<<std::endl;
|
||||
if ( beta < tiny )
|
||||
std::cout<<GridLogIRL << " beta is tiny "<<beta<<std::endl;
|
||||
|
||||
std::cout<<GridLogIRL << "Lanczos step complete " <<k<<std::endl;
|
||||
std::cout<<GridLogDebug << "Lanczos step complete " <<k<<std::endl;
|
||||
}
|
||||
|
||||
void diagonalize_Eigen(std::vector<RealD>& lmd, std::vector<RealD>& lme,
|
||||
|
@ -44,6 +44,7 @@ public:
|
||||
int, MinRes); // Must restart
|
||||
};
|
||||
|
||||
//This class is the input parameter class for some testing programs
|
||||
struct LocalCoherenceLanczosParams : Serializable {
|
||||
public:
|
||||
GRID_SERIALIZABLE_CLASS_MEMBERS(LocalCoherenceLanczosParams,
|
||||
@ -67,6 +68,7 @@ public:
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class ProjectedHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
|
||||
public:
|
||||
using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator();
|
||||
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||||
typedef Lattice<CoarseSiteVector> CoarseField;
|
||||
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
||||
@ -97,6 +99,7 @@ public:
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class ProjectedFunctionHermOp : public LinearFunction<Lattice<iVector<CComplex,nbasis > > > {
|
||||
public:
|
||||
using LinearFunction<Lattice<iVector<CComplex,nbasis > > >::operator();
|
||||
typedef iVector<CComplex,nbasis > CoarseSiteVector;
|
||||
typedef Lattice<CoarseSiteVector> CoarseField;
|
||||
typedef Lattice<CComplex> CoarseScalar; // used for inner products on fine field
|
||||
@ -143,16 +146,24 @@ public:
|
||||
LinearOperatorBase<FineField> &_Linop;
|
||||
RealD _coarse_relax_tol;
|
||||
std::vector<FineField> &_subspace;
|
||||
|
||||
int _largestEvalIdxForReport; //The convergence of the LCL is based on the evals of the coarse grid operator, not those of the underlying fine grid operator
|
||||
//As a result we do not know what the eval range of the fine operator is until the very end, making tuning the Cheby bounds very difficult
|
||||
//To work around this issue, every restart we separately reconstruct the fine operator eval for the lowest and highest evec and print these
|
||||
//out alongside the evals of the coarse operator. To do so we need to know the index of the largest eval (i.e. Nstop-1)
|
||||
//NOTE: If largestEvalIdxForReport=-1 (default) then this is not performed
|
||||
|
||||
ImplicitlyRestartedLanczosSmoothedTester(LinearFunction<CoarseField> &Poly,
|
||||
OperatorFunction<FineField> &smoother,
|
||||
LinearOperatorBase<FineField> &Linop,
|
||||
std::vector<FineField> &subspace,
|
||||
RealD coarse_relax_tol=5.0e3)
|
||||
RealD coarse_relax_tol=5.0e3,
|
||||
int largestEvalIdxForReport=-1)
|
||||
: _smoother(smoother), _Linop(Linop), _Poly(Poly), _subspace(subspace),
|
||||
_coarse_relax_tol(coarse_relax_tol)
|
||||
_coarse_relax_tol(coarse_relax_tol), _largestEvalIdxForReport(largestEvalIdxForReport)
|
||||
{ };
|
||||
|
||||
//evalMaxApprox: approximation of largest eval of the fine Chebyshev operator (suitably wrapped by block projection)
|
||||
int TestConvergence(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||
{
|
||||
CoarseField v(B);
|
||||
@ -175,12 +186,26 @@ public:
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||
<<std::endl;
|
||||
|
||||
if(_largestEvalIdxForReport != -1 && (j==0 || j==_largestEvalIdxForReport)){
|
||||
std::cout<<GridLogIRL << "Estimating true eval of fine grid operator for eval idx " << j << std::endl;
|
||||
RealD tmp_eval;
|
||||
ReconstructEval(j,eresid,B,tmp_eval,1.0); //don't use evalMaxApprox of coarse operator! (cf below)
|
||||
}
|
||||
|
||||
int conv=0;
|
||||
if( (vv<eresid*eresid) ) conv = 1;
|
||||
return conv;
|
||||
}
|
||||
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||
|
||||
//This function is called at the end of the coarse grid Lanczos. It promotes the coarse eigenvector 'B' to the fine grid,
|
||||
//applies a smoother to the result then computes the computes the *fine grid* eigenvalue (output as 'eval').
|
||||
|
||||
//evalMaxApprox should be the approximation of the largest eval of the fine Hermop. However when this function is called by IRL it actually passes the largest eval of the *Chebyshev* operator (as this is the max approx used for the TestConvergence above)
|
||||
//As the largest eval of the Chebyshev is typically several orders of magnitude larger this makes the convergence test pass even when it should not.
|
||||
//We therefore ignore evalMaxApprox here and use a value of 1.0 (note this value is already used by TestCoarse)
|
||||
int ReconstructEval(int j,RealD eresid,CoarseField &B, RealD &eval,RealD evalMaxApprox)
|
||||
{
|
||||
evalMaxApprox = 1.0; //cf above
|
||||
GridBase *FineGrid = _subspace[0].Grid();
|
||||
int checkerboard = _subspace[0].Checkerboard();
|
||||
FineField fB(FineGrid);fB.Checkerboard() =checkerboard;
|
||||
@ -199,13 +224,13 @@ public:
|
||||
eval = vnum/vden;
|
||||
fv -= eval*fB;
|
||||
RealD vv = norm2(fv) / ::pow(evalMaxApprox,2.0);
|
||||
|
||||
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
|
||||
|
||||
std::cout.precision(13);
|
||||
std::cout<<GridLogIRL << "[" << std::setw(3)<<j<<"] "
|
||||
<<"eval = "<<std::setw(25)<< eval << " (" << eval_poly << ")"
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv
|
||||
<<" |H B[i] - eval[i]B[i]|^2 / evalMaxApprox^2 " << std::setw(25) << vv << " target " << eresid*eresid
|
||||
<<std::endl;
|
||||
if ( j > nbasis ) eresid = eresid*_coarse_relax_tol;
|
||||
if( (vv<eresid*eresid) ) return 1;
|
||||
return 0;
|
||||
}
|
||||
@ -283,6 +308,10 @@ public:
|
||||
evals_coarse.resize(0);
|
||||
};
|
||||
|
||||
//The block inner product is the inner product on the fine grid locally summed over the blocks
|
||||
//to give a Lattice<Scalar> on the coarse grid. This function orthnormalizes the fine-grid subspace
|
||||
//vectors under the block inner product. This step must be performed after computing the fine grid
|
||||
//eigenvectors and before computing the coarse grid eigenvectors.
|
||||
void Orthogonalise(void ) {
|
||||
CoarseScalar InnerProd(_CoarseGrid);
|
||||
std::cout << GridLogMessage <<" Gramm-Schmidt pass 1"<<std::endl;
|
||||
@ -326,6 +355,8 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
//While this method serves to check the coarse eigenvectors, it also recomputes the eigenvalues from the smoothed reconstructed eigenvectors
|
||||
//hence the smoother can be tuned after running the coarse Lanczos by using a different smoother here
|
||||
void testCoarse(RealD resid,ChebyParams cheby_smooth,RealD relax)
|
||||
{
|
||||
assert(evals_fine.size() == nbasis);
|
||||
@ -374,25 +405,31 @@ public:
|
||||
evals_fine.resize(nbasis);
|
||||
subspace.resize(nbasis,_FineGrid);
|
||||
}
|
||||
|
||||
|
||||
//cheby_op: Parameters of the fine grid Chebyshev polynomial used for the Lanczos acceleration
|
||||
//cheby_smooth: Parameters of a separate Chebyshev polynomial used after the Lanczos has completed to smooth out high frequency noise in the reconstructed fine grid eigenvectors prior to computing the eigenvalue
|
||||
//relax: Reconstructed eigenvectors (post smoothing) are naturally not as precise as true eigenvectors. This factor acts as a multiplier on the stopping condition when determining whether the results satisfy the user provided stopping condition
|
||||
void calcCoarse(ChebyParams cheby_op,ChebyParams cheby_smooth,RealD relax,
|
||||
int Nstop, int Nk, int Nm,RealD resid,
|
||||
RealD MaxIt, RealD betastp, int MinRes)
|
||||
{
|
||||
Chebyshev<FineField> Cheby(cheby_op);
|
||||
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace);
|
||||
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace);
|
||||
Chebyshev<FineField> Cheby(cheby_op); //Chebyshev of fine operator on fine grid
|
||||
ProjectedHermOp<Fobj,CComplex,nbasis> Op(_FineOp,subspace); //Fine operator on coarse grid with intermediate fine grid conversion
|
||||
ProjectedFunctionHermOp<Fobj,CComplex,nbasis> ChebyOp (Cheby,_FineOp,subspace); //Chebyshev of fine operator on coarse grid with intermediate fine grid conversion
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// create a smoother and see if we can get a cheap convergence test and smooth inside the IRL
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
Chebyshev<FineField> ChebySmooth(cheby_smooth);
|
||||
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax);
|
||||
Chebyshev<FineField> ChebySmooth(cheby_smooth); //lower order Chebyshev of fine operator on fine grid used to smooth regenerated eigenvectors
|
||||
ImplicitlyRestartedLanczosSmoothedTester<Fobj,CComplex,nbasis> ChebySmoothTester(ChebyOp,ChebySmooth,_FineOp,subspace,relax,Nstop-1);
|
||||
|
||||
evals_coarse.resize(Nm);
|
||||
evec_coarse.resize(Nm,_CoarseGrid);
|
||||
|
||||
CoarseField src(_CoarseGrid); src=1.0;
|
||||
|
||||
//Note the "tester" here is also responsible for generating the fine grid eigenvalues which are output into the "evals_coarse" array
|
||||
ImplicitlyRestartedLanczos<CoarseField> IRL(ChebyOp,ChebyOp,ChebySmoothTester,Nstop,Nk,Nm,resid,MaxIt,betastp,MinRes);
|
||||
int Nconv=0;
|
||||
IRL.calc(evals_coarse,evec_coarse,src,Nconv,false);
|
||||
@ -403,6 +440,14 @@ public:
|
||||
std::cout << i << " Coarse eval = " << evals_coarse[i] << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
//Get the fine eigenvector 'i' by reconstruction
|
||||
void getFineEvecEval(FineField &evec, RealD &eval, const int i) const{
|
||||
blockPromote(evec_coarse[i],evec,subspace);
|
||||
eval = evals_coarse[i];
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -33,7 +33,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Take a matrix and form an NE solver calling a Herm solver
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class Field> class NormalEquations {
|
||||
template<class Field> class NormalEquations : public LinearFunction<Field>{
|
||||
private:
|
||||
SparseMatrixBase<Field> & _Matrix;
|
||||
OperatorFunction<Field> & _HermitianSolver;
|
||||
@ -60,7 +60,7 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field> class HPDSolver {
|
||||
template<class Field> class HPDSolver : public LinearFunction<Field> {
|
||||
private:
|
||||
LinearOperatorBase<Field> & _Matrix;
|
||||
OperatorFunction<Field> & _HermitianSolver;
|
||||
@ -78,13 +78,13 @@ public:
|
||||
void operator() (const Field &in, Field &out){
|
||||
|
||||
_Guess(in,out);
|
||||
_HermitianSolver(_Matrix,in,out); // Mdag M out = Mdag in
|
||||
_HermitianSolver(_Matrix,in,out); //M out = in
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<class Field> class MdagMSolver {
|
||||
template<class Field> class MdagMSolver : public LinearFunction<Field> {
|
||||
private:
|
||||
SparseMatrixBase<Field> & _Matrix;
|
||||
OperatorFunction<Field> & _HermitianSolver;
|
||||
|
@ -20,7 +20,7 @@ template<class Field> class PowerMethod
|
||||
RealD evalMaxApprox = 0.0;
|
||||
auto src_n = src;
|
||||
auto tmp = src;
|
||||
const int _MAX_ITER_EST_ = 50;
|
||||
const int _MAX_ITER_EST_ = 100;
|
||||
|
||||
for (int i=0;i<_MAX_ITER_EST_;i++) {
|
||||
|
||||
@ -29,6 +29,8 @@ template<class Field> class PowerMethod
|
||||
RealD vnum = real(innerProduct(src_n,tmp)); // HermOp.
|
||||
RealD vden = norm2(src_n);
|
||||
RealD na = vnum/vden;
|
||||
|
||||
std::cout << GridLogIterative << "PowerMethod: Current approximation of largest eigenvalue " << na << std::endl;
|
||||
|
||||
if ( (fabs(evalMaxApprox/na - 1.0) < 0.001) || (i==_MAX_ITER_EST_-1) ) {
|
||||
evalMaxApprox = na;
|
||||
|
@ -43,7 +43,7 @@ NAMESPACE_BEGIN(Grid);
|
||||
template<class Field>
|
||||
class PrecGeneralisedConjugateResidual : public LinearFunction<Field> {
|
||||
public:
|
||||
|
||||
using LinearFunction<Field>::operator();
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
int verbose;
|
||||
|
@ -0,0 +1,242 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/iterative/PrecGeneralisedConjugateResidual.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_PREC_GCR_NON_HERM_H
|
||||
#define GRID_PREC_GCR_NON_HERM_H
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
//VPGCR Abe and Zhang, 2005.
|
||||
//INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING
|
||||
//Computing and Information Volume 2, Number 2, Pages 147-161
|
||||
//NB. Likely not original reference since they are focussing on a preconditioner variant.
|
||||
// but VPGCR was nicely written up in their paper
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#define GCRLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level<<" "
|
||||
|
||||
template<class Field>
|
||||
class PrecGeneralisedConjugateResidualNonHermitian : public LinearFunction<Field> {
|
||||
public:
|
||||
using LinearFunction<Field>::operator();
|
||||
RealD Tolerance;
|
||||
Integer MaxIterations;
|
||||
int verbose;
|
||||
int mmax;
|
||||
int nstep;
|
||||
int steps;
|
||||
int level;
|
||||
GridStopWatch PrecTimer;
|
||||
GridStopWatch MatTimer;
|
||||
GridStopWatch LinalgTimer;
|
||||
|
||||
LinearFunction<Field> &Preconditioner;
|
||||
LinearOperatorBase<Field> &Linop;
|
||||
|
||||
void Level(int lv) { level=lv; };
|
||||
|
||||
PrecGeneralisedConjugateResidualNonHermitian(RealD tol,Integer maxit,LinearOperatorBase<Field> &_Linop,LinearFunction<Field> &Prec,int _mmax,int _nstep) :
|
||||
Tolerance(tol),
|
||||
MaxIterations(maxit),
|
||||
Linop(_Linop),
|
||||
Preconditioner(Prec),
|
||||
mmax(_mmax),
|
||||
nstep(_nstep)
|
||||
{
|
||||
level=1;
|
||||
verbose=1;
|
||||
};
|
||||
|
||||
void operator() (const Field &src, Field &psi){
|
||||
|
||||
psi=Zero();
|
||||
RealD cp, ssq,rsq;
|
||||
ssq=norm2(src);
|
||||
rsq=Tolerance*Tolerance*ssq;
|
||||
|
||||
Field r(src.Grid());
|
||||
|
||||
PrecTimer.Reset();
|
||||
MatTimer.Reset();
|
||||
LinalgTimer.Reset();
|
||||
|
||||
GridStopWatch SolverTimer;
|
||||
SolverTimer.Start();
|
||||
|
||||
steps=0;
|
||||
for(int k=0;k<MaxIterations;k++){
|
||||
|
||||
cp=GCRnStep(src,psi,rsq);
|
||||
|
||||
GCRLogLevel <<"PGCR("<<mmax<<","<<nstep<<") "<< steps <<" steps cp = "<<cp<<" target "<<rsq <<std::endl;
|
||||
|
||||
if(cp<rsq) {
|
||||
|
||||
SolverTimer.Stop();
|
||||
|
||||
Linop.Op(psi,r);
|
||||
axpy(r,-1.0,src,r);
|
||||
RealD tr = norm2(r);
|
||||
GCRLogLevel<<"PGCR: Converged on iteration " <<steps
|
||||
<< " computed residual "<<sqrt(cp/ssq)
|
||||
<< " true residual " <<sqrt(tr/ssq)
|
||||
<< " target " <<Tolerance <<std::endl;
|
||||
|
||||
GCRLogLevel<<"PGCR Time elapsed: Total "<< SolverTimer.Elapsed() <<std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
GCRLogLevel<<"Variable Preconditioned GCR did not converge"<<std::endl;
|
||||
// assert(0);
|
||||
}
|
||||
|
||||
RealD GCRnStep(const Field &src, Field &psi,RealD rsq){
|
||||
|
||||
RealD cp;
|
||||
ComplexD a, b;
|
||||
// ComplexD zAz;
|
||||
RealD zAAz;
|
||||
ComplexD rq;
|
||||
|
||||
GridBase *grid = src.Grid();
|
||||
|
||||
Field r(grid);
|
||||
Field z(grid);
|
||||
Field tmp(grid);
|
||||
Field ttmp(grid);
|
||||
Field Az(grid);
|
||||
|
||||
////////////////////////////////
|
||||
// history for flexible orthog
|
||||
////////////////////////////////
|
||||
std::vector<Field> q(mmax,grid);
|
||||
std::vector<Field> p(mmax,grid);
|
||||
std::vector<RealD> qq(mmax);
|
||||
|
||||
GCRLogLevel<< "PGCR nStep("<<nstep<<")"<<std::endl;
|
||||
|
||||
//////////////////////////////////
|
||||
// initial guess x0 is taken as nonzero.
|
||||
// r0=src-A x0 = src
|
||||
//////////////////////////////////
|
||||
MatTimer.Start();
|
||||
Linop.Op(psi,Az);
|
||||
// zAz = innerProduct(Az,psi);
|
||||
zAAz= norm2(Az);
|
||||
MatTimer.Stop();
|
||||
|
||||
|
||||
LinalgTimer.Start();
|
||||
r=src-Az;
|
||||
LinalgTimer.Stop();
|
||||
GCRLogLevel<< "PGCR true residual r = src - A psi "<<norm2(r) <<std::endl;
|
||||
|
||||
/////////////////////
|
||||
// p = Prec(r)
|
||||
/////////////////////
|
||||
|
||||
PrecTimer.Start();
|
||||
Preconditioner(r,z);
|
||||
PrecTimer.Stop();
|
||||
|
||||
MatTimer.Start();
|
||||
Linop.Op(z,Az);
|
||||
MatTimer.Stop();
|
||||
|
||||
LinalgTimer.Start();
|
||||
|
||||
// zAz = innerProduct(Az,psi);
|
||||
zAAz= norm2(Az);
|
||||
|
||||
//p[0],q[0],qq[0]
|
||||
p[0]= z;
|
||||
q[0]= Az;
|
||||
qq[0]= zAAz;
|
||||
|
||||
cp =norm2(r);
|
||||
LinalgTimer.Stop();
|
||||
|
||||
for(int k=0;k<nstep;k++){
|
||||
|
||||
steps++;
|
||||
|
||||
int kp = k+1;
|
||||
int peri_k = k %mmax;
|
||||
int peri_kp= kp%mmax;
|
||||
|
||||
LinalgTimer.Start();
|
||||
rq= innerProduct(q[peri_k],r); // what if rAr not real?
|
||||
a = rq/qq[peri_k];
|
||||
|
||||
axpy(psi,a,p[peri_k],psi);
|
||||
|
||||
cp = axpy_norm(r,-a,q[peri_k],r);
|
||||
LinalgTimer.Stop();
|
||||
|
||||
GCRLogLevel<< "PGCR step["<<steps<<"] resid " << cp << " target " <<rsq<<std::endl;
|
||||
|
||||
if((k==nstep-1)||(cp<rsq)){
|
||||
return cp;
|
||||
}
|
||||
|
||||
|
||||
PrecTimer.Start();
|
||||
Preconditioner(r,z);// solve Az = r
|
||||
PrecTimer.Stop();
|
||||
|
||||
MatTimer.Start();
|
||||
Linop.Op(z,Az);
|
||||
MatTimer.Stop();
|
||||
// zAz = innerProduct(Az,psi);
|
||||
zAAz= norm2(Az);
|
||||
|
||||
LinalgTimer.Start();
|
||||
|
||||
q[peri_kp]=Az;
|
||||
p[peri_kp]=z;
|
||||
|
||||
int northog = ((kp)>(mmax-1))?(mmax-1):(kp); // if more than mmax done, we orthog all mmax history.
|
||||
for(int back=0;back<northog;back++){
|
||||
|
||||
int peri_back=(k-back)%mmax; assert((k-back)>=0);
|
||||
|
||||
b=-real(innerProduct(q[peri_back],Az))/qq[peri_back];
|
||||
p[peri_kp]=p[peri_kp]+b*p[peri_back];
|
||||
q[peri_kp]=q[peri_kp]+b*q[peri_back];
|
||||
|
||||
}
|
||||
qq[peri_kp]=norm2(q[peri_kp]); // could use axpy_norm
|
||||
LinalgTimer.Stop();
|
||||
}
|
||||
assert(0); // never reached
|
||||
return cp;
|
||||
}
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -132,6 +132,31 @@ namespace Grid {
|
||||
(*this)(_Matrix,in,out,guess);
|
||||
}
|
||||
|
||||
void RedBlackSource(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &src_o)
|
||||
{
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
Field tmp(grid);
|
||||
int nblock = in.size();
|
||||
for(int b=0;b<nblock;b++){
|
||||
RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
|
||||
}
|
||||
}
|
||||
// James can write his own deflated guesser
|
||||
// with optimised code for the inner products
|
||||
// RedBlackSolveSplitGrid();
|
||||
// RedBlackSolve(_Matrix,src_o,sol_o);
|
||||
|
||||
void RedBlackSolution(Matrix &_Matrix, const std::vector<Field> &in, const std::vector<Field> &sol_o, std::vector<Field> &out)
|
||||
{
|
||||
GridBase *grid = _Matrix.RedBlackGrid();
|
||||
Field tmp(grid);
|
||||
int nblock = in.size();
|
||||
for(int b=0;b<nblock;b++) {
|
||||
pickCheckerboard(Even,tmp,in[b]);
|
||||
RedBlackSolution(_Matrix,sol_o[b],tmp,out[b]);
|
||||
}
|
||||
}
|
||||
|
||||
template<class Guesser>
|
||||
void operator()(Matrix &_Matrix, const std::vector<Field> &in, std::vector<Field> &out,Guesser &guess)
|
||||
{
|
||||
@ -150,24 +175,29 @@ namespace Grid {
|
||||
////////////////////////////////////////////////
|
||||
// Prepare RedBlack source
|
||||
////////////////////////////////////////////////
|
||||
for(int b=0;b<nblock;b++){
|
||||
RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
|
||||
}
|
||||
RedBlackSource(_Matrix,in,src_o);
|
||||
// for(int b=0;b<nblock;b++){
|
||||
// RedBlackSource(_Matrix,in[b],tmp,src_o[b]);
|
||||
// }
|
||||
|
||||
////////////////////////////////////////////////
|
||||
// Make the guesses
|
||||
////////////////////////////////////////////////
|
||||
if ( subGuess ) guess_save.resize(nblock,grid);
|
||||
|
||||
for(int b=0;b<nblock;b++){
|
||||
if(useSolnAsInitGuess) {
|
||||
|
||||
if(useSolnAsInitGuess) {
|
||||
for(int b=0;b<nblock;b++){
|
||||
pickCheckerboard(Odd, sol_o[b], out[b]);
|
||||
} else {
|
||||
guess(src_o[b],sol_o[b]);
|
||||
}
|
||||
} else {
|
||||
guess(src_o, sol_o);
|
||||
}
|
||||
|
||||
if ( subGuess ) {
|
||||
guess_save[b] = sol_o[b];
|
||||
}
|
||||
if ( subGuess ) {
|
||||
for(int b=0;b<nblock;b++){
|
||||
guess_save[b] = sol_o[b];
|
||||
}
|
||||
}
|
||||
//////////////////////////////////////////////////////////////
|
||||
// Call the block solver
|
||||
@ -405,6 +435,70 @@ namespace Grid {
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field> class NonHermitianSchurRedBlackDiagMooeeSolve : public SchurRedBlackBase<Field>
|
||||
{
|
||||
public:
|
||||
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
|
||||
|
||||
NonHermitianSchurRedBlackDiagMooeeSolve(OperatorFunction<Field>& RBSolver, const bool initSubGuess = false,
|
||||
const bool _solnAsInitGuess = false)
|
||||
: SchurRedBlackBase<Field>(RBSolver, initSubGuess, _solnAsInitGuess) {};
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Override RedBlack specialisation
|
||||
//////////////////////////////////////////////////////
|
||||
virtual void RedBlackSource(Matrix& _Matrix, const Field& src, Field& src_e, Field& src_o)
|
||||
{
|
||||
GridBase* grid = _Matrix.RedBlackGrid();
|
||||
GridBase* fgrid = _Matrix.Grid();
|
||||
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
|
||||
pickCheckerboard(Even, src_e, src);
|
||||
pickCheckerboard(Odd , src_o, src);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e, tmp); assert( tmp.Checkerboard() == Even );
|
||||
_Matrix.Meooe (tmp, Mtmp); assert( Mtmp.Checkerboard() == Odd );
|
||||
src_o -= Mtmp; assert( src_o.Checkerboard() == Odd );
|
||||
}
|
||||
|
||||
virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
|
||||
{
|
||||
GridBase* grid = _Matrix.RedBlackGrid();
|
||||
GridBase* fgrid = _Matrix.Grid();
|
||||
|
||||
Field tmp(grid);
|
||||
Field sol_e(grid);
|
||||
Field src_e_i(grid);
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o, tmp); assert( tmp.Checkerboard() == Even );
|
||||
src_e_i = src_e - tmp; assert( src_e_i.Checkerboard() == Even );
|
||||
_Matrix.MooeeInv(src_e_i, sol_e); assert( sol_e.Checkerboard() == Even );
|
||||
|
||||
setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even );
|
||||
setCheckerboard(sol, sol_o); assert( sol_o.Checkerboard() == Odd );
|
||||
}
|
||||
|
||||
virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
|
||||
{
|
||||
NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_OpEO, src_o, sol_o); assert(sol_o.Checkerboard() == Odd);
|
||||
}
|
||||
|
||||
virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o)
|
||||
{
|
||||
NonHermitianSchurDiagMooeeOperator<Matrix,Field> _OpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_OpEO, src_o, sol_o);
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Site diagonal is identity, right preconditioned by Mee^inv
|
||||
// ( 1 - Meo Moo^inv Moe Mee^inv ) phi =( 1 - Meo Moo^inv Moe Mee^inv ) Mee psi = = eta = eta
|
||||
@ -482,5 +576,76 @@ namespace Grid {
|
||||
this->_HermitianRBSolver(_HermOpEO,src_o,sol_o);
|
||||
}
|
||||
};
|
||||
|
||||
template<class Field> class NonHermitianSchurRedBlackDiagTwoSolve : public SchurRedBlackBase<Field>
|
||||
{
|
||||
public:
|
||||
typedef CheckerBoardedSparseMatrixBase<Field> Matrix;
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// Wrap the usual normal equations Schur trick
|
||||
/////////////////////////////////////////////////////
|
||||
NonHermitianSchurRedBlackDiagTwoSolve(OperatorFunction<Field>& RBSolver, const bool initSubGuess = false,
|
||||
const bool _solnAsInitGuess = false)
|
||||
: SchurRedBlackBase<Field>(RBSolver, initSubGuess, _solnAsInitGuess) {};
|
||||
|
||||
virtual void RedBlackSource(Matrix& _Matrix, const Field& src, Field& src_e, Field& src_o)
|
||||
{
|
||||
GridBase* grid = _Matrix.RedBlackGrid();
|
||||
GridBase* fgrid = _Matrix.Grid();
|
||||
|
||||
Field tmp(grid);
|
||||
Field Mtmp(grid);
|
||||
|
||||
pickCheckerboard(Even, src_e, src);
|
||||
pickCheckerboard(Odd , src_o, src);
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
// src_o = Mdag * (source_o - Moe MeeInv source_e)
|
||||
/////////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(src_e, tmp); assert( tmp.Checkerboard() == Even );
|
||||
_Matrix.Meooe (tmp, Mtmp); assert( Mtmp.Checkerboard() == Odd );
|
||||
src_o -= Mtmp; assert( src_o.Checkerboard() == Odd );
|
||||
}
|
||||
|
||||
virtual void RedBlackSolution(Matrix& _Matrix, const Field& sol_o, const Field& src_e, Field& sol)
|
||||
{
|
||||
GridBase* grid = _Matrix.RedBlackGrid();
|
||||
GridBase* fgrid = _Matrix.Grid();
|
||||
|
||||
Field sol_o_i(grid);
|
||||
Field tmp(grid);
|
||||
Field sol_e(grid);
|
||||
|
||||
////////////////////////////////////////////////
|
||||
// MooeeInv due to pecond
|
||||
////////////////////////////////////////////////
|
||||
_Matrix.MooeeInv(sol_o, tmp);
|
||||
sol_o_i = tmp;
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// sol_e = M_ee^-1 * ( src_e - Meo sol_o )...
|
||||
///////////////////////////////////////////////////
|
||||
_Matrix.Meooe(sol_o_i, tmp); assert( tmp.Checkerboard() == Even );
|
||||
tmp = src_e - tmp; assert( src_e.Checkerboard() == Even );
|
||||
_Matrix.MooeeInv(tmp, sol_e); assert( sol_e.Checkerboard() == Even );
|
||||
|
||||
setCheckerboard(sol, sol_e); assert( sol_e.Checkerboard() == Even );
|
||||
setCheckerboard(sol, sol_o_i); assert( sol_o_i.Checkerboard() == Odd );
|
||||
};
|
||||
|
||||
virtual void RedBlackSolve(Matrix& _Matrix, const Field& src_o, Field& sol_o)
|
||||
{
|
||||
NonHermitianSchurDiagTwoOperator<Matrix,Field> _OpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_OpEO, src_o, sol_o);
|
||||
};
|
||||
|
||||
virtual void RedBlackSolve(Matrix& _Matrix, const std::vector<Field>& src_o, std::vector<Field>& sol_o)
|
||||
{
|
||||
NonHermitianSchurDiagTwoOperator<Matrix,Field> _OpEO(_Matrix);
|
||||
this->_HermitianRBSolver(_OpEO, src_o, sol_o);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
#endif
|
||||
|
478
Grid/algorithms/multigrid/Aggregates.h
Normal file
478
Grid/algorithms/multigrid/Aggregates.h
Normal file
@ -0,0 +1,478 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/Aggregates.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
inline RealD AggregatePowerLaw(RealD x)
|
||||
{
|
||||
// return std::pow(x,-4);
|
||||
// return std::pow(x,-3);
|
||||
return std::pow(x,-5);
|
||||
}
|
||||
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class Aggregation {
|
||||
public:
|
||||
constexpr int Nbasis(void) { return nbasis; };
|
||||
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef Lattice<siteVector> CoarseVector;
|
||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
|
||||
GridBase *CoarseGrid;
|
||||
GridBase *FineGrid;
|
||||
std::vector<Lattice<Fobj> > subspace;
|
||||
int checkerboard;
|
||||
int Checkerboard(void){return checkerboard;}
|
||||
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
|
||||
CoarseGrid(_CoarseGrid),
|
||||
FineGrid(_FineGrid),
|
||||
subspace(nbasis,_FineGrid),
|
||||
checkerboard(_checkerboard)
|
||||
{
|
||||
};
|
||||
|
||||
|
||||
void Orthogonalise(void){
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
// std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
|
||||
blockOrthogonalise(InnerProd,subspace);
|
||||
}
|
||||
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
|
||||
blockProject(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
|
||||
FineVec.Checkerboard() = subspace[0].Checkerboard();
|
||||
blockPromote(CoarseVec,FineVec,subspace);
|
||||
}
|
||||
|
||||
virtual void CreateSubspaceRandom(GridParallelRNG &RNG) {
|
||||
int nn=nbasis;
|
||||
RealD scale;
|
||||
FineField noise(FineGrid);
|
||||
for(int b=0;b<nn;b++){
|
||||
subspace[b] = Zero();
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
subspace[b] = noise;
|
||||
}
|
||||
}
|
||||
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis)
|
||||
{
|
||||
|
||||
RealD scale;
|
||||
|
||||
ConjugateGradient<FineField> CG(1.0e-2,100,false);
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
|
||||
for(int b=0;b<nn;b++){
|
||||
|
||||
subspace[b] = Zero();
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
for(int i=0;i<1;i++){
|
||||
|
||||
CG(hermop,noise,subspace[b]);
|
||||
|
||||
noise = subspace[b];
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
}
|
||||
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
|
||||
subspace[b] = noise;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
|
||||
// and this is the best I found
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
double lo,
|
||||
int orderfilter,
|
||||
int ordermin,
|
||||
int orderstep,
|
||||
double filterlo
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pass-1 : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pass-2 : nbasis"<<nn<<" min "
|
||||
<<ordermin<<" step "<<orderstep
|
||||
<<" lo"<<filterlo<<std::endl;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
int b =0;
|
||||
{
|
||||
// Filter
|
||||
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
||||
Cheb(hermop,noise,Mn);
|
||||
// normalise
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
b++;
|
||||
}
|
||||
|
||||
// Generate a full sequence of Chebyshevs
|
||||
{
|
||||
lo=filterlo;
|
||||
noise=Mn;
|
||||
|
||||
FineField T0(FineGrid); T0 = noise;
|
||||
FineField T1(FineGrid);
|
||||
FineField T2(FineGrid);
|
||||
FineField y(FineGrid);
|
||||
|
||||
FineField *Tnm = &T0;
|
||||
FineField *Tn = &T1;
|
||||
FineField *Tnp = &T2;
|
||||
|
||||
// Tn=T1 = (xscale M + mscale)in
|
||||
RealD xscale = 2.0/(hi-lo);
|
||||
RealD mscale = -(hi+lo)/(hi-lo);
|
||||
hermop.HermOp(T0,y);
|
||||
T1=y*xscale+noise*mscale;
|
||||
|
||||
for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
|
||||
|
||||
hermop.HermOp(*Tn,y);
|
||||
|
||||
autoView( y_v , y, AcceleratorWrite);
|
||||
autoView( Tn_v , (*Tn), AcceleratorWrite);
|
||||
autoView( Tnp_v , (*Tnp), AcceleratorWrite);
|
||||
autoView( Tnm_v , (*Tnm), AcceleratorWrite);
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
accelerator_for(ss, FineGrid->oSites(), Nsimd, {
|
||||
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
|
||||
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
|
||||
});
|
||||
|
||||
// Possible more fine grained control is needed than a linear sweep,
|
||||
// but huge productivity gain if this is simple algorithm and not a tunable
|
||||
int m =1;
|
||||
if ( n>=ordermin ) m=n-ordermin;
|
||||
if ( (m%orderstep)==0 ) {
|
||||
Mn=*Tnp;
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
b++;
|
||||
}
|
||||
|
||||
// Cycle pointers to avoid copies
|
||||
FineField *swizzle = Tnm;
|
||||
Tnm =Tn;
|
||||
Tn =Tnp;
|
||||
Tnp =swizzle;
|
||||
|
||||
}
|
||||
}
|
||||
assert(b==nn);
|
||||
}
|
||||
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
double lo,
|
||||
int orderfilter
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" ["<<lo<<","<<hi<<"]"<<std::endl;
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : nbasis "<<nn<<std::endl;
|
||||
|
||||
|
||||
for(int b =0;b<nbasis;b++)
|
||||
{
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn);
|
||||
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
// Filter
|
||||
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
|
||||
Cheb(hermop,noise,Mn);
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
|
||||
// Refine
|
||||
Chebyshev<FineField> PowerLaw(lo,hi,1000,AggregatePowerLaw);
|
||||
noise = Mn;
|
||||
PowerLaw(hermop,noise,Mn);
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
|
||||
// normalise
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
virtual void CreateSubspaceChebyshevPowerLaw(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
int nn,
|
||||
double hi,
|
||||
int orderfilter
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : ord "<<orderfilter<<" [0,"<<hi<<"]"<<std::endl;
|
||||
std::cout << GridLogMessage<<" Chebyshev subspace pure noise : nbasis "<<nn<<std::endl;
|
||||
|
||||
for(int b =0;b<nbasis;b++)
|
||||
{
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn);
|
||||
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
// Filter
|
||||
Chebyshev<FineField> Cheb(0.0,hi,orderfilter,AggregatePowerLaw);
|
||||
Cheb(hermop,noise,Mn);
|
||||
// normalise
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
virtual void CreateSubspaceChebyshevNew(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
double hi
|
||||
) {
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
for(int b =0;b<nbasis;b++)
|
||||
{
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn);
|
||||
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
// Filter
|
||||
//#opt2(x) = acheb(x,3,90,300)* acheb(x,1,90,50) * acheb(x,0.5,90,200) * acheb(x,0.05,90,400) * acheb(x,0.01,90,1500)
|
||||
/*266
|
||||
Chebyshev<FineField> Cheb1(3.0,hi,300);
|
||||
Chebyshev<FineField> Cheb2(1.0,hi,50);
|
||||
Chebyshev<FineField> Cheb3(0.5,hi,300);
|
||||
Chebyshev<FineField> Cheb4(0.05,hi,500);
|
||||
Chebyshev<FineField> Cheb5(0.01,hi,2000);
|
||||
*/
|
||||
/* 242 */
|
||||
/*
|
||||
Chebyshev<FineField> Cheb3(0.1,hi,300);
|
||||
Chebyshev<FineField> Cheb2(0.02,hi,1000);
|
||||
Chebyshev<FineField> Cheb1(0.003,hi,2000);
|
||||
8?
|
||||
*/
|
||||
/* How many??
|
||||
*/
|
||||
Chebyshev<FineField> Cheb2(0.001,hi,2500); // 169 iters on HDCG after refine
|
||||
Chebyshev<FineField> Cheb1(0.02,hi,600);
|
||||
|
||||
// Chebyshev<FineField> Cheb2(0.001,hi,1500);
|
||||
// Chebyshev<FineField> Cheb1(0.02,hi,600);
|
||||
Cheb1(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
||||
hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb1 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
Cheb2(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
||||
hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb2 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
// Cheb3(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
||||
// hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb3 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
// Cheb4(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
||||
// hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb4 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
// Cheb5(hermop,noise,Mn); scale = std::pow(norm2(Mn),-0.5); noise=Mn*scale;
|
||||
// hermop.Op(noise,tmp); std::cout<<GridLogMessage << "Cheb5 <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
subspace[b] = noise;
|
||||
hermop.Op(subspace[b],tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<< " norm " << norm2(noise)<<std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
virtual void CreateSubspaceMultishift(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
|
||||
double Lo,double tol,int maxit)
|
||||
{
|
||||
|
||||
RealD scale;
|
||||
|
||||
FineField noise(FineGrid);
|
||||
FineField Mn(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
|
||||
// New normalised noise
|
||||
std::cout << GridLogMessage<<" Multishift subspace : Lo "<<Lo<<std::endl;
|
||||
|
||||
// Filter
|
||||
// [ 1/6(x+Lo) - 1/2(x+2Lo) + 1/2(x+3Lo) -1/6(x+4Lo) = Lo^3 /[ (x+1Lo)(x+2Lo)(x+3Lo)(x+4Lo) ]
|
||||
//
|
||||
// 1/(x+Lo) - 1/(x+2 Lo)
|
||||
double epsilon = Lo/3;
|
||||
std::vector<RealD> alpha({1.0/6.0,-1.0/2.0,1.0/2.0,-1.0/6.0});
|
||||
std::vector<RealD> shifts({Lo,Lo+epsilon,Lo+2*epsilon,Lo+3*epsilon});
|
||||
std::vector<RealD> tols({tol,tol,tol,tol});
|
||||
std::cout << "sizes "<<alpha.size()<<" "<<shifts.size()<<" "<<tols.size()<<std::endl;
|
||||
|
||||
MultiShiftFunction msf(4,0.0,95.0);
|
||||
std::cout << "msf constructed "<<std::endl;
|
||||
msf.poles=shifts;
|
||||
msf.residues=alpha;
|
||||
msf.tolerances=tols;
|
||||
msf.norm=0.0;
|
||||
msf.order=alpha.size();
|
||||
ConjugateGradientMultiShift<FineField> MSCG(maxit,msf);
|
||||
|
||||
for(int b =0;b<nbasis;b++)
|
||||
{
|
||||
gaussian(RNG,noise);
|
||||
scale = std::pow(norm2(noise),-0.5);
|
||||
noise=noise*scale;
|
||||
|
||||
// Initial matrix element
|
||||
hermop.Op(noise,Mn);
|
||||
if(b==0) std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
|
||||
|
||||
MSCG(hermop,noise,Mn);
|
||||
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
|
||||
subspace[b] = Mn;
|
||||
hermop.Op(Mn,tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
virtual void RefineSubspace(LinearOperatorBase<FineField> &hermop,
|
||||
double Lo,double tol,int maxit)
|
||||
{
|
||||
FineField tmp(FineGrid);
|
||||
for(int b =0;b<nbasis;b++)
|
||||
{
|
||||
ConjugateGradient<FineField> CGsloppy(tol,maxit,false);
|
||||
ShiftedHermOpLinearOperator<FineField> ShiftedFineHermOp(hermop,Lo);
|
||||
tmp=Zero();
|
||||
CGsloppy(hermop,subspace[b],tmp);
|
||||
RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
|
||||
subspace[b]=tmp;
|
||||
hermop.Op(subspace[b],tmp);
|
||||
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
}
|
||||
}
|
||||
virtual void RefineSubspaceHDCG(LinearOperatorBase<FineField> &hermop,
|
||||
TwoLevelADEF2mrhs<FineField,CoarseVector> & theHDCG,
|
||||
int nrhs)
|
||||
{
|
||||
std::vector<FineField> src_mrhs(nrhs,FineGrid);
|
||||
std::vector<FineField> res_mrhs(nrhs,FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
for(int b =0;b<nbasis;b+=nrhs)
|
||||
{
|
||||
tmp = subspace[b];
|
||||
RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
|
||||
subspace[b] =tmp;
|
||||
hermop.Op(subspace[b],tmp);
|
||||
std::cout<<GridLogMessage << "before filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
|
||||
for(int r=0;r<MIN(nbasis-b,nrhs);r++){
|
||||
src_mrhs[r] = subspace[b+r];
|
||||
}
|
||||
for(int r=0;r<nrhs;r++){
|
||||
res_mrhs[r] = Zero();
|
||||
}
|
||||
theHDCG(src_mrhs,res_mrhs);
|
||||
|
||||
for(int r=0;r<MIN(nbasis-b,nrhs);r++){
|
||||
tmp = res_mrhs[r];
|
||||
RealD scale = std::pow(norm2(tmp),-0.5); tmp=tmp*scale;
|
||||
subspace[b+r]=tmp;
|
||||
}
|
||||
hermop.Op(subspace[b],tmp);
|
||||
std::cout<<GridLogMessage << "after filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
};
|
||||
NAMESPACE_END(Grid);
|
||||
|
814
Grid/algorithms/multigrid/CoarsenedMatrix.h
Normal file
814
Grid/algorithms/multigrid/CoarsenedMatrix.h
Normal file
@ -0,0 +1,814 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/CoarsenedMatrix.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_ALGORITHM_COARSENED_MATRIX_H
|
||||
#define GRID_ALGORITHM_COARSENED_MATRIX_H
|
||||
|
||||
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class vobj,class CComplex>
|
||||
inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
|
||||
const Lattice<decltype(innerProduct(vobj(),vobj()))> &FineMask,
|
||||
const Lattice<vobj> &fineX,
|
||||
const Lattice<vobj> &fineY)
|
||||
{
|
||||
typedef decltype(innerProduct(vobj(),vobj())) dotp;
|
||||
|
||||
GridBase *coarse(CoarseInner.Grid());
|
||||
GridBase *fine (fineX.Grid());
|
||||
|
||||
Lattice<dotp> fine_inner(fine); fine_inner.Checkerboard() = fineX.Checkerboard();
|
||||
Lattice<dotp> fine_inner_msk(fine);
|
||||
|
||||
// Multiply could be fused with innerProduct
|
||||
// Single block sum kernel could do both masks.
|
||||
fine_inner = localInnerProduct(fineX,fineY);
|
||||
mult(fine_inner_msk, fine_inner,FineMask);
|
||||
blockSum(CoarseInner,fine_inner_msk);
|
||||
}
|
||||
|
||||
// Fine Object == (per site) type of fine field
|
||||
// nbasis == number of deflation vectors
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class CoarsenedMatrix : public CheckerBoardedSparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
|
||||
public:
|
||||
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef Lattice<CComplex > CoarseComplexField;
|
||||
typedef Lattice<siteVector> CoarseVector;
|
||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||
typedef iMatrix<CComplex,nbasis > Cobj;
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
typedef CoarseVector FermionField;
|
||||
|
||||
// enrich interface, use default implementation as in FermionOperator ///////
|
||||
void Dminus(CoarseVector const& in, CoarseVector& out) { out = in; }
|
||||
void DminusDag(CoarseVector const& in, CoarseVector& out) { out = in; }
|
||||
void ImportPhysicalFermionSource(CoarseVector const& input, CoarseVector& imported) { imported = input; }
|
||||
void ImportUnphysicalFermion(CoarseVector const& input, CoarseVector& imported) { imported = input; }
|
||||
void ExportPhysicalFermionSolution(CoarseVector const& solution, CoarseVector& exported) { exported = solution; };
|
||||
void ExportPhysicalFermionSource(CoarseVector const& solution, CoarseVector& exported) { exported = solution; };
|
||||
|
||||
////////////////////
|
||||
// Data members
|
||||
////////////////////
|
||||
Geometry geom;
|
||||
GridBase * _grid;
|
||||
GridBase* _cbgrid;
|
||||
int hermitian;
|
||||
|
||||
CartesianStencil<siteVector,siteVector,DefaultImplParams> Stencil;
|
||||
CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilEven;
|
||||
CartesianStencil<siteVector,siteVector,DefaultImplParams> StencilOdd;
|
||||
|
||||
std::vector<CoarseMatrix> A;
|
||||
std::vector<CoarseMatrix> Aeven;
|
||||
std::vector<CoarseMatrix> Aodd;
|
||||
|
||||
CoarseMatrix AselfInv;
|
||||
CoarseMatrix AselfInvEven;
|
||||
CoarseMatrix AselfInvOdd;
|
||||
|
||||
Vector<RealD> dag_factor;
|
||||
|
||||
///////////////////////
|
||||
// Interface
|
||||
///////////////////////
|
||||
GridBase * Grid(void) { return _grid; }; // this is all the linalg routines need to know
|
||||
GridBase * RedBlackGrid() { return _cbgrid; };
|
||||
|
||||
int ConstEE() { return 0; }
|
||||
|
||||
void M (const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
conformable(_grid,in.Grid());
|
||||
conformable(in.Grid(),out.Grid());
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
|
||||
SimpleCompressor<siteVector> compressor;
|
||||
|
||||
Stencil.HaloExchange(in,compressor);
|
||||
autoView( in_v , in, AcceleratorRead);
|
||||
autoView( out_v , out, AcceleratorWrite);
|
||||
autoView( Stencil_v , Stencil, AcceleratorRead);
|
||||
int npoint = geom.npoint;
|
||||
typedef LatticeView<Cobj> Aview;
|
||||
|
||||
Vector<Aview> AcceleratorViewContainer;
|
||||
|
||||
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
|
||||
Aview *Aview_p = & AcceleratorViewContainer[0];
|
||||
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
typedef decltype(coalescedRead(in_v[0])) calcVector;
|
||||
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
|
||||
|
||||
int osites=Grid()->oSites();
|
||||
|
||||
accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
|
||||
int ss = sss/nbasis;
|
||||
int b = sss%nbasis;
|
||||
calcComplex res = Zero();
|
||||
calcVector nbr;
|
||||
int ptype;
|
||||
StencilEntry *SE;
|
||||
|
||||
for(int point=0;point<npoint;point++){
|
||||
|
||||
SE=Stencil_v.GetEntry(ptype,point,ss);
|
||||
|
||||
if(SE->_is_local) {
|
||||
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
|
||||
} else {
|
||||
nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]);
|
||||
}
|
||||
acceleratorSynchronise();
|
||||
|
||||
for(int bb=0;bb<nbasis;bb++) {
|
||||
res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
|
||||
}
|
||||
}
|
||||
coalescedWrite(out_v[ss](b),res);
|
||||
});
|
||||
|
||||
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
|
||||
};
|
||||
|
||||
void Mdag (const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
if(hermitian) {
|
||||
// corresponds to Petrov-Galerkin coarsening
|
||||
return M(in,out);
|
||||
} else {
|
||||
// corresponds to Galerkin coarsening
|
||||
return MdagNonHermitian(in, out);
|
||||
}
|
||||
};
|
||||
|
||||
void MdagNonHermitian(const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
conformable(_grid,in.Grid());
|
||||
conformable(in.Grid(),out.Grid());
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
|
||||
SimpleCompressor<siteVector> compressor;
|
||||
|
||||
Stencil.HaloExchange(in,compressor);
|
||||
autoView( in_v , in, AcceleratorRead);
|
||||
autoView( out_v , out, AcceleratorWrite);
|
||||
autoView( Stencil_v , Stencil, AcceleratorRead);
|
||||
int npoint = geom.npoint;
|
||||
typedef LatticeView<Cobj> Aview;
|
||||
|
||||
Vector<Aview> AcceleratorViewContainer;
|
||||
|
||||
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
|
||||
Aview *Aview_p = & AcceleratorViewContainer[0];
|
||||
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
typedef decltype(coalescedRead(in_v[0])) calcVector;
|
||||
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
|
||||
|
||||
int osites=Grid()->oSites();
|
||||
|
||||
Vector<int> points(geom.npoint, 0);
|
||||
for(int p=0; p<geom.npoint; p++)
|
||||
points[p] = geom.points_dagger[p];
|
||||
|
||||
auto points_p = &points[0];
|
||||
|
||||
RealD* dag_factor_p = &dag_factor[0];
|
||||
|
||||
accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
|
||||
int ss = sss/nbasis;
|
||||
int b = sss%nbasis;
|
||||
calcComplex res = Zero();
|
||||
calcVector nbr;
|
||||
int ptype;
|
||||
StencilEntry *SE;
|
||||
|
||||
for(int p=0;p<npoint;p++){
|
||||
int point = points_p[p];
|
||||
|
||||
SE=Stencil_v.GetEntry(ptype,point,ss);
|
||||
|
||||
if(SE->_is_local) {
|
||||
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
|
||||
} else {
|
||||
nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]);
|
||||
}
|
||||
acceleratorSynchronise();
|
||||
|
||||
for(int bb=0;bb<nbasis;bb++) {
|
||||
res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
|
||||
}
|
||||
}
|
||||
coalescedWrite(out_v[ss](b),res);
|
||||
});
|
||||
|
||||
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
|
||||
}
|
||||
|
||||
void MdirComms(const CoarseVector &in)
|
||||
{
|
||||
SimpleCompressor<siteVector> compressor;
|
||||
Stencil.HaloExchange(in,compressor);
|
||||
}
|
||||
void MdirCalc(const CoarseVector &in, CoarseVector &out, int point)
|
||||
{
|
||||
conformable(_grid,in.Grid());
|
||||
conformable(_grid,out.Grid());
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
|
||||
typedef LatticeView<Cobj> Aview;
|
||||
Vector<Aview> AcceleratorViewContainer;
|
||||
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
|
||||
Aview *Aview_p = & AcceleratorViewContainer[0];
|
||||
|
||||
autoView( out_v , out, AcceleratorWrite);
|
||||
autoView( in_v , in, AcceleratorRead);
|
||||
autoView( Stencil_v , Stencil, AcceleratorRead);
|
||||
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
typedef decltype(coalescedRead(in_v[0])) calcVector;
|
||||
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
|
||||
|
||||
accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
|
||||
int ss = sss/nbasis;
|
||||
int b = sss%nbasis;
|
||||
calcComplex res = Zero();
|
||||
calcVector nbr;
|
||||
int ptype;
|
||||
StencilEntry *SE;
|
||||
|
||||
SE=Stencil_v.GetEntry(ptype,point,ss);
|
||||
|
||||
if(SE->_is_local) {
|
||||
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
|
||||
} else {
|
||||
nbr = coalescedRead(Stencil_v.CommBuf()[SE->_offset]);
|
||||
}
|
||||
acceleratorSynchronise();
|
||||
|
||||
for(int bb=0;bb<nbasis;bb++) {
|
||||
res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
|
||||
}
|
||||
coalescedWrite(out_v[ss](b),res);
|
||||
});
|
||||
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
|
||||
}
|
||||
void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
|
||||
{
|
||||
this->MdirComms(in);
|
||||
int ndir=geom.npoint-1;
|
||||
if ((out.size()!=ndir)&&(out.size()!=ndir+1)) {
|
||||
std::cout <<"MdirAll out size "<< out.size()<<std::endl;
|
||||
std::cout <<"MdirAll ndir "<< ndir<<std::endl;
|
||||
assert(0);
|
||||
}
|
||||
for(int p=0;p<ndir;p++){
|
||||
MdirCalc(in,out[p],p);
|
||||
}
|
||||
};
|
||||
void Mdir(const CoarseVector &in, CoarseVector &out, int dir, int disp){
|
||||
|
||||
this->MdirComms(in);
|
||||
|
||||
MdirCalc(in,out,geom.point(dir,disp));
|
||||
};
|
||||
|
||||
void Mdiag(const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
int point=geom.npoint-1;
|
||||
MdirCalc(in, out, point); // No comms
|
||||
};
|
||||
|
||||
void Mooee(const CoarseVector &in, CoarseVector &out) {
|
||||
MooeeInternal(in, out, DaggerNo, InverseNo);
|
||||
}
|
||||
|
||||
void MooeeInv(const CoarseVector &in, CoarseVector &out) {
|
||||
MooeeInternal(in, out, DaggerNo, InverseYes);
|
||||
}
|
||||
|
||||
void MooeeDag(const CoarseVector &in, CoarseVector &out) {
|
||||
MooeeInternal(in, out, DaggerYes, InverseNo);
|
||||
}
|
||||
|
||||
void MooeeInvDag(const CoarseVector &in, CoarseVector &out) {
|
||||
MooeeInternal(in, out, DaggerYes, InverseYes);
|
||||
}
|
||||
|
||||
void Meooe(const CoarseVector &in, CoarseVector &out) {
|
||||
if(in.Checkerboard() == Odd) {
|
||||
DhopEO(in, out, DaggerNo);
|
||||
} else {
|
||||
DhopOE(in, out, DaggerNo);
|
||||
}
|
||||
}
|
||||
|
||||
void MeooeDag(const CoarseVector &in, CoarseVector &out) {
|
||||
if(in.Checkerboard() == Odd) {
|
||||
DhopEO(in, out, DaggerYes);
|
||||
} else {
|
||||
DhopOE(in, out, DaggerYes);
|
||||
}
|
||||
}
|
||||
|
||||
void Dhop(const CoarseVector &in, CoarseVector &out, int dag) {
|
||||
conformable(in.Grid(), _grid); // verifies full grid
|
||||
conformable(in.Grid(), out.Grid());
|
||||
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
|
||||
DhopInternal(Stencil, A, in, out, dag);
|
||||
}
|
||||
|
||||
void DhopOE(const CoarseVector &in, CoarseVector &out, int dag) {
|
||||
conformable(in.Grid(), _cbgrid); // verifies half grid
|
||||
conformable(in.Grid(), out.Grid()); // drops the cb check
|
||||
|
||||
assert(in.Checkerboard() == Even);
|
||||
out.Checkerboard() = Odd;
|
||||
|
||||
DhopInternal(StencilEven, Aodd, in, out, dag);
|
||||
}
|
||||
|
||||
void DhopEO(const CoarseVector &in, CoarseVector &out, int dag) {
|
||||
conformable(in.Grid(), _cbgrid); // verifies half grid
|
||||
conformable(in.Grid(), out.Grid()); // drops the cb check
|
||||
|
||||
assert(in.Checkerboard() == Odd);
|
||||
out.Checkerboard() = Even;
|
||||
|
||||
DhopInternal(StencilOdd, Aeven, in, out, dag);
|
||||
}
|
||||
|
||||
void MooeeInternal(const CoarseVector &in, CoarseVector &out, int dag, int inv) {
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
assert(in.Checkerboard() == Odd || in.Checkerboard() == Even);
|
||||
|
||||
CoarseMatrix *Aself = nullptr;
|
||||
if(in.Grid()->_isCheckerBoarded) {
|
||||
if(in.Checkerboard() == Odd) {
|
||||
Aself = (inv) ? &AselfInvOdd : &Aodd[geom.npoint-1];
|
||||
DselfInternal(StencilOdd, *Aself, in, out, dag);
|
||||
} else {
|
||||
Aself = (inv) ? &AselfInvEven : &Aeven[geom.npoint-1];
|
||||
DselfInternal(StencilEven, *Aself, in, out, dag);
|
||||
}
|
||||
} else {
|
||||
Aself = (inv) ? &AselfInv : &A[geom.npoint-1];
|
||||
DselfInternal(Stencil, *Aself, in, out, dag);
|
||||
}
|
||||
assert(Aself != nullptr);
|
||||
}
|
||||
|
||||
void DselfInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, CoarseMatrix &a,
|
||||
const CoarseVector &in, CoarseVector &out, int dag) {
|
||||
int point = geom.npoint-1;
|
||||
autoView( out_v, out, AcceleratorWrite);
|
||||
autoView( in_v, in, AcceleratorRead);
|
||||
autoView( st_v, st, AcceleratorRead);
|
||||
autoView( a_v, a, AcceleratorRead);
|
||||
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
typedef decltype(coalescedRead(in_v[0])) calcVector;
|
||||
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
|
||||
|
||||
RealD* dag_factor_p = &dag_factor[0];
|
||||
|
||||
if(dag) {
|
||||
accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
|
||||
int ss = sss/nbasis;
|
||||
int b = sss%nbasis;
|
||||
calcComplex res = Zero();
|
||||
calcVector nbr;
|
||||
int ptype;
|
||||
StencilEntry *SE;
|
||||
|
||||
SE=st_v.GetEntry(ptype,point,ss);
|
||||
|
||||
if(SE->_is_local) {
|
||||
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
|
||||
} else {
|
||||
nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
|
||||
}
|
||||
acceleratorSynchronise();
|
||||
|
||||
for(int bb=0;bb<nbasis;bb++) {
|
||||
res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(a_v[ss](b,bb))*nbr(bb);
|
||||
}
|
||||
coalescedWrite(out_v[ss](b),res);
|
||||
});
|
||||
} else {
|
||||
accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
|
||||
int ss = sss/nbasis;
|
||||
int b = sss%nbasis;
|
||||
calcComplex res = Zero();
|
||||
calcVector nbr;
|
||||
int ptype;
|
||||
StencilEntry *SE;
|
||||
|
||||
SE=st_v.GetEntry(ptype,point,ss);
|
||||
|
||||
if(SE->_is_local) {
|
||||
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
|
||||
} else {
|
||||
nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
|
||||
}
|
||||
acceleratorSynchronise();
|
||||
|
||||
for(int bb=0;bb<nbasis;bb++) {
|
||||
res = res + coalescedRead(a_v[ss](b,bb))*nbr(bb);
|
||||
}
|
||||
coalescedWrite(out_v[ss](b),res);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
void DhopInternal(CartesianStencil<siteVector,siteVector,DefaultImplParams> &st, std::vector<CoarseMatrix> &a,
|
||||
const CoarseVector &in, CoarseVector &out, int dag) {
|
||||
SimpleCompressor<siteVector> compressor;
|
||||
|
||||
st.HaloExchange(in,compressor);
|
||||
autoView( in_v, in, AcceleratorRead);
|
||||
autoView( out_v, out, AcceleratorWrite);
|
||||
autoView( st_v , st, AcceleratorRead);
|
||||
typedef LatticeView<Cobj> Aview;
|
||||
|
||||
// determine in what order we need the points
|
||||
int npoint = geom.npoint-1;
|
||||
Vector<int> points(npoint, 0);
|
||||
for(int p=0; p<npoint; p++)
|
||||
points[p] = (dag && !hermitian) ? geom.points_dagger[p] : p;
|
||||
|
||||
auto points_p = &points[0];
|
||||
|
||||
Vector<Aview> AcceleratorViewContainer;
|
||||
for(int p=0;p<npoint;p++) AcceleratorViewContainer.push_back(a[p].View(AcceleratorRead));
|
||||
Aview *Aview_p = & AcceleratorViewContainer[0];
|
||||
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
typedef decltype(coalescedRead(in_v[0])) calcVector;
|
||||
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
|
||||
|
||||
RealD* dag_factor_p = &dag_factor[0];
|
||||
|
||||
if(dag) {
|
||||
accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
|
||||
int ss = sss/nbasis;
|
||||
int b = sss%nbasis;
|
||||
calcComplex res = Zero();
|
||||
calcVector nbr;
|
||||
int ptype;
|
||||
StencilEntry *SE;
|
||||
|
||||
for(int p=0;p<npoint;p++){
|
||||
int point = points_p[p];
|
||||
SE=st_v.GetEntry(ptype,point,ss);
|
||||
|
||||
if(SE->_is_local) {
|
||||
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
|
||||
} else {
|
||||
nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
|
||||
}
|
||||
acceleratorSynchronise();
|
||||
|
||||
for(int bb=0;bb<nbasis;bb++) {
|
||||
res = res + dag_factor_p[b*nbasis+bb]*coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
|
||||
}
|
||||
}
|
||||
coalescedWrite(out_v[ss](b),res);
|
||||
});
|
||||
} else {
|
||||
accelerator_for(sss, in.Grid()->oSites()*nbasis, Nsimd, {
|
||||
int ss = sss/nbasis;
|
||||
int b = sss%nbasis;
|
||||
calcComplex res = Zero();
|
||||
calcVector nbr;
|
||||
int ptype;
|
||||
StencilEntry *SE;
|
||||
|
||||
for(int p=0;p<npoint;p++){
|
||||
int point = points_p[p];
|
||||
SE=st_v.GetEntry(ptype,point,ss);
|
||||
|
||||
if(SE->_is_local) {
|
||||
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
|
||||
} else {
|
||||
nbr = coalescedRead(st_v.CommBuf()[SE->_offset]);
|
||||
}
|
||||
acceleratorSynchronise();
|
||||
|
||||
for(int bb=0;bb<nbasis;bb++) {
|
||||
res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
|
||||
}
|
||||
}
|
||||
coalescedWrite(out_v[ss](b),res);
|
||||
});
|
||||
}
|
||||
|
||||
for(int p=0;p<npoint;p++) AcceleratorViewContainer[p].ViewClose();
|
||||
}
|
||||
|
||||
CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) :
|
||||
_grid(&CoarseGrid),
|
||||
_cbgrid(new GridRedBlackCartesian(&CoarseGrid)),
|
||||
geom(CoarseGrid._ndimension),
|
||||
hermitian(hermitian_),
|
||||
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
|
||||
StencilEven(_cbgrid,geom.npoint,Even,geom.directions,geom.displacements),
|
||||
StencilOdd(_cbgrid,geom.npoint,Odd,geom.directions,geom.displacements),
|
||||
A(geom.npoint,&CoarseGrid),
|
||||
Aeven(geom.npoint,_cbgrid),
|
||||
Aodd(geom.npoint,_cbgrid),
|
||||
AselfInv(&CoarseGrid),
|
||||
AselfInvEven(_cbgrid),
|
||||
AselfInvOdd(_cbgrid),
|
||||
dag_factor(nbasis*nbasis)
|
||||
{
|
||||
fillFactor();
|
||||
};
|
||||
|
||||
CoarsenedMatrix(GridCartesian &CoarseGrid, GridRedBlackCartesian &CoarseRBGrid, int hermitian_=0) :
|
||||
|
||||
_grid(&CoarseGrid),
|
||||
_cbgrid(&CoarseRBGrid),
|
||||
geom(CoarseGrid._ndimension),
|
||||
hermitian(hermitian_),
|
||||
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements),
|
||||
StencilEven(&CoarseRBGrid,geom.npoint,Even,geom.directions,geom.displacements),
|
||||
StencilOdd(&CoarseRBGrid,geom.npoint,Odd,geom.directions,geom.displacements),
|
||||
A(geom.npoint,&CoarseGrid),
|
||||
Aeven(geom.npoint,&CoarseRBGrid),
|
||||
Aodd(geom.npoint,&CoarseRBGrid),
|
||||
AselfInv(&CoarseGrid),
|
||||
AselfInvEven(&CoarseRBGrid),
|
||||
AselfInvOdd(&CoarseRBGrid),
|
||||
dag_factor(nbasis*nbasis)
|
||||
{
|
||||
fillFactor();
|
||||
};
|
||||
|
||||
void fillFactor() {
|
||||
Eigen::MatrixXd dag_factor_eigen = Eigen::MatrixXd::Ones(nbasis, nbasis);
|
||||
if(!hermitian) {
|
||||
const int nb = nbasis/2;
|
||||
dag_factor_eigen.block(0,nb,nb,nb) *= -1.0;
|
||||
dag_factor_eigen.block(nb,0,nb,nb) *= -1.0;
|
||||
}
|
||||
|
||||
// GPU readable prefactor
|
||||
thread_for(i, nbasis*nbasis, {
|
||||
int j = i/nbasis;
|
||||
int k = i%nbasis;
|
||||
dag_factor[i] = dag_factor_eigen(j, k);
|
||||
});
|
||||
}
|
||||
|
||||
void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> & Subspace)
|
||||
{
|
||||
typedef Lattice<typename Fobj::tensor_reduced> FineComplexField;
|
||||
typedef typename Fobj::scalar_type scalar_type;
|
||||
|
||||
std::cout << GridLogMessage<< "CoarsenMatrix "<< std::endl;
|
||||
|
||||
FineComplexField one(FineGrid); one=scalar_type(1.0,0.0);
|
||||
FineComplexField zero(FineGrid); zero=scalar_type(0.0,0.0);
|
||||
|
||||
std::vector<FineComplexField> masks(geom.npoint,FineGrid);
|
||||
FineComplexField imask(FineGrid); // contributions from within this block
|
||||
FineComplexField omask(FineGrid); // contributions from outwith this block
|
||||
|
||||
FineComplexField evenmask(FineGrid);
|
||||
FineComplexField oddmask(FineGrid);
|
||||
|
||||
FineField phi(FineGrid);
|
||||
FineField tmp(FineGrid);
|
||||
FineField zz(FineGrid); zz=Zero();
|
||||
FineField Mphi(FineGrid);
|
||||
FineField Mphie(FineGrid);
|
||||
FineField Mphio(FineGrid);
|
||||
std::vector<FineField> Mphi_p(geom.npoint,FineGrid);
|
||||
|
||||
Lattice<iScalar<vInteger> > coor (FineGrid);
|
||||
Lattice<iScalar<vInteger> > bcoor(FineGrid);
|
||||
Lattice<iScalar<vInteger> > bcb (FineGrid); bcb = Zero();
|
||||
|
||||
CoarseVector iProj(Grid());
|
||||
CoarseVector oProj(Grid());
|
||||
CoarseVector SelfProj(Grid());
|
||||
CoarseComplexField iZProj(Grid());
|
||||
CoarseComplexField oZProj(Grid());
|
||||
|
||||
CoarseScalar InnerProd(Grid());
|
||||
|
||||
std::cout << GridLogMessage<< "CoarsenMatrix Orthog "<< std::endl;
|
||||
// Orthogonalise the subblocks over the basis
|
||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
||||
|
||||
// Compute the matrix elements of linop between this orthonormal
|
||||
// set of vectors.
|
||||
std::cout << GridLogMessage<< "CoarsenMatrix masks "<< std::endl;
|
||||
int self_stencil=-1;
|
||||
for(int p=0;p<geom.npoint;p++)
|
||||
{
|
||||
int dir = geom.directions[p];
|
||||
int disp = geom.displacements[p];
|
||||
A[p]=Zero();
|
||||
if( geom.displacements[p]==0){
|
||||
self_stencil=p;
|
||||
}
|
||||
|
||||
Integer block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]);
|
||||
|
||||
LatticeCoordinate(coor,dir);
|
||||
|
||||
///////////////////////////////////////////////////////
|
||||
// Work out even and odd block checkerboarding for fast diagonal term
|
||||
///////////////////////////////////////////////////////
|
||||
if ( disp==1 ) {
|
||||
bcb = bcb + div(coor,block);
|
||||
}
|
||||
|
||||
if ( disp==0 ) {
|
||||
masks[p]= Zero();
|
||||
} else if ( disp==1 ) {
|
||||
masks[p] = where(mod(coor,block)==(block-1),one,zero);
|
||||
} else if ( disp==-1 ) {
|
||||
masks[p] = where(mod(coor,block)==(Integer)0,one,zero);
|
||||
}
|
||||
}
|
||||
evenmask = where(mod(bcb,2)==(Integer)0,one,zero);
|
||||
oddmask = one-evenmask;
|
||||
|
||||
assert(self_stencil!=-1);
|
||||
|
||||
for(int i=0;i<nbasis;i++){
|
||||
|
||||
phi=Subspace.subspace[i];
|
||||
|
||||
std::cout << GridLogMessage<< "CoarsenMatrix vector "<<i << std::endl;
|
||||
linop.OpDirAll(phi,Mphi_p);
|
||||
linop.OpDiag (phi,Mphi_p[geom.npoint-1]);
|
||||
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
|
||||
Mphi = Mphi_p[p];
|
||||
|
||||
int dir = geom.directions[p];
|
||||
int disp = geom.displacements[p];
|
||||
|
||||
if ( (disp==-1) || (!hermitian ) ) {
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Pick out contributions coming from this cell and neighbour cell
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
omask = masks[p];
|
||||
imask = one-omask;
|
||||
|
||||
for(int j=0;j<nbasis;j++){
|
||||
|
||||
blockMaskedInnerProduct(oZProj,omask,Subspace.subspace[j],Mphi);
|
||||
|
||||
autoView( iZProj_v , iZProj, AcceleratorRead) ;
|
||||
autoView( oZProj_v , oZProj, AcceleratorRead) ;
|
||||
autoView( A_p , A[p], AcceleratorWrite);
|
||||
autoView( A_self , A[self_stencil], AcceleratorWrite);
|
||||
|
||||
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); });
|
||||
if ( hermitian && (disp==-1) ) {
|
||||
for(int pp=0;pp<geom.npoint;pp++){// Find the opposite link and set <j|A|i> = <i|A|j>*
|
||||
int dirp = geom.directions[pp];
|
||||
int dispp = geom.displacements[pp];
|
||||
if ( (dirp==dir) && (dispp==1) ){
|
||||
auto sft = conjugate(Cshift(oZProj,dir,1));
|
||||
autoView( sft_v , sft , AcceleratorWrite);
|
||||
autoView( A_pp , A[pp], AcceleratorWrite);
|
||||
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_pp[ss](i,j),sft_v(ss)); });
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////
|
||||
// Faster alternate self coupling.. use hermiticity to save 2x
|
||||
///////////////////////////////////////////
|
||||
{
|
||||
mult(tmp,phi,evenmask); linop.Op(tmp,Mphie);
|
||||
mult(tmp,phi,oddmask ); linop.Op(tmp,Mphio);
|
||||
|
||||
{
|
||||
autoView( tmp_ , tmp, AcceleratorWrite);
|
||||
autoView( evenmask_ , evenmask, AcceleratorRead);
|
||||
autoView( oddmask_ , oddmask, AcceleratorRead);
|
||||
autoView( Mphie_ , Mphie, AcceleratorRead);
|
||||
autoView( Mphio_ , Mphio, AcceleratorRead);
|
||||
accelerator_for(ss, FineGrid->oSites(), Fobj::Nsimd(),{
|
||||
coalescedWrite(tmp_[ss],evenmask_(ss)*Mphie_(ss) + oddmask_(ss)*Mphio_(ss));
|
||||
});
|
||||
}
|
||||
|
||||
blockProject(SelfProj,tmp,Subspace.subspace);
|
||||
|
||||
autoView( SelfProj_ , SelfProj, AcceleratorRead);
|
||||
autoView( A_self , A[self_stencil], AcceleratorWrite);
|
||||
|
||||
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{
|
||||
for(int j=0;j<nbasis;j++){
|
||||
coalescedWrite(A_self[ss](j,i), SelfProj_(ss)(j));
|
||||
}
|
||||
});
|
||||
|
||||
}
|
||||
}
|
||||
if(hermitian) {
|
||||
std::cout << GridLogMessage << " ForceHermitian, new code "<<std::endl;
|
||||
}
|
||||
|
||||
InvertSelfStencilLink(); std::cout << GridLogMessage << "Coarse self link inverted" << std::endl;
|
||||
FillHalfCbs(); std::cout << GridLogMessage << "Coarse half checkerboards filled" << std::endl;
|
||||
}
|
||||
|
||||
void InvertSelfStencilLink() {
|
||||
std::cout << GridLogDebug << "CoarsenedMatrix::InvertSelfStencilLink" << std::endl;
|
||||
int localVolume = Grid()->lSites();
|
||||
|
||||
typedef typename Cobj::scalar_object scalar_object;
|
||||
|
||||
autoView(Aself_v, A[geom.npoint-1], CpuRead);
|
||||
autoView(AselfInv_v, AselfInv, CpuWrite);
|
||||
thread_for(site, localVolume, { // NOTE: Not able to bring this to GPU because of Eigen + peek/poke
|
||||
Eigen::MatrixXcd selfLinkEigen = Eigen::MatrixXcd::Zero(nbasis, nbasis);
|
||||
Eigen::MatrixXcd selfLinkInvEigen = Eigen::MatrixXcd::Zero(nbasis, nbasis);
|
||||
|
||||
scalar_object selfLink = Zero();
|
||||
scalar_object selfLinkInv = Zero();
|
||||
|
||||
Coordinate lcoor;
|
||||
|
||||
Grid()->LocalIndexToLocalCoor(site, lcoor);
|
||||
peekLocalSite(selfLink, Aself_v, lcoor);
|
||||
|
||||
for (int i = 0; i < nbasis; ++i)
|
||||
for (int j = 0; j < nbasis; ++j)
|
||||
selfLinkEigen(i, j) = static_cast<ComplexD>(TensorRemove(selfLink(i, j)));
|
||||
|
||||
selfLinkInvEigen = selfLinkEigen.inverse();
|
||||
|
||||
for(int i = 0; i < nbasis; ++i)
|
||||
for(int j = 0; j < nbasis; ++j)
|
||||
selfLinkInv(i, j) = selfLinkInvEigen(i, j);
|
||||
|
||||
pokeLocalSite(selfLinkInv, AselfInv_v, lcoor);
|
||||
});
|
||||
}
|
||||
|
||||
void FillHalfCbs() {
|
||||
std::cout << GridLogDebug << "CoarsenedMatrix::FillHalfCbs" << std::endl;
|
||||
for(int p = 0; p < geom.npoint; ++p) {
|
||||
pickCheckerboard(Even, Aeven[p], A[p]);
|
||||
pickCheckerboard(Odd, Aodd[p], A[p]);
|
||||
}
|
||||
pickCheckerboard(Even, AselfInvEven, AselfInv);
|
||||
pickCheckerboard(Odd, AselfInvOdd, AselfInv);
|
||||
}
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
619
Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h
Normal file
619
Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h
Normal file
@ -0,0 +1,619 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
|
||||
|
||||
#include <Grid/lattice/PaddedCell.h>
|
||||
#include <Grid/stencil/GeneralLocalStencil.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// Fine Object == (per site) type of fine field
|
||||
// nbasis == number of deflation vectors
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
|
||||
public:
|
||||
|
||||
typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef iMatrix<CComplex,nbasis > siteMatrix;
|
||||
typedef Lattice<iScalar<CComplex> > CoarseComplexField;
|
||||
typedef Lattice<siteVector> CoarseVector;
|
||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||
typedef iMatrix<CComplex,nbasis > Cobj;
|
||||
typedef iVector<CComplex,nbasis > Cvec;
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
typedef Lattice<CComplex > FineComplexField;
|
||||
typedef CoarseVector Field;
|
||||
////////////////////
|
||||
// Data members
|
||||
////////////////////
|
||||
int hermitian;
|
||||
GridBase * _FineGrid;
|
||||
GridCartesian * _CoarseGrid;
|
||||
NonLocalStencilGeometry &geom;
|
||||
PaddedCell Cell;
|
||||
GeneralLocalStencil Stencil;
|
||||
|
||||
std::vector<CoarseMatrix> _A;
|
||||
std::vector<CoarseMatrix> _Adag;
|
||||
std::vector<CoarseVector> MultTemporaries;
|
||||
|
||||
///////////////////////
|
||||
// Interface
|
||||
///////////////////////
|
||||
GridBase * Grid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
|
||||
GridBase * FineGrid(void) { return _FineGrid; }; // this is all the linalg routines need to know
|
||||
GridCartesian * CoarseGrid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
|
||||
|
||||
/* void ShiftMatrix(RealD shift)
|
||||
{
|
||||
int Nd=_FineGrid->Nd();
|
||||
Coordinate zero_shift(Nd,0);
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
if ( zero_shift==geom.shifts[p] ) {
|
||||
_A[p] = _A[p]+shift;
|
||||
// _Adag[p] = _Adag[p]+shift;
|
||||
}
|
||||
}
|
||||
}
|
||||
void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe)
|
||||
{
|
||||
int nfound=0;
|
||||
std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl;
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
for(int pp=0;pp<CopyMe.geom.npoint;pp++){
|
||||
// Search for the same relative shift
|
||||
// Avoids brutal handling of Grid pointers
|
||||
if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
|
||||
_A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
|
||||
// _Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
|
||||
nfound++;
|
||||
}
|
||||
}
|
||||
}
|
||||
assert(nfound==geom.npoint);
|
||||
ExchangeCoarseLinks();
|
||||
}
|
||||
*/
|
||||
|
||||
GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
|
||||
: geom(_geom),
|
||||
_FineGrid(FineGrid),
|
||||
_CoarseGrid(CoarseGrid),
|
||||
hermitian(1),
|
||||
Cell(_geom.Depth(),_CoarseGrid),
|
||||
Stencil(Cell.grids.back(),geom.shifts)
|
||||
{
|
||||
{
|
||||
int npoint = _geom.npoint;
|
||||
}
|
||||
_A.resize(geom.npoint,CoarseGrid);
|
||||
// _Adag.resize(geom.npoint,CoarseGrid);
|
||||
}
|
||||
void M (const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
Mult(_A,in,out);
|
||||
}
|
||||
void Mdag (const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
assert(hermitian);
|
||||
Mult(_A,in,out);
|
||||
// if ( hermitian ) M(in,out);
|
||||
// else Mult(_Adag,in,out);
|
||||
}
|
||||
void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
RealD tviews=0; RealD ttot=0; RealD tmult=0; RealD texch=0; RealD text=0; RealD ttemps=0; RealD tcopy=0;
|
||||
RealD tmult2=0;
|
||||
|
||||
ttot=-usecond();
|
||||
conformable(CoarseGrid(),in.Grid());
|
||||
conformable(in.Grid(),out.Grid());
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
CoarseVector tin=in;
|
||||
|
||||
texch-=usecond();
|
||||
CoarseVector pin = Cell.ExchangePeriodic(tin);
|
||||
texch+=usecond();
|
||||
|
||||
CoarseVector pout(pin.Grid());
|
||||
|
||||
int npoint = geom.npoint;
|
||||
typedef LatticeView<Cobj> Aview;
|
||||
typedef LatticeView<Cvec> Vview;
|
||||
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
|
||||
int64_t osites=pin.Grid()->oSites();
|
||||
|
||||
RealD flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
|
||||
RealD bytes = 1.0*osites*sizeof(siteMatrix)*npoint
|
||||
+ 2.0*osites*sizeof(siteVector)*npoint;
|
||||
|
||||
{
|
||||
tviews-=usecond();
|
||||
autoView( in_v , pin, AcceleratorRead);
|
||||
autoView( out_v , pout, AcceleratorWriteDiscard);
|
||||
autoView( Stencil_v , Stencil, AcceleratorRead);
|
||||
tviews+=usecond();
|
||||
|
||||
// Static and prereserve to keep UVM region live and not resized across multiple calls
|
||||
ttemps-=usecond();
|
||||
MultTemporaries.resize(npoint,pin.Grid());
|
||||
ttemps+=usecond();
|
||||
std::vector<Aview> AcceleratorViewContainer_h;
|
||||
std::vector<Vview> AcceleratorVecViewContainer_h;
|
||||
|
||||
tviews-=usecond();
|
||||
for(int p=0;p<npoint;p++) {
|
||||
AcceleratorViewContainer_h.push_back( A[p].View(AcceleratorRead));
|
||||
AcceleratorVecViewContainer_h.push_back(MultTemporaries[p].View(AcceleratorWrite));
|
||||
}
|
||||
tviews+=usecond();
|
||||
|
||||
static deviceVector<Aview> AcceleratorViewContainer; AcceleratorViewContainer.resize(npoint);
|
||||
static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(npoint);
|
||||
|
||||
auto Aview_p = &AcceleratorViewContainer[0];
|
||||
auto Vview_p = &AcceleratorVecViewContainer[0];
|
||||
tcopy-=usecond();
|
||||
acceleratorCopyToDevice(&AcceleratorViewContainer_h[0],&AcceleratorViewContainer[0],npoint *sizeof(Aview));
|
||||
acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],npoint *sizeof(Vview));
|
||||
tcopy+=usecond();
|
||||
|
||||
tmult-=usecond();
|
||||
accelerator_for(spb, osites*nbasis*npoint, Nsimd, {
|
||||
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
|
||||
int32_t ss = spb/(nbasis*npoint);
|
||||
int32_t bp = spb%(nbasis*npoint);
|
||||
int32_t point= bp/nbasis;
|
||||
int32_t b = bp%nbasis;
|
||||
auto SE = Stencil_v.GetEntry(point,ss);
|
||||
auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd);
|
||||
auto res = coalescedRead(Aview_p[point][ss](0,b))*nbr(0);
|
||||
for(int bb=1;bb<nbasis;bb++) {
|
||||
res = res + coalescedRead(Aview_p[point][ss](bb,b))*nbr(bb);
|
||||
}
|
||||
coalescedWrite(Vview_p[point][ss](b),res);
|
||||
});
|
||||
tmult2-=usecond();
|
||||
accelerator_for(sb, osites*nbasis, Nsimd, {
|
||||
int ss = sb/nbasis;
|
||||
int b = sb%nbasis;
|
||||
auto res = coalescedRead(Vview_p[0][ss](b));
|
||||
for(int point=1;point<npoint;point++){
|
||||
res = res + coalescedRead(Vview_p[point][ss](b));
|
||||
}
|
||||
coalescedWrite(out_v[ss](b),res);
|
||||
});
|
||||
tmult2+=usecond();
|
||||
tmult+=usecond();
|
||||
for(int p=0;p<npoint;p++) {
|
||||
AcceleratorViewContainer_h[p].ViewClose();
|
||||
AcceleratorVecViewContainer_h[p].ViewClose();
|
||||
}
|
||||
}
|
||||
|
||||
text-=usecond();
|
||||
out = Cell.Extract(pout);
|
||||
text+=usecond();
|
||||
ttot+=usecond();
|
||||
|
||||
std::cout << GridLogPerformance<<"Coarse 1rhs Mult Aviews "<<tviews<<" us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<" of which mult2 "<<tmult2<<" us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Mult ext "<<text<<" us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Mult temps "<<ttemps<<" us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Mult copy "<<tcopy<<" us"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Mult tot "<<ttot<<" us"<<std::endl;
|
||||
// std::cout << GridLogPerformance<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Kernel flops "<< flops<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse Kernel bytes/s "<< bytes/tmult<<" MB/s"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl;
|
||||
std::cout << GridLogPerformance<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
|
||||
|
||||
};
|
||||
|
||||
void PopulateAdag(void)
|
||||
{
|
||||
for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){
|
||||
Coordinate bcoor;
|
||||
CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor);
|
||||
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
Coordinate scoor = bcoor;
|
||||
for(int mu=0;mu<bcoor.size();mu++){
|
||||
int L = CoarseGrid()->GlobalDimensions()[mu];
|
||||
scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic
|
||||
}
|
||||
// Flip to poke/peekLocalSite and not too bad
|
||||
auto link = peekSite(_A[p],scoor);
|
||||
int pp = geom.Reverse(p);
|
||||
pokeSite(adj(link),_Adag[pp],bcoor);
|
||||
}
|
||||
}
|
||||
}
|
||||
/////////////////////////////////////////////////////////////
|
||||
//
|
||||
// A) Only reduced flops option is to use a padded cell of depth 4
|
||||
// and apply MpcDagMpc in the padded cell.
|
||||
//
|
||||
// Makes for ONE application of MpcDagMpc per vector instead of 30 or 80.
|
||||
// With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio
|
||||
// Cost is 81x more, same as stencil size.
|
||||
//
|
||||
// But: can eliminate comms and do as local dirichlet.
|
||||
//
|
||||
// Local exchange gauge field once.
|
||||
// Apply to all vectors, local only computation.
|
||||
// Must exchange ghost subcells in reverse process of PaddedCell to take inner products
|
||||
//
|
||||
// B) Can reduce cost: pad by 1, apply Deo (4^4+6^4+8^4+8^4 )/ (4x 4^4)
|
||||
// pad by 2, apply Doe
|
||||
// pad by 3, apply Deo
|
||||
// then break out 8x directions; cost is ~10x MpcDagMpc per vector
|
||||
//
|
||||
// => almost factor of 10 in setup cost, excluding data rearrangement
|
||||
//
|
||||
// Intermediates -- ignore the corner terms, leave approximate and force Hermitian
|
||||
// Intermediates -- pad by 2 and apply 1+8+24 = 33 times.
|
||||
/////////////////////////////////////////////////////////////
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// BFM HDCG style approach: Solve a system of equations to get Aij
|
||||
//////////////////////////////////////////////////////////
|
||||
/*
|
||||
* Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM.
|
||||
*
|
||||
* conj(phases[block]) proj[k][ block*Nvec+j ] = \sum_ball e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} >
|
||||
* = \sum_ball e^{iqk.delta} A_ji
|
||||
*
|
||||
* Must invert matrix M_k,l = e^[i q_k . delta_l]
|
||||
*
|
||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
||||
*/
|
||||
#if 0
|
||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> & Subspace)
|
||||
{
|
||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
|
||||
GridBase *grid = FineGrid();
|
||||
|
||||
RealD tproj=0.0;
|
||||
RealD teigen=0.0;
|
||||
RealD tmat=0.0;
|
||||
RealD tphase=0.0;
|
||||
RealD tinv=0.0;
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Orthogonalise the subblocks over the basis
|
||||
/////////////////////////////////////////////////////////////
|
||||
CoarseScalar InnerProd(CoarseGrid());
|
||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
||||
|
||||
const int npoint = geom.npoint;
|
||||
|
||||
Coordinate clatt = CoarseGrid()->GlobalDimensions();
|
||||
int Nd = CoarseGrid()->Nd();
|
||||
|
||||
/*
|
||||
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
||||
* Matrix index i is mapped to this shift via
|
||||
* geom.shifts[i]
|
||||
*
|
||||
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
||||
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
||||
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
||||
* = M_{kl} A_ji^{b.b+l}
|
||||
*
|
||||
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
||||
*
|
||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
||||
*
|
||||
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
||||
*/
|
||||
teigen-=usecond();
|
||||
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
ComplexD ci(0.0,1.0);
|
||||
for(int k=0;k<npoint;k++){ // Loop over momenta
|
||||
|
||||
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
||||
ComplexD phase(0.0,0.0);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
|
||||
}
|
||||
phase=exp(phase*ci);
|
||||
Mkl(k,l) = phase;
|
||||
}
|
||||
}
|
||||
invMkl = Mkl.inverse();
|
||||
teigen+=usecond();
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Now compute the matrix elements of linop between the orthonormal
|
||||
// set of vectors.
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
FineField phaV(grid); // Phased block basis vector
|
||||
FineField MphaV(grid);// Matrix applied
|
||||
CoarseVector coarseInner(CoarseGrid());
|
||||
|
||||
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
|
||||
std::vector<CoarseVector> FT(npoint,CoarseGrid());
|
||||
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
/////////////////////////////////////////////////////
|
||||
// Stick a phase on every block
|
||||
/////////////////////////////////////////////////////
|
||||
tphase-=usecond();
|
||||
CoarseComplexField coor(CoarseGrid());
|
||||
CoarseComplexField pha(CoarseGrid()); pha=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
LatticeCoordinate(coor,mu);
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor;
|
||||
}
|
||||
pha =exp(pha*ci);
|
||||
phaV=Zero();
|
||||
blockZAXPY(phaV,pha,Subspace.subspace[i],phaV);
|
||||
tphase+=usecond();
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Multiple phased subspace vector by matrix and project to subspace
|
||||
// Remove local bulk phase to leave relative phases
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
tmat-=usecond();
|
||||
linop.Op(phaV,MphaV);
|
||||
tmat+=usecond();
|
||||
|
||||
tproj-=usecond();
|
||||
blockProject(coarseInner,MphaV,Subspace.subspace);
|
||||
coarseInner = conjugate(pha) * coarseInner;
|
||||
|
||||
ComputeProj[p] = coarseInner;
|
||||
tproj+=usecond();
|
||||
|
||||
}
|
||||
|
||||
tinv-=usecond();
|
||||
for(int k=0;k<npoint;k++){
|
||||
FT[k] = Zero();
|
||||
for(int l=0;l<npoint;l++){
|
||||
FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
|
||||
}
|
||||
|
||||
int osites=CoarseGrid()->oSites();
|
||||
autoView( A_v , _A[k], AcceleratorWrite);
|
||||
autoView( FT_v , FT[k], AcceleratorRead);
|
||||
accelerator_for(sss, osites, 1, {
|
||||
for(int j=0;j<nbasis;j++){
|
||||
A_v[sss](i,j) = FT_v[sss](j);
|
||||
}
|
||||
});
|
||||
}
|
||||
tinv+=usecond();
|
||||
}
|
||||
|
||||
// Only needed if nonhermitian
|
||||
if ( ! hermitian ) {
|
||||
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
||||
// PopulateAdag();
|
||||
}
|
||||
|
||||
// Need to write something to populate Adag from A
|
||||
ExchangeCoarseLinks();
|
||||
std::cout << GridLogMessage<<"CoarsenOperator eigen "<<teigen<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
|
||||
}
|
||||
#else
|
||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> & Subspace)
|
||||
{
|
||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
|
||||
GridBase *grid = FineGrid();
|
||||
|
||||
RealD tproj=0.0;
|
||||
RealD teigen=0.0;
|
||||
RealD tmat=0.0;
|
||||
RealD tphase=0.0;
|
||||
RealD tphaseBZ=0.0;
|
||||
RealD tinv=0.0;
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Orthogonalise the subblocks over the basis
|
||||
/////////////////////////////////////////////////////////////
|
||||
CoarseScalar InnerProd(CoarseGrid());
|
||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
||||
|
||||
// for(int s=0;s<Subspace.subspace.size();s++){
|
||||
// std::cout << " subspace norm "<<norm2(Subspace.subspace[s])<<std::endl;
|
||||
// }
|
||||
const int npoint = geom.npoint;
|
||||
|
||||
Coordinate clatt = CoarseGrid()->GlobalDimensions();
|
||||
int Nd = CoarseGrid()->Nd();
|
||||
|
||||
/*
|
||||
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
||||
* Matrix index i is mapped to this shift via
|
||||
* geom.shifts[i]
|
||||
*
|
||||
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
||||
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
||||
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
||||
* = M_{kl} A_ji^{b.b+l}
|
||||
*
|
||||
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
||||
*
|
||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
||||
*
|
||||
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
||||
*/
|
||||
teigen-=usecond();
|
||||
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
ComplexD ci(0.0,1.0);
|
||||
for(int k=0;k<npoint;k++){ // Loop over momenta
|
||||
|
||||
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
||||
ComplexD phase(0.0,0.0);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
|
||||
}
|
||||
phase=exp(phase*ci);
|
||||
Mkl(k,l) = phase;
|
||||
}
|
||||
}
|
||||
invMkl = Mkl.inverse();
|
||||
teigen+=usecond();
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Now compute the matrix elements of linop between the orthonormal
|
||||
// set of vectors.
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
FineField phaV(grid); // Phased block basis vector
|
||||
FineField MphaV(grid);// Matrix applied
|
||||
std::vector<FineComplexField> phaF(npoint,grid);
|
||||
std::vector<CoarseComplexField> pha(npoint,CoarseGrid());
|
||||
|
||||
CoarseVector coarseInner(CoarseGrid());
|
||||
|
||||
typedef typename CComplex::scalar_type SComplex;
|
||||
FineComplexField one(grid); one=SComplex(1.0);
|
||||
FineComplexField zz(grid); zz = Zero();
|
||||
tphase=-usecond();
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
/////////////////////////////////////////////////////
|
||||
// Stick a phase on every block
|
||||
/////////////////////////////////////////////////////
|
||||
CoarseComplexField coor(CoarseGrid());
|
||||
pha[p]=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
LatticeCoordinate(coor,mu);
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
pha[p] = pha[p] + (TwoPiL * geom.shifts[p][mu]) * coor;
|
||||
}
|
||||
pha[p] =exp(pha[p]*ci);
|
||||
|
||||
blockZAXPY(phaF[p],pha[p],one,zz);
|
||||
|
||||
}
|
||||
tphase+=usecond();
|
||||
|
||||
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
|
||||
std::vector<CoarseVector> FT(npoint,CoarseGrid());
|
||||
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
tphaseBZ-=usecond();
|
||||
phaV = phaF[p]*Subspace.subspace[i];
|
||||
tphaseBZ+=usecond();
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Multiple phased subspace vector by matrix and project to subspace
|
||||
// Remove local bulk phase to leave relative phases
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
tmat-=usecond();
|
||||
linop.Op(phaV,MphaV);
|
||||
tmat+=usecond();
|
||||
// std::cout << i << " " <<p << " MphaV "<<norm2(MphaV)<<" "<<norm2(phaV)<<std::endl;
|
||||
|
||||
tproj-=usecond();
|
||||
blockProject(coarseInner,MphaV,Subspace.subspace);
|
||||
coarseInner = conjugate(pha[p]) * coarseInner;
|
||||
|
||||
ComputeProj[p] = coarseInner;
|
||||
tproj+=usecond();
|
||||
// std::cout << i << " " <<p << " ComputeProj "<<norm2(ComputeProj[p])<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
tinv-=usecond();
|
||||
for(int k=0;k<npoint;k++){
|
||||
FT[k] = Zero();
|
||||
for(int l=0;l<npoint;l++){
|
||||
FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
|
||||
}
|
||||
|
||||
int osites=CoarseGrid()->oSites();
|
||||
autoView( A_v , _A[k], AcceleratorWrite);
|
||||
autoView( FT_v , FT[k], AcceleratorRead);
|
||||
accelerator_for(sss, osites, 1, {
|
||||
for(int j=0;j<nbasis;j++){
|
||||
A_v[sss](i,j) = FT_v[sss](j);
|
||||
}
|
||||
});
|
||||
}
|
||||
tinv+=usecond();
|
||||
}
|
||||
|
||||
// Only needed if nonhermitian
|
||||
if ( ! hermitian ) {
|
||||
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
||||
// PopulateAdag();
|
||||
}
|
||||
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
std::cout << " _A["<<p<<"] "<<norm2(_A[p])<<std::endl;
|
||||
}
|
||||
|
||||
// Need to write something to populate Adag from A
|
||||
ExchangeCoarseLinks();
|
||||
std::cout << GridLogMessage<<"CoarsenOperator eigen "<<teigen<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
|
||||
}
|
||||
#endif
|
||||
void ExchangeCoarseLinks(void){
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
_A[p] = Cell.ExchangePeriodic(_A[p]);
|
||||
// _Adag[p]= Cell.ExchangePeriodic(_Adag[p]);
|
||||
}
|
||||
}
|
||||
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
|
||||
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
|
||||
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
|
||||
};
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
729
Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h
Normal file
729
Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h
Normal file
@ -0,0 +1,729 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/GeneralCoarsenedMatrixMultiRHS.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
// Fine Object == (per site) type of fine field
|
||||
// nbasis == number of deflation vectors
|
||||
template<class Fobj,class CComplex,int nbasis>
|
||||
class MultiGeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
|
||||
public:
|
||||
typedef typename CComplex::scalar_object SComplex;
|
||||
typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
|
||||
typedef MultiGeneralCoarsenedMatrix<Fobj,CComplex,nbasis> MultiGeneralCoarseOp;
|
||||
|
||||
typedef iVector<CComplex,nbasis > siteVector;
|
||||
typedef iMatrix<CComplex,nbasis > siteMatrix;
|
||||
typedef iVector<SComplex,nbasis > calcVector;
|
||||
typedef iMatrix<SComplex,nbasis > calcMatrix;
|
||||
typedef Lattice<iScalar<CComplex> > CoarseComplexField;
|
||||
typedef Lattice<siteVector> CoarseVector;
|
||||
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
|
||||
typedef iMatrix<CComplex,nbasis > Cobj;
|
||||
typedef iVector<CComplex,nbasis > Cvec;
|
||||
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
|
||||
typedef Lattice<Fobj > FineField;
|
||||
typedef Lattice<CComplex > FineComplexField;
|
||||
typedef CoarseVector Field;
|
||||
|
||||
////////////////////
|
||||
// Data members
|
||||
////////////////////
|
||||
GridCartesian * _CoarseGridMulti;
|
||||
NonLocalStencilGeometry geom;
|
||||
NonLocalStencilGeometry geom_srhs;
|
||||
PaddedCell Cell;
|
||||
GeneralLocalStencil Stencil;
|
||||
|
||||
deviceVector<calcVector> BLAS_B;
|
||||
deviceVector<calcVector> BLAS_C;
|
||||
std::vector<deviceVector<calcMatrix> > BLAS_A;
|
||||
|
||||
std::vector<deviceVector<ComplexD *> > BLAS_AP;
|
||||
std::vector<deviceVector<ComplexD *> > BLAS_BP;
|
||||
deviceVector<ComplexD *> BLAS_CP;
|
||||
|
||||
///////////////////////
|
||||
// Interface
|
||||
///////////////////////
|
||||
GridBase * Grid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
|
||||
GridCartesian * CoarseGrid(void) { return _CoarseGridMulti; }; // this is all the linalg routines need to know
|
||||
|
||||
// Can be used to do I/O on the operator matrices externally
|
||||
void SetMatrix (int p,CoarseMatrix & A)
|
||||
{
|
||||
assert(A.size()==geom_srhs.npoint);
|
||||
GridtoBLAS(A[p],BLAS_A[p]);
|
||||
}
|
||||
void GetMatrix (int p,CoarseMatrix & A)
|
||||
{
|
||||
assert(A.size()==geom_srhs.npoint);
|
||||
BLAStoGrid(A[p],BLAS_A[p]);
|
||||
}
|
||||
void CopyMatrix (GeneralCoarseOp &_Op)
|
||||
{
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
auto Aup = _Op.Cell.Extract(_Op._A[p]);
|
||||
//Unpadded
|
||||
GridtoBLAS(Aup,BLAS_A[p]);
|
||||
}
|
||||
}
|
||||
/*
|
||||
void CheckMatrix (GeneralCoarseOp &_Op)
|
||||
{
|
||||
std::cout <<"************* Checking the little direc operator mRHS"<<std::endl;
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
//Unpadded
|
||||
auto Aup = _Op.Cell.Extract(_Op._A[p]);
|
||||
auto Ack = Aup;
|
||||
BLAStoGrid(Ack,BLAS_A[p]);
|
||||
std::cout << p<<" Ack "<<norm2(Ack)<<std::endl;
|
||||
std::cout << p<<" Aup "<<norm2(Aup)<<std::endl;
|
||||
}
|
||||
std::cout <<"************* "<<std::endl;
|
||||
}
|
||||
*/
|
||||
|
||||
MultiGeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridCartesian *CoarseGridMulti) :
|
||||
_CoarseGridMulti(CoarseGridMulti),
|
||||
geom_srhs(_geom),
|
||||
geom(_CoarseGridMulti,_geom.hops,_geom.skip+1),
|
||||
Cell(geom.Depth(),_CoarseGridMulti),
|
||||
Stencil(Cell.grids.back(),geom.shifts) // padded cell stencil
|
||||
{
|
||||
int32_t padded_sites = Cell.grids.back()->lSites();
|
||||
int32_t unpadded_sites = CoarseGridMulti->lSites();
|
||||
|
||||
int32_t nrhs = CoarseGridMulti->FullDimensions()[0]; // # RHS
|
||||
int32_t orhs = nrhs/CComplex::Nsimd();
|
||||
|
||||
padded_sites = padded_sites/nrhs;
|
||||
unpadded_sites = unpadded_sites/nrhs;
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
// Device data vector storage
|
||||
/////////////////////////////////////////////////
|
||||
BLAS_A.resize(geom.npoint);
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
BLAS_A[p].resize (unpadded_sites); // no ghost zone, npoint elements
|
||||
}
|
||||
|
||||
BLAS_B.resize(nrhs *padded_sites); // includes ghost zone
|
||||
BLAS_C.resize(nrhs *unpadded_sites); // no ghost zone
|
||||
BLAS_AP.resize(geom.npoint);
|
||||
BLAS_BP.resize(geom.npoint);
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
BLAS_AP[p].resize(unpadded_sites);
|
||||
BLAS_BP[p].resize(unpadded_sites);
|
||||
}
|
||||
BLAS_CP.resize(unpadded_sites);
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
// Pointers to data
|
||||
/////////////////////////////////////////////////
|
||||
|
||||
// Site identity mapping for A
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
for(int ss=0;ss<unpadded_sites;ss++){
|
||||
ComplexD *ptr = (ComplexD *)&BLAS_A[p][ss];
|
||||
acceleratorPut(BLAS_AP[p][ss],ptr);
|
||||
}
|
||||
}
|
||||
// Site identity mapping for C
|
||||
for(int ss=0;ss<unpadded_sites;ss++){
|
||||
ComplexD *ptr = (ComplexD *)&BLAS_C[ss*nrhs];
|
||||
acceleratorPut(BLAS_CP[ss],ptr);
|
||||
}
|
||||
|
||||
// Neighbour table is more complicated
|
||||
int32_t j=0; // Interior point counter (unpadded)
|
||||
for(int32_t s=0;s<padded_sites;s++){ // 4 volume, padded
|
||||
int ghost_zone=0;
|
||||
for(int32_t point = 0 ; point < geom.npoint; point++){
|
||||
int i=s*orhs*geom.npoint+point;
|
||||
if( Stencil._entries[i]._wrap ) { // stencil is indexed by the oSite of the CoarseGridMulti, hence orhs factor
|
||||
ghost_zone=1; // If general stencil wrapped in any direction, wrap=1
|
||||
}
|
||||
}
|
||||
|
||||
if( ghost_zone==0) {
|
||||
for(int32_t point = 0 ; point < geom.npoint; point++){
|
||||
int i=s*orhs*geom.npoint+point;
|
||||
int32_t nbr = Stencil._entries[i]._offset*CComplex::Nsimd(); // oSite -> lSite
|
||||
assert(nbr<BLAS_B.size());
|
||||
ComplexD * ptr = (ComplexD *)&BLAS_B[nbr];
|
||||
acceleratorPut(BLAS_BP[point][j],ptr); // neighbour indexing in ghost zone volume
|
||||
}
|
||||
j++;
|
||||
}
|
||||
}
|
||||
assert(j==unpadded_sites);
|
||||
}
|
||||
template<class vobj> void GridtoBLAS(const Lattice<vobj> &from,deviceVector<typename vobj::scalar_object> &to)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
GridBase *Fg = from.Grid();
|
||||
assert(!Fg->_isCheckerBoarded);
|
||||
int nd = Fg->_ndimension;
|
||||
|
||||
to.resize(Fg->lSites());
|
||||
|
||||
Coordinate LocalLatt = Fg->LocalDimensions();
|
||||
size_t nsite = 1;
|
||||
for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// do the index calc on the GPU
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
Coordinate f_ostride = Fg->_ostride;
|
||||
Coordinate f_istride = Fg->_istride;
|
||||
Coordinate f_rdimensions = Fg->_rdimensions;
|
||||
|
||||
autoView(from_v,from,AcceleratorRead);
|
||||
auto to_v = &to[0];
|
||||
|
||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
accelerator_for(idx,nsite,1,{
|
||||
|
||||
Coordinate from_coor, base;
|
||||
Lexicographic::CoorFromIndex(base,idx,LocalLatt);
|
||||
for(int i=0;i<nd;i++){
|
||||
from_coor[i] = base[i];
|
||||
}
|
||||
int from_oidx = 0; for(int d=0;d<nd;d++) from_oidx+=f_ostride[d]*(from_coor[d]%f_rdimensions[d]);
|
||||
int from_lane = 0; for(int d=0;d<nd;d++) from_lane+=f_istride[d]*(from_coor[d]/f_rdimensions[d]);
|
||||
|
||||
const vector_type* from = (const vector_type *)&from_v[from_oidx];
|
||||
scalar_type* to = (scalar_type *)&to_v[idx];
|
||||
|
||||
scalar_type stmp;
|
||||
for(int w=0;w<words;w++){
|
||||
stmp = getlane(from[w], from_lane);
|
||||
to[w] = stmp;
|
||||
}
|
||||
});
|
||||
}
|
||||
template<class vobj> void BLAStoGrid(Lattice<vobj> &grid,deviceVector<typename vobj::scalar_object> &in)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
GridBase *Tg = grid.Grid();
|
||||
assert(!Tg->_isCheckerBoarded);
|
||||
int nd = Tg->_ndimension;
|
||||
|
||||
assert(in.size()==Tg->lSites());
|
||||
|
||||
Coordinate LocalLatt = Tg->LocalDimensions();
|
||||
size_t nsite = 1;
|
||||
for(int i=0;i<nd;i++) nsite *= LocalLatt[i];
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// do the index calc on the GPU
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
Coordinate t_ostride = Tg->_ostride;
|
||||
Coordinate t_istride = Tg->_istride;
|
||||
Coordinate t_rdimensions = Tg->_rdimensions;
|
||||
|
||||
autoView(to_v,grid,AcceleratorWrite);
|
||||
auto from_v = &in[0];
|
||||
|
||||
const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
accelerator_for(idx,nsite,1,{
|
||||
|
||||
Coordinate to_coor, base;
|
||||
Lexicographic::CoorFromIndex(base,idx,LocalLatt);
|
||||
for(int i=0;i<nd;i++){
|
||||
to_coor[i] = base[i];
|
||||
}
|
||||
int to_oidx = 0; for(int d=0;d<nd;d++) to_oidx+=t_ostride[d]*(to_coor[d]%t_rdimensions[d]);
|
||||
int to_lane = 0; for(int d=0;d<nd;d++) to_lane+=t_istride[d]*(to_coor[d]/t_rdimensions[d]);
|
||||
|
||||
vector_type* to = (vector_type *)&to_v[to_oidx];
|
||||
scalar_type* from = (scalar_type *)&from_v[idx];
|
||||
|
||||
scalar_type stmp;
|
||||
for(int w=0;w<words;w++){
|
||||
stmp=from[w];
|
||||
putlane(to[w], stmp, to_lane);
|
||||
}
|
||||
});
|
||||
}
|
||||
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
|
||||
Aggregation<Fobj,CComplex,nbasis> & Subspace,
|
||||
GridBase *CoarseGrid)
|
||||
{
|
||||
#if 0
|
||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
|
||||
|
||||
GridBase *grid = Subspace.FineGrid;
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Orthogonalise the subblocks over the basis
|
||||
/////////////////////////////////////////////////////////////
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
||||
|
||||
const int npoint = geom_srhs.npoint;
|
||||
|
||||
Coordinate clatt = CoarseGrid->GlobalDimensions();
|
||||
int Nd = CoarseGrid->Nd();
|
||||
/*
|
||||
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
||||
* Matrix index i is mapped to this shift via
|
||||
* geom.shifts[i]
|
||||
*
|
||||
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
||||
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
||||
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
||||
* = M_{kl} A_ji^{b.b+l}
|
||||
*
|
||||
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
||||
*
|
||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
||||
*
|
||||
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
||||
*/
|
||||
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
ComplexD ci(0.0,1.0);
|
||||
for(int k=0;k<npoint;k++){ // Loop over momenta
|
||||
|
||||
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
||||
ComplexD phase(0.0,0.0);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
|
||||
}
|
||||
phase=exp(phase*ci);
|
||||
Mkl(k,l) = phase;
|
||||
}
|
||||
}
|
||||
invMkl = Mkl.inverse();
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Now compute the matrix elements of linop between the orthonormal
|
||||
// set of vectors.
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
FineField phaV(grid); // Phased block basis vector
|
||||
FineField MphaV(grid);// Matrix applied
|
||||
std::vector<FineComplexField> phaF(npoint,grid);
|
||||
std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
|
||||
|
||||
CoarseVector coarseInner(CoarseGrid);
|
||||
|
||||
typedef typename CComplex::scalar_type SComplex;
|
||||
FineComplexField one(grid); one=SComplex(1.0);
|
||||
FineComplexField zz(grid); zz = Zero();
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
/////////////////////////////////////////////////////
|
||||
// Stick a phase on every block
|
||||
/////////////////////////////////////////////////////
|
||||
CoarseComplexField coor(CoarseGrid);
|
||||
pha[p]=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
LatticeCoordinate(coor,mu);
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
|
||||
}
|
||||
pha[p] =exp(pha[p]*ci);
|
||||
|
||||
blockZAXPY(phaF[p],pha[p],one,zz);
|
||||
}
|
||||
|
||||
// Could save on temporary storage here
|
||||
std::vector<CoarseMatrix> _A;
|
||||
_A.resize(geom_srhs.npoint,CoarseGrid);
|
||||
|
||||
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
|
||||
CoarseVector FT(CoarseGrid);
|
||||
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
|
||||
phaV = phaF[p]*Subspace.subspace[i];
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Multiple phased subspace vector by matrix and project to subspace
|
||||
// Remove local bulk phase to leave relative phases
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
linop.Op(phaV,MphaV);
|
||||
|
||||
// Fixme, could use batched block projector here
|
||||
blockProject(coarseInner,MphaV,Subspace.subspace);
|
||||
|
||||
coarseInner = conjugate(pha[p]) * coarseInner;
|
||||
|
||||
ComputeProj[p] = coarseInner;
|
||||
}
|
||||
|
||||
// Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
|
||||
for(int k=0;k<npoint;k++){
|
||||
|
||||
FT = Zero();
|
||||
for(int l=0;l<npoint;l++){
|
||||
FT= FT+ invMkl(l,k)*ComputeProj[l];
|
||||
}
|
||||
|
||||
int osites=CoarseGrid->oSites();
|
||||
autoView( A_v , _A[k], AcceleratorWrite);
|
||||
autoView( FT_v , FT, AcceleratorRead);
|
||||
accelerator_for(sss, osites, 1, {
|
||||
for(int j=0;j<nbasis;j++){
|
||||
A_v[sss](i,j) = FT_v[sss](j);
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Only needed if nonhermitian
|
||||
// if ( ! hermitian ) {
|
||||
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
||||
// PopulateAdag();
|
||||
// }
|
||||
// Need to write something to populate Adag from A
|
||||
|
||||
for(int p=0;p<geom_srhs.npoint;p++){
|
||||
GridtoBLAS(_A[p],BLAS_A[p]);
|
||||
}
|
||||
/*
|
||||
Grid : Message : 11698.730546 s : CoarsenOperator eigen 1334 us
|
||||
Grid : Message : 11698.730563 s : CoarsenOperator phase 34729 us
|
||||
Grid : Message : 11698.730565 s : CoarsenOperator phaseBZ 2423814 us
|
||||
Grid : Message : 11698.730566 s : CoarsenOperator mat 127890998 us
|
||||
Grid : Message : 11698.730567 s : CoarsenOperator proj 515840840 us
|
||||
Grid : Message : 11698.730568 s : CoarsenOperator inv 103948313 us
|
||||
Takes 600s to compute matrix elements, DOMINATED by the block project.
|
||||
Easy to speed up with the batched block project.
|
||||
Store npoint vectors, get npoint x Nbasis block projection, and 81 fold faster.
|
||||
|
||||
// Block project below taks to 240s
|
||||
Grid : Message : 328.193418 s : CoarsenOperator phase 38338 us
|
||||
Grid : Message : 328.193434 s : CoarsenOperator phaseBZ 1711226 us
|
||||
Grid : Message : 328.193436 s : CoarsenOperator mat 122213270 us
|
||||
//Grid : Message : 328.193438 s : CoarsenOperator proj 1181154 us <-- this is mistimed
|
||||
//Grid : Message : 11698.730568 s : CoarsenOperator inv 103948313 us <-- Cut this ~10x if lucky by loop fusion
|
||||
*/
|
||||
#else
|
||||
RealD tproj=0.0;
|
||||
RealD tmat=0.0;
|
||||
RealD tphase=0.0;
|
||||
RealD tphaseBZ=0.0;
|
||||
RealD tinv=0.0;
|
||||
|
||||
std::cout << GridLogMessage<< "GeneralCoarsenMatrixMrhs "<< std::endl;
|
||||
|
||||
GridBase *grid = Subspace.FineGrid;
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Orthogonalise the subblocks over the basis
|
||||
/////////////////////////////////////////////////////////////
|
||||
CoarseScalar InnerProd(CoarseGrid);
|
||||
blockOrthogonalise(InnerProd,Subspace.subspace);
|
||||
|
||||
|
||||
MultiRHSBlockProject<Lattice<Fobj> > Projector;
|
||||
Projector.Allocate(nbasis,grid,CoarseGrid);
|
||||
Projector.ImportBasis(Subspace.subspace);
|
||||
|
||||
const int npoint = geom_srhs.npoint;
|
||||
|
||||
Coordinate clatt = CoarseGrid->GlobalDimensions();
|
||||
int Nd = CoarseGrid->Nd();
|
||||
/*
|
||||
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
|
||||
* Matrix index i is mapped to this shift via
|
||||
* geom.shifts[i]
|
||||
*
|
||||
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
|
||||
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
|
||||
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
|
||||
* = M_{kl} A_ji^{b.b+l}
|
||||
*
|
||||
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
|
||||
*
|
||||
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
|
||||
*
|
||||
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
|
||||
*/
|
||||
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
|
||||
ComplexD ci(0.0,1.0);
|
||||
for(int k=0;k<npoint;k++){ // Loop over momenta
|
||||
|
||||
for(int l=0;l<npoint;l++){ // Loop over nbr relative
|
||||
ComplexD phase(0.0,0.0);
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
phase=phase+TwoPiL*geom_srhs.shifts[k][mu]*geom_srhs.shifts[l][mu];
|
||||
}
|
||||
phase=exp(phase*ci);
|
||||
Mkl(k,l) = phase;
|
||||
}
|
||||
}
|
||||
invMkl = Mkl.inverse();
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
// Now compute the matrix elements of linop between the orthonormal
|
||||
// set of vectors.
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
FineField phaV(grid); // Phased block basis vector
|
||||
FineField MphaV(grid);// Matrix applied
|
||||
std::vector<FineComplexField> phaF(npoint,grid);
|
||||
std::vector<CoarseComplexField> pha(npoint,CoarseGrid);
|
||||
|
||||
CoarseVector coarseInner(CoarseGrid);
|
||||
|
||||
tphase=-usecond();
|
||||
typedef typename CComplex::scalar_type SComplex;
|
||||
FineComplexField one(grid); one=SComplex(1.0);
|
||||
FineComplexField zz(grid); zz = Zero();
|
||||
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
|
||||
/////////////////////////////////////////////////////
|
||||
// Stick a phase on every block
|
||||
/////////////////////////////////////////////////////
|
||||
CoarseComplexField coor(CoarseGrid);
|
||||
pha[p]=Zero();
|
||||
for(int mu=0;mu<Nd;mu++){
|
||||
LatticeCoordinate(coor,mu);
|
||||
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
|
||||
pha[p] = pha[p] + (TwoPiL * geom_srhs.shifts[p][mu]) * coor;
|
||||
}
|
||||
pha[p] =exp(pha[p]*ci);
|
||||
|
||||
blockZAXPY(phaF[p],pha[p],one,zz);
|
||||
}
|
||||
tphase+=usecond();
|
||||
|
||||
// Could save on temporary storage here
|
||||
std::vector<CoarseMatrix> _A;
|
||||
_A.resize(geom_srhs.npoint,CoarseGrid);
|
||||
|
||||
// Count use small chunks than npoint == 81 and save memory
|
||||
int batch = 9;
|
||||
std::vector<FineField> _MphaV(batch,grid);
|
||||
std::vector<CoarseVector> TmpProj(batch,CoarseGrid);
|
||||
|
||||
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid);
|
||||
CoarseVector FT(CoarseGrid);
|
||||
for(int i=0;i<nbasis;i++){// Loop over basis vectors
|
||||
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
|
||||
|
||||
// std::cout << GridLogMessage << " phasing the fine vector "<<std::endl;
|
||||
// Fixme : do this in batches
|
||||
for(int p=0;p<npoint;p+=batch){ // Loop over momenta in npoint
|
||||
|
||||
for(int b=0;b<MIN(batch,npoint-p);b++){
|
||||
tphaseBZ-=usecond();
|
||||
phaV = phaF[p+b]*Subspace.subspace[i];
|
||||
tphaseBZ+=usecond();
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Multiple phased subspace vector by matrix and project to subspace
|
||||
// Remove local bulk phase to leave relative phases
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Memory footprint was an issue
|
||||
tmat-=usecond();
|
||||
linop.Op(phaV,MphaV);
|
||||
_MphaV[b] = MphaV;
|
||||
tmat+=usecond();
|
||||
}
|
||||
|
||||
// std::cout << GridLogMessage << " Calling block project "<<std::endl;
|
||||
tproj-=usecond();
|
||||
Projector.blockProject(_MphaV,TmpProj);
|
||||
tproj+=usecond();
|
||||
|
||||
// std::cout << GridLogMessage << " conj phasing the coarse vectors "<<std::endl;
|
||||
for(int b=0;b<MIN(batch,npoint-p);b++){
|
||||
ComputeProj[p+b] = conjugate(pha[p+b])*TmpProj[b];
|
||||
}
|
||||
}
|
||||
|
||||
// Could do this with a block promote or similar BLAS call via the MultiRHSBlockProjector with a const matrix.
|
||||
|
||||
// std::cout << GridLogMessage << " Starting FT inv "<<std::endl;
|
||||
tinv-=usecond();
|
||||
for(int k=0;k<npoint;k++){
|
||||
FT = Zero();
|
||||
// 81 kernel calls as many ComputeProj vectors
|
||||
// Could fuse with a vector of views, but ugly
|
||||
// Could unroll the expression and run fewer kernels -- much more attractive
|
||||
// Could also do non blocking.
|
||||
#if 0
|
||||
for(int l=0;l<npoint;l++){
|
||||
FT= FT+ invMkl(l,k)*ComputeProj[l];
|
||||
}
|
||||
#else
|
||||
const int radix = 9;
|
||||
int ll;
|
||||
for(ll=0;ll+radix-1<npoint;ll+=radix){
|
||||
// When ll = npoint-radix, ll+radix-1 = npoint-1, and we do it all.
|
||||
FT = FT
|
||||
+ invMkl(ll+0,k)*ComputeProj[ll+0]
|
||||
+ invMkl(ll+1,k)*ComputeProj[ll+1]
|
||||
+ invMkl(ll+2,k)*ComputeProj[ll+2]
|
||||
+ invMkl(ll+3,k)*ComputeProj[ll+3]
|
||||
+ invMkl(ll+4,k)*ComputeProj[ll+4]
|
||||
+ invMkl(ll+5,k)*ComputeProj[ll+5]
|
||||
+ invMkl(ll+6,k)*ComputeProj[ll+6]
|
||||
+ invMkl(ll+7,k)*ComputeProj[ll+7]
|
||||
+ invMkl(ll+8,k)*ComputeProj[ll+8];
|
||||
}
|
||||
for(int l=ll;l<npoint;l++){
|
||||
FT= FT+ invMkl(l,k)*ComputeProj[l];
|
||||
}
|
||||
#endif
|
||||
|
||||
// 1 kernel call -- must be cheaper
|
||||
int osites=CoarseGrid->oSites();
|
||||
autoView( A_v , _A[k], AcceleratorWrite);
|
||||
autoView( FT_v , FT, AcceleratorRead);
|
||||
accelerator_for(sss, osites, 1, {
|
||||
for(int j=0;j<nbasis;j++){
|
||||
A_v[sss](i,j) = FT_v[sss](j);
|
||||
}
|
||||
});
|
||||
}
|
||||
tinv+=usecond();
|
||||
}
|
||||
|
||||
// Only needed if nonhermitian
|
||||
// if ( ! hermitian ) {
|
||||
// std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
|
||||
// PopulateAdag();
|
||||
// }
|
||||
// Need to write something to populate Adag from A
|
||||
// std::cout << GridLogMessage << " Calling GridtoBLAS "<<std::endl;
|
||||
for(int p=0;p<geom_srhs.npoint;p++){
|
||||
GridtoBLAS(_A[p],BLAS_A[p]);
|
||||
}
|
||||
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator phaseBZ "<<tphaseBZ<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
|
||||
#endif
|
||||
}
|
||||
void Mdag(const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
this->M(in,out);
|
||||
}
|
||||
void M (const CoarseVector &in, CoarseVector &out)
|
||||
{
|
||||
// std::cout << GridLogMessage << "New Mrhs coarse"<<std::endl;
|
||||
conformable(CoarseGrid(),in.Grid());
|
||||
conformable(in.Grid(),out.Grid());
|
||||
out.Checkerboard() = in.Checkerboard();
|
||||
|
||||
RealD t_tot;
|
||||
RealD t_exch;
|
||||
RealD t_GtoB;
|
||||
RealD t_BtoG;
|
||||
RealD t_mult;
|
||||
|
||||
t_tot=-usecond();
|
||||
CoarseVector tin=in;
|
||||
t_exch=-usecond();
|
||||
CoarseVector pin = Cell.ExchangePeriodic(tin); //padded input
|
||||
t_exch+=usecond();
|
||||
|
||||
CoarseVector pout(pin.Grid());
|
||||
|
||||
int npoint = geom.npoint;
|
||||
typedef calcMatrix* Aview;
|
||||
typedef LatticeView<Cvec> Vview;
|
||||
|
||||
const int Nsimd = CComplex::Nsimd();
|
||||
|
||||
int64_t nrhs =pin.Grid()->GlobalDimensions()[0];
|
||||
assert(nrhs>=1);
|
||||
|
||||
RealD flops,bytes;
|
||||
int64_t osites=in.Grid()->oSites(); // unpadded
|
||||
int64_t unpadded_vol = CoarseGrid()->lSites()/nrhs;
|
||||
|
||||
flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
|
||||
bytes = 1.0*osites*sizeof(siteMatrix)*npoint/pin.Grid()->GlobalDimensions()[0]
|
||||
+ 2.0*osites*sizeof(siteVector)*npoint;
|
||||
|
||||
|
||||
t_GtoB=-usecond();
|
||||
GridtoBLAS(pin,BLAS_B);
|
||||
t_GtoB+=usecond();
|
||||
|
||||
GridBLAS BLAS;
|
||||
|
||||
t_mult=-usecond();
|
||||
for(int p=0;p<geom.npoint;p++){
|
||||
RealD c = 1.0;
|
||||
if (p==0) c = 0.0;
|
||||
ComplexD beta(c);
|
||||
|
||||
BLAS.gemmBatched(nbasis,nrhs,nbasis,
|
||||
ComplexD(1.0),
|
||||
BLAS_AP[p],
|
||||
BLAS_BP[p],
|
||||
ComplexD(c),
|
||||
BLAS_CP);
|
||||
}
|
||||
BLAS.synchronise();
|
||||
t_mult+=usecond();
|
||||
|
||||
t_BtoG=-usecond();
|
||||
BLAStoGrid(out,BLAS_C);
|
||||
t_BtoG+=usecond();
|
||||
t_tot+=usecond();
|
||||
/*
|
||||
std::cout << GridLogMessage << "New Mrhs coarse DONE "<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Mult exch "<<t_exch<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Mult mult "<<t_mult<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Mult GtoB "<<t_GtoB<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Mult BtoG "<<t_BtoG<<" us"<<std::endl;
|
||||
std::cout << GridLogMessage<<"Coarse Mult tot "<<t_tot<<" us"<<std::endl;
|
||||
*/
|
||||
// std::cout << GridLogMessage<<std::endl;
|
||||
// std::cout << GridLogMessage<<"Coarse Kernel flops "<< flops<<std::endl;
|
||||
// std::cout << GridLogMessage<<"Coarse Kernel flop/s "<< flops/t_mult<<" mflop/s"<<std::endl;
|
||||
// std::cout << GridLogMessage<<"Coarse Kernel bytes/s "<< bytes/t_mult/1000<<" GB/s"<<std::endl;
|
||||
// std::cout << GridLogMessage<<"Coarse overall flops/s "<< flops/t_tot<<" mflop/s"<<std::endl;
|
||||
// std::cout << GridLogMessage<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
|
||||
};
|
||||
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
|
||||
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
|
||||
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
238
Grid/algorithms/multigrid/Geometry.h
Normal file
238
Grid/algorithms/multigrid/Geometry.h
Normal file
@ -0,0 +1,238 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
// Geometry class in cartesian case
|
||||
/////////////////////////////////////////////////////////////////
|
||||
|
||||
class Geometry {
|
||||
public:
|
||||
int npoint;
|
||||
int base;
|
||||
std::vector<int> directions ;
|
||||
std::vector<int> displacements;
|
||||
std::vector<int> points_dagger;
|
||||
|
||||
Geometry(int _d) {
|
||||
|
||||
base = (_d==5) ? 1:0;
|
||||
|
||||
// make coarse grid stencil for 4d , not 5d
|
||||
if ( _d==5 ) _d=4;
|
||||
|
||||
npoint = 2*_d+1;
|
||||
directions.resize(npoint);
|
||||
displacements.resize(npoint);
|
||||
points_dagger.resize(npoint);
|
||||
for(int d=0;d<_d;d++){
|
||||
directions[d ] = d+base;
|
||||
directions[d+_d] = d+base;
|
||||
displacements[d ] = +1;
|
||||
displacements[d+_d]= -1;
|
||||
points_dagger[d ] = d+_d;
|
||||
points_dagger[d+_d] = d;
|
||||
}
|
||||
directions [2*_d]=0;
|
||||
displacements[2*_d]=0;
|
||||
points_dagger[2*_d]=2*_d;
|
||||
}
|
||||
|
||||
int point(int dir, int disp) {
|
||||
assert(disp == -1 || disp == 0 || disp == 1);
|
||||
assert(base+0 <= dir && dir < base+4);
|
||||
|
||||
// directions faster index = new indexing
|
||||
// 4d (base = 0):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 0 1 2 3 0 1 2 3 0
|
||||
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
|
||||
// 5d (base = 1):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 1 2 3 4 1 2 3 4 0
|
||||
// disp +1 +1 +1 +1 -1 -1 -1 -1 0
|
||||
|
||||
// displacements faster index = old indexing
|
||||
// 4d (base = 0):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 0 0 1 1 2 2 3 3 0
|
||||
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
|
||||
// 5d (base = 1):
|
||||
// point 0 1 2 3 4 5 6 7 8
|
||||
// dir 1 1 2 2 3 3 4 4 0
|
||||
// disp +1 -1 +1 -1 +1 -1 +1 -1 0
|
||||
|
||||
if(dir == 0 and disp == 0)
|
||||
return 8;
|
||||
else // New indexing
|
||||
return (1 - disp) / 2 * 4 + dir - base;
|
||||
// else // Old indexing
|
||||
// return (4 * (dir - base) + 1 - disp) / 2;
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
// Less local equivalent of Geometry class in cartesian case
|
||||
/////////////////////////////////////////////////////////////////
|
||||
class NonLocalStencilGeometry {
|
||||
public:
|
||||
// int depth;
|
||||
int skip;
|
||||
int hops;
|
||||
int npoint;
|
||||
std::vector<Coordinate> shifts;
|
||||
Coordinate stencil_size;
|
||||
Coordinate stencil_lo;
|
||||
Coordinate stencil_hi;
|
||||
GridCartesian *grid;
|
||||
GridCartesian *Grid() {return grid;};
|
||||
int Depth(void){return 1;}; // Ghost zone depth
|
||||
int Hops(void){return hops;}; // # of hops=> level of corner fill in in stencil
|
||||
int DimSkip(void){return skip;};
|
||||
|
||||
virtual ~NonLocalStencilGeometry() {};
|
||||
|
||||
int Reverse(int point)
|
||||
{
|
||||
int Nd = Grid()->Nd();
|
||||
Coordinate shft = shifts[point];
|
||||
Coordinate rev(Nd);
|
||||
for(int mu=0;mu<Nd;mu++) rev[mu]= -shft[mu];
|
||||
for(int p=0;p<npoint;p++){
|
||||
if(rev==shifts[p]){
|
||||
return p;
|
||||
}
|
||||
}
|
||||
assert(0);
|
||||
return -1;
|
||||
}
|
||||
void BuildShifts(void)
|
||||
{
|
||||
this->shifts.resize(0);
|
||||
int Nd = this->grid->Nd();
|
||||
|
||||
int dd = this->DimSkip();
|
||||
for(int s0=this->stencil_lo[dd+0];s0<=this->stencil_hi[dd+0];s0++){
|
||||
for(int s1=this->stencil_lo[dd+1];s1<=this->stencil_hi[dd+1];s1++){
|
||||
for(int s2=this->stencil_lo[dd+2];s2<=this->stencil_hi[dd+2];s2++){
|
||||
for(int s3=this->stencil_lo[dd+3];s3<=this->stencil_hi[dd+3];s3++){
|
||||
Coordinate sft(Nd,0);
|
||||
sft[dd+0] = s0;
|
||||
sft[dd+1] = s1;
|
||||
sft[dd+2] = s2;
|
||||
sft[dd+3] = s3;
|
||||
int nhops = abs(s0)+abs(s1)+abs(s2)+abs(s3);
|
||||
if(nhops<=this->hops) this->shifts.push_back(sft);
|
||||
}}}}
|
||||
this->npoint = this->shifts.size();
|
||||
std::cout << GridLogMessage << "NonLocalStencilGeometry has "<< this->npoint << " terms in stencil "<<std::endl;
|
||||
}
|
||||
|
||||
NonLocalStencilGeometry(GridCartesian *_coarse_grid,int _hops,int _skip) : grid(_coarse_grid), hops(_hops), skip(_skip)
|
||||
{
|
||||
Coordinate latt = grid->GlobalDimensions();
|
||||
stencil_size.resize(grid->Nd());
|
||||
stencil_lo.resize(grid->Nd());
|
||||
stencil_hi.resize(grid->Nd());
|
||||
for(int d=0;d<grid->Nd();d++){
|
||||
if ( latt[d] == 1 ) {
|
||||
stencil_lo[d] = 0;
|
||||
stencil_hi[d] = 0;
|
||||
stencil_size[d]= 1;
|
||||
} else if ( latt[d] == 2 ) {
|
||||
stencil_lo[d] = -1;
|
||||
stencil_hi[d] = 0;
|
||||
stencil_size[d]= 2;
|
||||
} else if ( latt[d] > 2 ) {
|
||||
stencil_lo[d] = -1;
|
||||
stencil_hi[d] = 1;
|
||||
stencil_size[d]= 3;
|
||||
}
|
||||
}
|
||||
this->BuildShifts();
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
// Need to worry about red-black now
|
||||
class NonLocalStencilGeometry4D : public NonLocalStencilGeometry {
|
||||
public:
|
||||
virtual int DerivedDimSkip(void) { return 0;};
|
||||
NonLocalStencilGeometry4D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,0) { };
|
||||
virtual ~NonLocalStencilGeometry4D() {};
|
||||
};
|
||||
class NonLocalStencilGeometry5D : public NonLocalStencilGeometry {
|
||||
public:
|
||||
virtual int DerivedDimSkip(void) { return 1; };
|
||||
NonLocalStencilGeometry5D(GridCartesian *Coarse,int _hops) : NonLocalStencilGeometry(Coarse,_hops,1) { };
|
||||
virtual ~NonLocalStencilGeometry5D() {};
|
||||
};
|
||||
/*
|
||||
* Bunch of different options classes
|
||||
*/
|
||||
class NextToNextToNextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
|
||||
public:
|
||||
NextToNextToNextToNearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,4)
|
||||
{
|
||||
};
|
||||
};
|
||||
class NextToNextToNextToNearestStencilGeometry5D : public NonLocalStencilGeometry5D {
|
||||
public:
|
||||
NextToNextToNextToNearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,4)
|
||||
{
|
||||
};
|
||||
};
|
||||
class NextToNearestStencilGeometry4D : public NonLocalStencilGeometry4D {
|
||||
public:
|
||||
NextToNearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,2)
|
||||
{
|
||||
};
|
||||
};
|
||||
class NextToNearestStencilGeometry5D : public NonLocalStencilGeometry5D {
|
||||
public:
|
||||
NextToNearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,2)
|
||||
{
|
||||
};
|
||||
};
|
||||
class NearestStencilGeometry4D : public NonLocalStencilGeometry4D {
|
||||
public:
|
||||
NearestStencilGeometry4D(GridCartesian *Coarse) : NonLocalStencilGeometry4D(Coarse,1)
|
||||
{
|
||||
};
|
||||
};
|
||||
class NearestStencilGeometry5D : public NonLocalStencilGeometry5D {
|
||||
public:
|
||||
NearestStencilGeometry5D(GridCartesian *Coarse) : NonLocalStencilGeometry5D(Coarse,1)
|
||||
{
|
||||
};
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -1,13 +1,12 @@
|
||||
/*************************************************************************************
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/WilsonCloverFermion.cc
|
||||
Source file: Grid/algorithms/multigrid/MultiGrid.h
|
||||
|
||||
Copyright (C) 2017
|
||||
Copyright (C) 2023
|
||||
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
||||
Author: Peter Boyle <pboyle@bnl.gov>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -25,16 +24,11 @@
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
#include <Grid/Grid.h>
|
||||
#include <Grid/qcd/spin/Dirac.h>
|
||||
#include <Grid/qcd/action/fermion/WilsonCloverFermion.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/WilsonCloverFermionImplementation.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#include "impl.h"
|
||||
template class WilsonCloverFermion<IMPLEMENTATION>;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#include <Grid/algorithms/multigrid/Aggregates.h>
|
||||
#include <Grid/algorithms/multigrid/Geometry.h>
|
||||
#include <Grid/algorithms/multigrid/CoarsenedMatrix.h>
|
||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h>
|
||||
#include <Grid/algorithms/multigrid/GeneralCoarsenedMatrixMultiRHS.h>
|
@ -26,118 +26,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_ALIGNED_ALLOCATOR_H
|
||||
#define GRID_ALIGNED_ALLOCATOR_H
|
||||
|
||||
#ifdef HAVE_MALLOC_MALLOC_H
|
||||
#include <malloc/malloc.h>
|
||||
#endif
|
||||
#ifdef HAVE_MALLOC_H
|
||||
#include <malloc.h>
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_MM_MALLOC_H
|
||||
#include <mm_malloc.h>
|
||||
#endif
|
||||
|
||||
#define POINTER_CACHE
|
||||
#define GRID_ALLOC_ALIGN (2*1024*1024)
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// Move control to configure.ac and Config.h?
|
||||
#ifdef POINTER_CACHE
|
||||
class PointerCache {
|
||||
private:
|
||||
/*Pinning pages is costly*/
|
||||
/*Could maintain separate large and small allocation caches*/
|
||||
#ifdef GRID_NVCC
|
||||
static const int Ncache=128;
|
||||
#else
|
||||
static const int Ncache=8;
|
||||
#endif
|
||||
static int victim;
|
||||
|
||||
typedef struct {
|
||||
void *address;
|
||||
size_t bytes;
|
||||
int valid;
|
||||
} PointerCacheEntry;
|
||||
|
||||
static PointerCacheEntry Entries[Ncache];
|
||||
|
||||
public:
|
||||
|
||||
static void *Insert(void *ptr,size_t bytes) ;
|
||||
static void *Lookup(size_t bytes) ;
|
||||
|
||||
};
|
||||
#endif
|
||||
|
||||
std::string sizeString(size_t bytes);
|
||||
|
||||
struct MemoryStats
|
||||
{
|
||||
size_t totalAllocated{0}, maxAllocated{0},
|
||||
currentlyAllocated{0}, totalFreed{0};
|
||||
};
|
||||
|
||||
class MemoryProfiler
|
||||
{
|
||||
public:
|
||||
static MemoryStats *stats;
|
||||
static bool debug;
|
||||
};
|
||||
|
||||
#define memString(bytes) std::to_string(bytes) + " (" + sizeString(bytes) + ")"
|
||||
#define profilerDebugPrint \
|
||||
if (MemoryProfiler::stats) \
|
||||
{ \
|
||||
auto s = MemoryProfiler::stats; \
|
||||
std::cout << GridLogDebug << "[Memory debug] Stats " << MemoryProfiler::stats << std::endl; \
|
||||
std::cout << GridLogDebug << "[Memory debug] total : " << memString(s->totalAllocated) \
|
||||
<< std::endl; \
|
||||
std::cout << GridLogDebug << "[Memory debug] max : " << memString(s->maxAllocated) \
|
||||
<< std::endl; \
|
||||
std::cout << GridLogDebug << "[Memory debug] current: " << memString(s->currentlyAllocated) \
|
||||
<< std::endl; \
|
||||
std::cout << GridLogDebug << "[Memory debug] freed : " << memString(s->totalFreed) \
|
||||
<< std::endl; \
|
||||
}
|
||||
|
||||
#define profilerAllocate(bytes) \
|
||||
if (MemoryProfiler::stats) \
|
||||
{ \
|
||||
auto s = MemoryProfiler::stats; \
|
||||
s->totalAllocated += (bytes); \
|
||||
s->currentlyAllocated += (bytes); \
|
||||
s->maxAllocated = std::max(s->maxAllocated, s->currentlyAllocated); \
|
||||
} \
|
||||
if (MemoryProfiler::debug) \
|
||||
{ \
|
||||
std::cout << GridLogDebug << "[Memory debug] allocating " << memString(bytes) << std::endl; \
|
||||
profilerDebugPrint; \
|
||||
}
|
||||
|
||||
#define profilerFree(bytes) \
|
||||
if (MemoryProfiler::stats) \
|
||||
{ \
|
||||
auto s = MemoryProfiler::stats; \
|
||||
s->totalFreed += (bytes); \
|
||||
s->currentlyAllocated -= (bytes); \
|
||||
} \
|
||||
if (MemoryProfiler::debug) \
|
||||
{ \
|
||||
std::cout << GridLogDebug << "[Memory debug] freeing " << memString(bytes) << std::endl; \
|
||||
profilerDebugPrint; \
|
||||
}
|
||||
|
||||
void check_huge_pages(void *Buf,uint64_t BYTES);
|
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// A lattice of something, but assume the something is SIMDized.
|
||||
////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<typename _Tp>
|
||||
class alignedAllocator {
|
||||
public:
|
||||
@ -161,89 +53,179 @@ public:
|
||||
{
|
||||
size_type bytes = __n*sizeof(_Tp);
|
||||
profilerAllocate(bytes);
|
||||
|
||||
|
||||
#ifdef POINTER_CACHE
|
||||
_Tp *ptr = (_Tp *) PointerCache::Lookup(bytes);
|
||||
#else
|
||||
pointer ptr = nullptr;
|
||||
#endif
|
||||
|
||||
#ifdef GRID_NVCC
|
||||
////////////////////////////////////
|
||||
// Unified (managed) memory
|
||||
////////////////////////////////////
|
||||
if ( ptr == (_Tp *) NULL ) {
|
||||
// printf(" alignedAllocater cache miss %ld bytes ",bytes); BACKTRACEFP(stdout);
|
||||
auto err = cudaMallocManaged((void **)&ptr,bytes);
|
||||
if( err != cudaSuccess ) {
|
||||
ptr = (_Tp *) NULL;
|
||||
std::cerr << " cudaMallocManaged failed for " << bytes<<" bytes " <<cudaGetErrorString(err)<< std::endl;
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
assert( ptr != (_Tp *)NULL);
|
||||
#else
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
// 2MB align; could make option probably doesn't need configurability
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
#ifdef HAVE_MM_MALLOC_H
|
||||
if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) _mm_malloc(bytes,GRID_ALLOC_ALIGN);
|
||||
#else
|
||||
if ( ptr == (_Tp *) NULL ) ptr = (_Tp *) memalign(GRID_ALLOC_ALIGN,bytes);
|
||||
#endif
|
||||
assert( ptr != (_Tp *)NULL);
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// First touch optimise in threaded loop
|
||||
//////////////////////////////////////////////////
|
||||
uint64_t *cp = (uint64_t *)ptr;
|
||||
thread_for(n,bytes/sizeof(uint64_t), { // need only one touch per page
|
||||
cp[n]=0;
|
||||
});
|
||||
#endif
|
||||
_Tp *ptr = (_Tp*) MemoryManager::CpuAllocate(bytes);
|
||||
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
|
||||
return ptr;
|
||||
}
|
||||
|
||||
void deallocate(pointer __p, size_type __n) {
|
||||
void deallocate(pointer __p, size_type __n)
|
||||
{
|
||||
size_type bytes = __n * sizeof(_Tp);
|
||||
|
||||
profilerFree(bytes);
|
||||
|
||||
#ifdef POINTER_CACHE
|
||||
pointer __freeme = (pointer)PointerCache::Insert((void *)__p,bytes);
|
||||
#else
|
||||
pointer __freeme = __p;
|
||||
#endif
|
||||
|
||||
#ifdef GRID_NVCC
|
||||
if ( __freeme ) cudaFree((void *)__freeme);
|
||||
#else
|
||||
#ifdef HAVE_MM_MALLOC_H
|
||||
if ( __freeme ) _mm_free((void *)__freeme);
|
||||
#else
|
||||
if ( __freeme ) free((void *)__freeme);
|
||||
#endif
|
||||
#endif
|
||||
MemoryManager::CpuFree((void *)__p,bytes);
|
||||
}
|
||||
|
||||
// FIXME: hack for the copy constructor, eventually it must be avoided
|
||||
void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); };
|
||||
//void construct(pointer __p, const _Tp& __val) { };
|
||||
// FIXME: hack for the copy constructor: it must be avoided to avoid single thread loop
|
||||
void construct(pointer __p, const _Tp& __val) { assert(0);};
|
||||
void construct(pointer __p) { };
|
||||
void destroy(pointer __p) { };
|
||||
};
|
||||
template<typename _Tp> inline bool operator==(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return true; }
|
||||
template<typename _Tp> inline bool operator!=(const alignedAllocator<_Tp>&, const alignedAllocator<_Tp>&){ return false; }
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////
|
||||
// Unified virtual memory
|
||||
//////////////////////////////////////////////////////////////////////////////////////
|
||||
template<typename _Tp>
|
||||
class uvmAllocator {
|
||||
public:
|
||||
typedef std::size_t size_type;
|
||||
typedef std::ptrdiff_t difference_type;
|
||||
typedef _Tp* pointer;
|
||||
typedef const _Tp* const_pointer;
|
||||
typedef _Tp& reference;
|
||||
typedef const _Tp& const_reference;
|
||||
typedef _Tp value_type;
|
||||
|
||||
template<typename _Tp1> struct rebind { typedef uvmAllocator<_Tp1> other; };
|
||||
uvmAllocator() throw() { }
|
||||
uvmAllocator(const uvmAllocator&) throw() { }
|
||||
template<typename _Tp1> uvmAllocator(const uvmAllocator<_Tp1>&) throw() { }
|
||||
~uvmAllocator() throw() { }
|
||||
pointer address(reference __x) const { return &__x; }
|
||||
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
|
||||
|
||||
pointer allocate(size_type __n, const void* _p= 0)
|
||||
{
|
||||
size_type bytes = __n*sizeof(_Tp);
|
||||
profilerAllocate(bytes);
|
||||
_Tp *ptr = (_Tp*) MemoryManager::SharedAllocate(bytes);
|
||||
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
|
||||
return ptr;
|
||||
}
|
||||
|
||||
void deallocate(pointer __p, size_type __n)
|
||||
{
|
||||
size_type bytes = __n * sizeof(_Tp);
|
||||
profilerFree(bytes);
|
||||
MemoryManager::SharedFree((void *)__p,bytes);
|
||||
}
|
||||
|
||||
void construct(pointer __p, const _Tp& __val) { new((void *)__p) _Tp(__val); };
|
||||
void construct(pointer __p) { };
|
||||
void destroy(pointer __p) { };
|
||||
};
|
||||
template<typename _Tp> inline bool operator==(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return true; }
|
||||
template<typename _Tp> inline bool operator!=(const uvmAllocator<_Tp>&, const uvmAllocator<_Tp>&){ return false; }
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Device memory
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
template<typename _Tp>
|
||||
class devAllocator {
|
||||
public:
|
||||
typedef std::size_t size_type;
|
||||
typedef std::ptrdiff_t difference_type;
|
||||
typedef _Tp* pointer;
|
||||
typedef const _Tp* const_pointer;
|
||||
typedef _Tp& reference;
|
||||
typedef const _Tp& const_reference;
|
||||
typedef _Tp value_type;
|
||||
|
||||
template<typename _Tp1> struct rebind { typedef devAllocator<_Tp1> other; };
|
||||
devAllocator() throw() { }
|
||||
devAllocator(const devAllocator&) throw() { }
|
||||
template<typename _Tp1> devAllocator(const devAllocator<_Tp1>&) throw() { }
|
||||
~devAllocator() throw() { }
|
||||
pointer address(reference __x) const { return &__x; }
|
||||
size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
|
||||
|
||||
pointer allocate(size_type __n, const void* _p= 0)
|
||||
{
|
||||
size_type bytes = __n*sizeof(_Tp);
|
||||
profilerAllocate(bytes);
|
||||
_Tp *ptr = (_Tp*) MemoryManager::AcceleratorAllocate(bytes);
|
||||
assert( ( (_Tp*)ptr != (_Tp *)NULL ) );
|
||||
return ptr;
|
||||
}
|
||||
|
||||
void deallocate(pointer __p, size_type __n)
|
||||
{
|
||||
size_type bytes = __n * sizeof(_Tp);
|
||||
profilerFree(bytes);
|
||||
MemoryManager::AcceleratorFree((void *)__p,bytes);
|
||||
}
|
||||
void construct(pointer __p, const _Tp& __val) { };
|
||||
void construct(pointer __p) { };
|
||||
void destroy(pointer __p) { };
|
||||
};
|
||||
template<typename _Tp> inline bool operator==(const devAllocator<_Tp>&, const devAllocator<_Tp>&){ return true; }
|
||||
template<typename _Tp> inline bool operator!=(const devAllocator<_Tp>&, const devAllocator<_Tp>&){ return false; }
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Template typedefs
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
template<class T> using commAllocator = alignedAllocator<T>;
|
||||
template<class T> using Vector = std::vector<T,alignedAllocator<T> >;
|
||||
template<class T> using commVector = std::vector<T,alignedAllocator<T> >;
|
||||
template<class T> using Matrix = std::vector<std::vector<T,alignedAllocator<T> > >;
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
// Cshift on device
|
||||
template<class T> using cshiftAllocator = devAllocator<T>;
|
||||
#else
|
||||
// Cshift on host
|
||||
template<class T> using cshiftAllocator = std::allocator<T>;
|
||||
#endif
|
||||
|
||||
template<class T> using Vector = std::vector<T,uvmAllocator<T> >;
|
||||
template<class T> using stencilVector = std::vector<T,alignedAllocator<T> >;
|
||||
template<class T> using commVector = std::vector<T,devAllocator<T> >;
|
||||
template<class T> using deviceVector = std::vector<T,devAllocator<T> >;
|
||||
template<class T> using cshiftVector = std::vector<T,cshiftAllocator<T> >;
|
||||
|
||||
/*
|
||||
template<class T> class vecView
|
||||
{
|
||||
protected:
|
||||
T * data;
|
||||
uint64_t size;
|
||||
ViewMode mode;
|
||||
void * cpu_ptr;
|
||||
public:
|
||||
accelerator_inline T & operator[](size_t i) const { return this->data[i]; };
|
||||
vecView(std::vector<T> &refer_to_me,ViewMode _mode)
|
||||
{
|
||||
cpu_ptr = &refer_to_me[0];
|
||||
size = refer_to_me.size();
|
||||
mode = _mode;
|
||||
data =(T *) MemoryManager::ViewOpen(cpu_ptr,
|
||||
size*sizeof(T),
|
||||
mode,
|
||||
AdviseDefault);
|
||||
}
|
||||
void ViewClose(void)
|
||||
{ // Inform the manager
|
||||
MemoryManager::ViewClose(this->cpu_ptr,this->mode);
|
||||
}
|
||||
};
|
||||
|
||||
template<class T> vecView<T> VectorView(std::vector<T> &vec,ViewMode _mode)
|
||||
{
|
||||
vecView<T> ret(vec,_mode); // does the open
|
||||
return ret; // must be closed
|
||||
}
|
||||
|
||||
// Little autoscope assister
|
||||
template<class View>
|
||||
class VectorViewCloser
|
||||
{
|
||||
View v; // Take a copy of view and call view close when I go out of scope automatically
|
||||
public:
|
||||
VectorViewCloser(View &_v) : v(_v) {};
|
||||
~VectorViewCloser() { auto ptr = v.cpu_ptr; v.ViewClose(); MemoryManager::NotifyDeletion(ptr);}
|
||||
};
|
||||
|
||||
#define autoVecView(v_v,v,mode) \
|
||||
auto v_v = VectorView(v,mode); \
|
||||
ViewCloser<decltype(v_v)> _autoView##v_v(v_v);
|
||||
*/
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
||||
|
||||
|
4
Grid/allocator/Allocator.h
Normal file
4
Grid/allocator/Allocator.h
Normal file
@ -0,0 +1,4 @@
|
||||
#pragma once
|
||||
#include <Grid/allocator/MemoryStats.h>
|
||||
#include <Grid/allocator/MemoryManager.h>
|
||||
#include <Grid/allocator/AlignedAllocator.h>
|
324
Grid/allocator/MemoryManager.cc
Normal file
324
Grid/allocator/MemoryManager.cc
Normal file
@ -0,0 +1,324 @@
|
||||
#include <Grid/GridCore.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/*Allocation types, saying which pointer cache should be used*/
|
||||
#define Cpu (0)
|
||||
#define CpuHuge (1)
|
||||
#define CpuSmall (2)
|
||||
#define Acc (3)
|
||||
#define AccHuge (4)
|
||||
#define AccSmall (5)
|
||||
#define Shared (6)
|
||||
#define SharedHuge (7)
|
||||
#define SharedSmall (8)
|
||||
#undef GRID_MM_VERBOSE
|
||||
uint64_t total_shared;
|
||||
uint64_t total_device;
|
||||
uint64_t total_host;;
|
||||
void MemoryManager::PrintBytes(void)
|
||||
{
|
||||
std::cout << " MemoryManager : ------------------------------------ "<<std::endl;
|
||||
std::cout << " MemoryManager : PrintBytes "<<std::endl;
|
||||
std::cout << " MemoryManager : ------------------------------------ "<<std::endl;
|
||||
std::cout << " MemoryManager : "<<(total_shared>>20)<<" shared Mbytes "<<std::endl;
|
||||
std::cout << " MemoryManager : "<<(total_device>>20)<<" accelerator Mbytes "<<std::endl;
|
||||
std::cout << " MemoryManager : "<<(total_host>>20) <<" cpu Mbytes "<<std::endl;
|
||||
uint64_t cacheBytes;
|
||||
cacheBytes = CacheBytes[Cpu];
|
||||
std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" cpu cache Mbytes "<<std::endl;
|
||||
cacheBytes = CacheBytes[Acc];
|
||||
std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" acc cache Mbytes "<<std::endl;
|
||||
cacheBytes = CacheBytes[Shared];
|
||||
std::cout << " MemoryManager : "<<(cacheBytes>>20) <<" shared cache Mbytes "<<std::endl;
|
||||
|
||||
#ifdef GRID_CUDA
|
||||
cuda_mem();
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
uint64_t MemoryManager::DeviceCacheBytes() { return CacheBytes[Acc] + CacheBytes[AccHuge] + CacheBytes[AccSmall]; }
|
||||
uint64_t MemoryManager::HostCacheBytes() { return CacheBytes[Cpu] + CacheBytes[CpuHuge] + CacheBytes[CpuSmall]; }
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Data tables for recently freed pooiniter caches
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
MemoryManager::AllocationCacheEntry MemoryManager::Entries[MemoryManager::NallocType][MemoryManager::NallocCacheMax];
|
||||
int MemoryManager::Victim[MemoryManager::NallocType];
|
||||
int MemoryManager::Ncache[MemoryManager::NallocType] = { 2, 0, 8, 8, 0, 16, 8, 0, 16 };
|
||||
uint64_t MemoryManager::CacheBytes[MemoryManager::NallocType];
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Actual allocation and deallocation utils
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
void *MemoryManager::AcceleratorAllocate(size_t bytes)
|
||||
{
|
||||
total_device+=bytes;
|
||||
void *ptr = (void *) Lookup(bytes,Acc);
|
||||
if ( ptr == (void *) NULL ) {
|
||||
ptr = (void *) acceleratorAllocDevice(bytes);
|
||||
}
|
||||
#ifdef GRID_MM_VERBOSE
|
||||
std::cout <<"AcceleratorAllocate "<<std::endl;
|
||||
PrintBytes();
|
||||
#endif
|
||||
return ptr;
|
||||
}
|
||||
void MemoryManager::AcceleratorFree (void *ptr,size_t bytes)
|
||||
{
|
||||
total_device-=bytes;
|
||||
void *__freeme = Insert(ptr,bytes,Acc);
|
||||
if ( __freeme ) {
|
||||
acceleratorFreeDevice(__freeme);
|
||||
}
|
||||
#ifdef GRID_MM_VERBOSE
|
||||
std::cout <<"AcceleratorFree "<<std::endl;
|
||||
PrintBytes();
|
||||
#endif
|
||||
}
|
||||
void *MemoryManager::SharedAllocate(size_t bytes)
|
||||
{
|
||||
total_shared+=bytes;
|
||||
void *ptr = (void *) Lookup(bytes,Shared);
|
||||
if ( ptr == (void *) NULL ) {
|
||||
ptr = (void *) acceleratorAllocShared(bytes);
|
||||
}
|
||||
#ifdef GRID_MM_VERBOSE
|
||||
std::cout <<"SharedAllocate "<<std::endl;
|
||||
PrintBytes();
|
||||
#endif
|
||||
return ptr;
|
||||
}
|
||||
void MemoryManager::SharedFree (void *ptr,size_t bytes)
|
||||
{
|
||||
total_shared-=bytes;
|
||||
void *__freeme = Insert(ptr,bytes,Shared);
|
||||
if ( __freeme ) {
|
||||
acceleratorFreeShared(__freeme);
|
||||
}
|
||||
#ifdef GRID_MM_VERBOSE
|
||||
std::cout <<"SharedFree "<<std::endl;
|
||||
PrintBytes();
|
||||
#endif
|
||||
}
|
||||
#ifdef GRID_UVM
|
||||
void *MemoryManager::CpuAllocate(size_t bytes)
|
||||
{
|
||||
total_host+=bytes;
|
||||
void *ptr = (void *) Lookup(bytes,Cpu);
|
||||
if ( ptr == (void *) NULL ) {
|
||||
ptr = (void *) acceleratorAllocShared(bytes);
|
||||
}
|
||||
#ifdef GRID_MM_VERBOSE
|
||||
std::cout <<"CpuAllocate "<<std::endl;
|
||||
PrintBytes();
|
||||
#endif
|
||||
return ptr;
|
||||
}
|
||||
void MemoryManager::CpuFree (void *_ptr,size_t bytes)
|
||||
{
|
||||
total_host-=bytes;
|
||||
NotifyDeletion(_ptr);
|
||||
void *__freeme = Insert(_ptr,bytes,Cpu);
|
||||
if ( __freeme ) {
|
||||
acceleratorFreeShared(__freeme);
|
||||
}
|
||||
#ifdef GRID_MM_VERBOSE
|
||||
std::cout <<"CpuFree "<<std::endl;
|
||||
PrintBytes();
|
||||
#endif
|
||||
}
|
||||
#else
|
||||
void *MemoryManager::CpuAllocate(size_t bytes)
|
||||
{
|
||||
total_host+=bytes;
|
||||
void *ptr = (void *) Lookup(bytes,Cpu);
|
||||
if ( ptr == (void *) NULL ) {
|
||||
ptr = (void *) acceleratorAllocCpu(bytes);
|
||||
}
|
||||
#ifdef GRID_MM_VERBOSE
|
||||
std::cout <<"CpuAllocate "<<std::endl;
|
||||
PrintBytes();
|
||||
#endif
|
||||
return ptr;
|
||||
}
|
||||
void MemoryManager::CpuFree (void *_ptr,size_t bytes)
|
||||
{
|
||||
total_host-=bytes;
|
||||
NotifyDeletion(_ptr);
|
||||
void *__freeme = Insert(_ptr,bytes,Cpu);
|
||||
if ( __freeme ) {
|
||||
acceleratorFreeCpu(__freeme);
|
||||
}
|
||||
#ifdef GRID_MM_VERBOSE
|
||||
std::cout <<"CpuFree "<<std::endl;
|
||||
PrintBytes();
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
//////////////////////////////////////////
|
||||
// call only once
|
||||
//////////////////////////////////////////
|
||||
void MemoryManager::Init(void)
|
||||
{
|
||||
|
||||
char * str;
|
||||
int Nc;
|
||||
|
||||
str= getenv("GRID_ALLOC_NCACHE_LARGE");
|
||||
if ( str ) {
|
||||
Nc = atoi(str);
|
||||
if ( (Nc>=0) && (Nc < NallocCacheMax)) {
|
||||
Ncache[Cpu]=Nc;
|
||||
Ncache[Acc]=Nc;
|
||||
Ncache[Shared]=Nc;
|
||||
}
|
||||
}
|
||||
|
||||
str= getenv("GRID_ALLOC_NCACHE_HUGE");
|
||||
if ( str ) {
|
||||
Nc = atoi(str);
|
||||
if ( (Nc>=0) && (Nc < NallocCacheMax)) {
|
||||
Ncache[CpuHuge]=Nc;
|
||||
Ncache[AccHuge]=Nc;
|
||||
Ncache[SharedHuge]=Nc;
|
||||
}
|
||||
}
|
||||
|
||||
str= getenv("GRID_ALLOC_NCACHE_SMALL");
|
||||
if ( str ) {
|
||||
Nc = atoi(str);
|
||||
if ( (Nc>=0) && (Nc < NallocCacheMax)) {
|
||||
Ncache[CpuSmall]=Nc;
|
||||
Ncache[AccSmall]=Nc;
|
||||
Ncache[SharedSmall]=Nc;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void MemoryManager::InitMessage(void) {
|
||||
|
||||
#ifndef GRID_UVM
|
||||
std::cout << GridLogMessage << "MemoryManager Cache "<< MemoryManager::DeviceMaxBytes <<" bytes "<<std::endl;
|
||||
#endif
|
||||
|
||||
std::cout << GridLogMessage<< "MemoryManager::Init() setting up"<<std::endl;
|
||||
#ifdef ALLOCATION_CACHE
|
||||
std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent host allocations: SMALL "<<Ncache[CpuSmall]<<" LARGE "<<Ncache[Cpu]<<" HUGE "<<Ncache[CpuHuge]<<std::endl;
|
||||
std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent device allocations: SMALL "<<Ncache[AccSmall]<<" LARGE "<<Ncache[Acc]<<" Huge "<<Ncache[AccHuge]<<std::endl;
|
||||
std::cout << GridLogMessage<< "MemoryManager::Init() cache pool for recent shared allocations: SMALL "<<Ncache[SharedSmall]<<" LARGE "<<Ncache[Shared]<<" Huge "<<Ncache[SharedHuge]<<std::endl;
|
||||
#endif
|
||||
|
||||
#ifdef GRID_UVM
|
||||
std::cout << GridLogMessage<< "MemoryManager::Init() Unified memory space"<<std::endl;
|
||||
#ifdef GRID_CUDA
|
||||
std::cout << GridLogMessage<< "MemoryManager::Init() Using cudaMallocManaged"<<std::endl;
|
||||
#endif
|
||||
#ifdef GRID_HIP
|
||||
std::cout << GridLogMessage<< "MemoryManager::Init() Using hipMallocManaged"<<std::endl;
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_shared"<<std::endl;
|
||||
#endif
|
||||
#else
|
||||
std::cout << GridLogMessage<< "MemoryManager::Init() Non unified: Caching accelerator data in dedicated memory"<<std::endl;
|
||||
#ifdef GRID_CUDA
|
||||
std::cout << GridLogMessage<< "MemoryManager::Init() Using cudaMalloc"<<std::endl;
|
||||
#endif
|
||||
#ifdef GRID_HIP
|
||||
std::cout << GridLogMessage<< "MemoryManager::Init() Using hipMalloc"<<std::endl;
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
std::cout << GridLogMessage<< "MemoryManager::Init() Using SYCL malloc_device"<<std::endl;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
void *MemoryManager::Insert(void *ptr,size_t bytes,int type)
|
||||
{
|
||||
#ifdef ALLOCATION_CACHE
|
||||
int cache;
|
||||
if (bytes < GRID_ALLOC_SMALL_LIMIT) cache = type + 2;
|
||||
else if (bytes >= GRID_ALLOC_HUGE_LIMIT) cache = type + 1;
|
||||
else cache = type;
|
||||
|
||||
return Insert(ptr,bytes,Entries[cache],Ncache[cache],Victim[cache],CacheBytes[cache]);
|
||||
#else
|
||||
return ptr;
|
||||
#endif
|
||||
}
|
||||
|
||||
void *MemoryManager::Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim, uint64_t &cacheBytes)
|
||||
{
|
||||
#ifdef GRID_OMP
|
||||
assert(omp_in_parallel()==0);
|
||||
#endif
|
||||
|
||||
if (ncache == 0) return ptr;
|
||||
|
||||
void * ret = NULL;
|
||||
int v = -1;
|
||||
|
||||
for(int e=0;e<ncache;e++) {
|
||||
if ( entries[e].valid==0 ) {
|
||||
v=e;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if ( v==-1 ) {
|
||||
v=victim;
|
||||
victim = (victim+1)%ncache;
|
||||
}
|
||||
|
||||
if ( entries[v].valid ) {
|
||||
ret = entries[v].address;
|
||||
cacheBytes -= entries[v].bytes;
|
||||
entries[v].valid = 0;
|
||||
entries[v].address = NULL;
|
||||
entries[v].bytes = 0;
|
||||
}
|
||||
|
||||
entries[v].address=ptr;
|
||||
entries[v].bytes =bytes;
|
||||
entries[v].valid =1;
|
||||
cacheBytes += bytes;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void *MemoryManager::Lookup(size_t bytes,int type)
|
||||
{
|
||||
#ifdef ALLOCATION_CACHE
|
||||
int cache;
|
||||
if (bytes < GRID_ALLOC_SMALL_LIMIT) cache = type + 2;
|
||||
else if (bytes >= GRID_ALLOC_HUGE_LIMIT) cache = type + 1;
|
||||
else cache = type;
|
||||
|
||||
return Lookup(bytes,Entries[cache],Ncache[cache],CacheBytes[cache]);
|
||||
#else
|
||||
return NULL;
|
||||
#endif
|
||||
}
|
||||
|
||||
void *MemoryManager::Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t & cacheBytes)
|
||||
{
|
||||
#ifdef GRID_OMP
|
||||
assert(omp_in_parallel()==0);
|
||||
#endif
|
||||
for(int e=0;e<ncache;e++){
|
||||
if ( entries[e].valid && ( entries[e].bytes == bytes ) ) {
|
||||
entries[e].valid = 0;
|
||||
cacheBytes -= entries[e].bytes;
|
||||
return entries[e].address;
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
226
Grid/allocator/MemoryManager.h
Normal file
226
Grid/allocator/MemoryManager.h
Normal file
@ -0,0 +1,226 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/MemoryManager.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
#include <list>
|
||||
#include <unordered_map>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
// Move control to configure.ac and Config.h?
|
||||
|
||||
#define GRID_ALLOC_SMALL_LIMIT (4096)
|
||||
#define GRID_ALLOC_HUGE_LIMIT (2147483648)
|
||||
|
||||
#define STRINGIFY(x) #x
|
||||
#define TOSTRING(x) STRINGIFY(x)
|
||||
#define FILE_LINE __FILE__ ":" TOSTRING(__LINE__)
|
||||
#define AUDIT(a) MemoryManager::Audit(FILE_LINE)
|
||||
|
||||
/*Pinning pages is costly*/
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Advise the LatticeAccelerator class
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
enum ViewAdvise {
|
||||
AdviseDefault = 0x0, // Regular data
|
||||
AdviseInfrequentUse = 0x1 // Advise that the data is used infrequently. This can
|
||||
// significantly influence performance of bulk storage.
|
||||
|
||||
// AdviseTransient = 0x2, // Data will mostly be read. On some architectures
|
||||
// enables read-only copies of memory to be kept on
|
||||
// host and device.
|
||||
|
||||
// AdviseAcceleratorWriteDiscard = 0x4 // Field will be written in entirety on device
|
||||
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// View Access Mode
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
enum ViewMode {
|
||||
AcceleratorRead = 0x01,
|
||||
AcceleratorWrite = 0x02,
|
||||
AcceleratorWriteDiscard = 0x04,
|
||||
CpuRead = 0x08,
|
||||
CpuWrite = 0x10,
|
||||
CpuWriteDiscard = 0x10 // same for now
|
||||
};
|
||||
|
||||
struct MemoryStatus {
|
||||
uint64_t DeviceBytes;
|
||||
uint64_t DeviceLRUBytes;
|
||||
uint64_t DeviceMaxBytes;
|
||||
uint64_t HostToDeviceBytes;
|
||||
uint64_t DeviceToHostBytes;
|
||||
uint64_t HostToDeviceXfer;
|
||||
uint64_t DeviceToHostXfer;
|
||||
uint64_t DeviceEvictions;
|
||||
uint64_t DeviceDestroy;
|
||||
uint64_t DeviceAllocCacheBytes;
|
||||
uint64_t HostAllocCacheBytes;
|
||||
};
|
||||
|
||||
|
||||
class MemoryManager {
|
||||
private:
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// For caching recently freed allocations
|
||||
////////////////////////////////////////////////////////////
|
||||
typedef struct {
|
||||
void *address;
|
||||
size_t bytes;
|
||||
int valid;
|
||||
} AllocationCacheEntry;
|
||||
|
||||
static const int NallocCacheMax=128;
|
||||
static const int NallocType=9;
|
||||
static AllocationCacheEntry Entries[NallocType][NallocCacheMax];
|
||||
static int Victim[NallocType];
|
||||
static int Ncache[NallocType];
|
||||
static uint64_t CacheBytes[NallocType];
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
// Free pool
|
||||
/////////////////////////////////////////////////
|
||||
static void *Insert(void *ptr,size_t bytes,int type) ;
|
||||
static void *Lookup(size_t bytes,int type) ;
|
||||
static void *Insert(void *ptr,size_t bytes,AllocationCacheEntry *entries,int ncache,int &victim,uint64_t &cbytes) ;
|
||||
static void *Lookup(size_t bytes,AllocationCacheEntry *entries,int ncache,uint64_t &cbytes) ;
|
||||
|
||||
public:
|
||||
static void PrintBytes(void);
|
||||
static void Audit(std::string s);
|
||||
static void Init(void);
|
||||
static void InitMessage(void);
|
||||
static void *AcceleratorAllocate(size_t bytes);
|
||||
static void AcceleratorFree (void *ptr,size_t bytes);
|
||||
static void *SharedAllocate(size_t bytes);
|
||||
static void SharedFree (void *ptr,size_t bytes);
|
||||
static void *CpuAllocate(size_t bytes);
|
||||
static void CpuFree (void *ptr,size_t bytes);
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Footprint tracking
|
||||
////////////////////////////////////////////////////////
|
||||
static uint64_t DeviceBytes;
|
||||
static uint64_t DeviceLRUBytes;
|
||||
static uint64_t DeviceMaxBytes;
|
||||
static uint64_t HostToDeviceBytes;
|
||||
static uint64_t DeviceToHostBytes;
|
||||
static uint64_t HostToDeviceXfer;
|
||||
static uint64_t DeviceToHostXfer;
|
||||
static uint64_t DeviceEvictions;
|
||||
static uint64_t DeviceDestroy;
|
||||
|
||||
static uint64_t DeviceCacheBytes();
|
||||
static uint64_t HostCacheBytes();
|
||||
|
||||
static MemoryStatus GetFootprint(void) {
|
||||
MemoryStatus stat;
|
||||
stat.DeviceBytes = DeviceBytes;
|
||||
stat.DeviceLRUBytes = DeviceLRUBytes;
|
||||
stat.DeviceMaxBytes = DeviceMaxBytes;
|
||||
stat.HostToDeviceBytes = HostToDeviceBytes;
|
||||
stat.DeviceToHostBytes = DeviceToHostBytes;
|
||||
stat.HostToDeviceXfer = HostToDeviceXfer;
|
||||
stat.DeviceToHostXfer = DeviceToHostXfer;
|
||||
stat.DeviceEvictions = DeviceEvictions;
|
||||
stat.DeviceDestroy = DeviceDestroy;
|
||||
stat.DeviceAllocCacheBytes = DeviceCacheBytes();
|
||||
stat.HostAllocCacheBytes = HostCacheBytes();
|
||||
return stat;
|
||||
};
|
||||
|
||||
private:
|
||||
#ifndef GRID_UVM
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// Data tables for ViewCache
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
typedef std::list<uint64_t> LRU_t;
|
||||
typedef typename LRU_t::iterator LRUiterator;
|
||||
typedef struct {
|
||||
int LRU_valid;
|
||||
LRUiterator LRU_entry;
|
||||
uint64_t CpuPtr;
|
||||
uint64_t AccPtr;
|
||||
size_t bytes;
|
||||
uint32_t transient;
|
||||
uint32_t state;
|
||||
uint32_t accLock;
|
||||
uint32_t cpuLock;
|
||||
} AcceleratorViewEntry;
|
||||
|
||||
typedef std::unordered_map<uint64_t,AcceleratorViewEntry> AccViewTable_t;
|
||||
typedef typename AccViewTable_t::iterator AccViewTableIterator ;
|
||||
|
||||
static AccViewTable_t AccViewTable;
|
||||
static LRU_t LRU;
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
// Device motion
|
||||
/////////////////////////////////////////////////
|
||||
static void Create(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
|
||||
static void EvictVictims(uint64_t bytes); // Frees up <bytes>
|
||||
static void Evict(AcceleratorViewEntry &AccCache);
|
||||
static void Flush(AcceleratorViewEntry &AccCache);
|
||||
static void Clone(AcceleratorViewEntry &AccCache);
|
||||
static void AccDiscard(AcceleratorViewEntry &AccCache);
|
||||
static void CpuDiscard(AcceleratorViewEntry &AccCache);
|
||||
|
||||
// static void LRUupdate(AcceleratorViewEntry &AccCache);
|
||||
static void LRUinsert(AcceleratorViewEntry &AccCache);
|
||||
static void LRUremove(AcceleratorViewEntry &AccCache);
|
||||
|
||||
// manage entries in the table
|
||||
static int EntryPresent(uint64_t CpuPtr);
|
||||
static void EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
|
||||
static void EntryErase (uint64_t CpuPtr);
|
||||
static AccViewTableIterator EntryLookup(uint64_t CpuPtr);
|
||||
static void EntrySet (uint64_t CpuPtr,AcceleratorViewEntry &entry);
|
||||
|
||||
static void AcceleratorViewClose(uint64_t AccPtr);
|
||||
static uint64_t AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
|
||||
static void CpuViewClose(uint64_t Ptr);
|
||||
static uint64_t CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
|
||||
#endif
|
||||
|
||||
public:
|
||||
static void NotifyDeletion(void * CpuPtr);
|
||||
static void Print(void);
|
||||
static void PrintAll(void);
|
||||
static void PrintState( void* CpuPtr);
|
||||
static int isOpen (void* CpuPtr);
|
||||
static void ViewClose(void* CpuPtr,ViewMode mode);
|
||||
static void *ViewOpen (void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint);
|
||||
|
||||
};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
602
Grid/allocator/MemoryManagerCache.cc
Normal file
602
Grid/allocator/MemoryManagerCache.cc
Normal file
@ -0,0 +1,602 @@
|
||||
#include <Grid/GridCore.h>
|
||||
#ifndef GRID_UVM
|
||||
|
||||
#warning "Using explicit device memory copies"
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#define MAXLINE 512
|
||||
static char print_buffer [ MAXLINE ];
|
||||
|
||||
#define mprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogMemory << print_buffer;
|
||||
#define dprintf(...) snprintf (print_buffer,MAXLINE, __VA_ARGS__ ); std::cout << GridLogDebug << print_buffer;
|
||||
//#define dprintf(...)
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// For caching copies of data on device
|
||||
////////////////////////////////////////////////////////////
|
||||
MemoryManager::AccViewTable_t MemoryManager::AccViewTable;
|
||||
MemoryManager::LRU_t MemoryManager::LRU;
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Footprint tracking
|
||||
////////////////////////////////////////////////////////
|
||||
uint64_t MemoryManager::DeviceBytes;
|
||||
uint64_t MemoryManager::DeviceLRUBytes;
|
||||
uint64_t MemoryManager::DeviceMaxBytes = 1024*1024*128;
|
||||
uint64_t MemoryManager::HostToDeviceBytes;
|
||||
uint64_t MemoryManager::DeviceToHostBytes;
|
||||
uint64_t MemoryManager::HostToDeviceXfer;
|
||||
uint64_t MemoryManager::DeviceToHostXfer;
|
||||
uint64_t MemoryManager::DeviceEvictions;
|
||||
uint64_t MemoryManager::DeviceDestroy;
|
||||
|
||||
////////////////////////////////////
|
||||
// Priority ordering for unlocked entries
|
||||
// Empty
|
||||
// CpuDirty
|
||||
// Consistent
|
||||
// AccDirty
|
||||
////////////////////////////////////
|
||||
#define Empty (0x0) /*Entry unoccupied */
|
||||
#define CpuDirty (0x1) /*CPU copy is golden, Acc buffer MAY not be allocated*/
|
||||
#define Consistent (0x2) /*ACC copy AND CPU copy are valid */
|
||||
#define AccDirty (0x4) /*ACC copy is golden */
|
||||
#define EvictNext (0x8) /*Priority for eviction*/
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
// Mechanics of data table maintenance
|
||||
/////////////////////////////////////////////////
|
||||
int MemoryManager::EntryPresent(uint64_t CpuPtr)
|
||||
{
|
||||
if(AccViewTable.empty()) return 0;
|
||||
|
||||
auto count = AccViewTable.count(CpuPtr); assert((count==0)||(count==1));
|
||||
return count;
|
||||
}
|
||||
void MemoryManager::EntryCreate(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
|
||||
{
|
||||
assert(!EntryPresent(CpuPtr));
|
||||
AcceleratorViewEntry AccCache;
|
||||
AccCache.CpuPtr = CpuPtr;
|
||||
AccCache.AccPtr = (uint64_t)NULL;
|
||||
AccCache.bytes = bytes;
|
||||
AccCache.state = CpuDirty;
|
||||
AccCache.LRU_valid=0;
|
||||
AccCache.transient=0;
|
||||
AccCache.accLock=0;
|
||||
AccCache.cpuLock=0;
|
||||
AccViewTable[CpuPtr] = AccCache;
|
||||
}
|
||||
MemoryManager::AccViewTableIterator MemoryManager::EntryLookup(uint64_t CpuPtr)
|
||||
{
|
||||
assert(EntryPresent(CpuPtr));
|
||||
auto AccCacheIterator = AccViewTable.find(CpuPtr);
|
||||
assert(AccCacheIterator!=AccViewTable.end());
|
||||
return AccCacheIterator;
|
||||
}
|
||||
void MemoryManager::EntryErase(uint64_t CpuPtr)
|
||||
{
|
||||
auto AccCache = EntryLookup(CpuPtr);
|
||||
AccViewTable.erase(CpuPtr);
|
||||
}
|
||||
void MemoryManager::LRUinsert(AcceleratorViewEntry &AccCache)
|
||||
{
|
||||
assert(AccCache.LRU_valid==0);
|
||||
if (AccCache.transient) {
|
||||
LRU.push_back(AccCache.CpuPtr);
|
||||
AccCache.LRU_entry = --LRU.end();
|
||||
} else {
|
||||
LRU.push_front(AccCache.CpuPtr);
|
||||
AccCache.LRU_entry = LRU.begin();
|
||||
}
|
||||
AccCache.LRU_valid = 1;
|
||||
DeviceLRUBytes+=AccCache.bytes;
|
||||
}
|
||||
void MemoryManager::LRUremove(AcceleratorViewEntry &AccCache)
|
||||
{
|
||||
assert(AccCache.LRU_valid==1);
|
||||
LRU.erase(AccCache.LRU_entry);
|
||||
AccCache.LRU_valid = 0;
|
||||
DeviceLRUBytes-=AccCache.bytes;
|
||||
}
|
||||
/////////////////////////////////////////////////
|
||||
// Accelerator cache motion & consistency logic
|
||||
/////////////////////////////////////////////////
|
||||
void MemoryManager::AccDiscard(AcceleratorViewEntry &AccCache)
|
||||
{
|
||||
///////////////////////////////////////////////////////////
|
||||
// Remove from Accelerator, remove entry, without flush
|
||||
// Cannot be locked. If allocated Must be in LRU pool.
|
||||
///////////////////////////////////////////////////////////
|
||||
assert(AccCache.state!=Empty);
|
||||
|
||||
dprintf("MemoryManager: Discard(%lx) %lx\n",(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr);
|
||||
assert(AccCache.accLock==0);
|
||||
assert(AccCache.cpuLock==0);
|
||||
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||
if(AccCache.AccPtr) {
|
||||
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
|
||||
DeviceDestroy++;
|
||||
DeviceBytes -=AccCache.bytes;
|
||||
LRUremove(AccCache);
|
||||
AccCache.AccPtr=(uint64_t) NULL;
|
||||
dprintf("MemoryManager: Free(%lx) LRU %ld Total %ld\n",(uint64_t)AccCache.AccPtr,DeviceLRUBytes,DeviceBytes);
|
||||
}
|
||||
uint64_t CpuPtr = AccCache.CpuPtr;
|
||||
EntryErase(CpuPtr);
|
||||
}
|
||||
|
||||
void MemoryManager::Evict(AcceleratorViewEntry &AccCache)
|
||||
{
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Make CPU consistent, remove from Accelerator, remove from LRU, LEAVE CPU only entry
|
||||
// Cannot be acclocked. If allocated must be in LRU pool.
|
||||
//
|
||||
// Nov 2022... Felix issue: Allocating two CpuPtrs, can have an entry in LRU-q with CPUlock.
|
||||
// and require to evict the AccPtr copy. Eviction was a mistake in CpuViewOpen
|
||||
// but there is a weakness where CpuLock entries are attempted for erase
|
||||
// Take these OUT LRU queue when CPU locked?
|
||||
// Cannot take out the table as cpuLock data is important.
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
assert(AccCache.state!=Empty);
|
||||
|
||||
mprintf("MemoryManager: Evict CpuPtr %lx AccPtr %lx cpuLock %ld accLock %ld\n",
|
||||
(uint64_t)AccCache.CpuPtr,(uint64_t)AccCache.AccPtr,
|
||||
(uint64_t)AccCache.cpuLock,(uint64_t)AccCache.accLock);
|
||||
if (AccCache.accLock!=0) return;
|
||||
if (AccCache.cpuLock!=0) return;
|
||||
if(AccCache.state==AccDirty) {
|
||||
Flush(AccCache);
|
||||
}
|
||||
if(AccCache.AccPtr) {
|
||||
AcceleratorFree((void *)AccCache.AccPtr,AccCache.bytes);
|
||||
LRUremove(AccCache);
|
||||
AccCache.AccPtr=(uint64_t)NULL;
|
||||
AccCache.state=CpuDirty; // CPU primary now
|
||||
DeviceBytes -=AccCache.bytes;
|
||||
dprintf("MemoryManager: Free(AccPtr %lx) footprint now %ld \n",(uint64_t)AccCache.AccPtr,DeviceBytes);
|
||||
}
|
||||
// uint64_t CpuPtr = AccCache.CpuPtr;
|
||||
DeviceEvictions++;
|
||||
// EntryErase(CpuPtr);
|
||||
}
|
||||
void MemoryManager::Flush(AcceleratorViewEntry &AccCache)
|
||||
{
|
||||
assert(AccCache.state==AccDirty);
|
||||
assert(AccCache.cpuLock==0);
|
||||
assert(AccCache.accLock==0);
|
||||
assert(AccCache.AccPtr!=(uint64_t)NULL);
|
||||
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||
acceleratorCopyFromDevice((void *)AccCache.AccPtr,(void *)AccCache.CpuPtr,AccCache.bytes);
|
||||
mprintf("MemoryManager: acceleratorCopyFromDevice Flush AccPtr %lx -> CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
||||
DeviceToHostBytes+=AccCache.bytes;
|
||||
DeviceToHostXfer++;
|
||||
AccCache.state=Consistent;
|
||||
}
|
||||
void MemoryManager::Clone(AcceleratorViewEntry &AccCache)
|
||||
{
|
||||
assert(AccCache.state==CpuDirty);
|
||||
assert(AccCache.cpuLock==0);
|
||||
assert(AccCache.accLock==0);
|
||||
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||
if(AccCache.AccPtr==(uint64_t)NULL){
|
||||
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
|
||||
DeviceBytes+=AccCache.bytes;
|
||||
}
|
||||
mprintf("MemoryManager: acceleratorCopyToDevice Clone AccPtr %lx <- CpuPtr %lx\n",(uint64_t)AccCache.AccPtr,(uint64_t)AccCache.CpuPtr); fflush(stdout);
|
||||
acceleratorCopyToDevice((void *)AccCache.CpuPtr,(void *)AccCache.AccPtr,AccCache.bytes);
|
||||
HostToDeviceBytes+=AccCache.bytes;
|
||||
HostToDeviceXfer++;
|
||||
AccCache.state=Consistent;
|
||||
}
|
||||
|
||||
void MemoryManager::CpuDiscard(AcceleratorViewEntry &AccCache)
|
||||
{
|
||||
assert(AccCache.state!=Empty);
|
||||
assert(AccCache.cpuLock==0);
|
||||
assert(AccCache.accLock==0);
|
||||
assert(AccCache.CpuPtr!=(uint64_t)NULL);
|
||||
if(AccCache.AccPtr==(uint64_t)NULL){
|
||||
AccCache.AccPtr=(uint64_t)AcceleratorAllocate(AccCache.bytes);
|
||||
DeviceBytes+=AccCache.bytes;
|
||||
}
|
||||
AccCache.state=AccDirty;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
// View management
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
void MemoryManager::ViewClose(void* Ptr,ViewMode mode)
|
||||
{
|
||||
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
|
||||
dprintf("AcceleratorViewClose %lx\n",(uint64_t)Ptr);
|
||||
AcceleratorViewClose((uint64_t)Ptr);
|
||||
} else if( (mode==CpuRead)||(mode==CpuWrite)){
|
||||
CpuViewClose((uint64_t)Ptr);
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
void *MemoryManager::ViewOpen(void* _CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
|
||||
{
|
||||
uint64_t CpuPtr = (uint64_t)_CpuPtr;
|
||||
if( (mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard) ){
|
||||
dprintf("AcceleratorViewOpen %lx\n",(uint64_t)CpuPtr);
|
||||
return (void *) AcceleratorViewOpen(CpuPtr,bytes,mode,hint);
|
||||
} else if( (mode==CpuRead)||(mode==CpuWrite)){
|
||||
return (void *)CpuViewOpen(CpuPtr,bytes,mode,hint);
|
||||
} else {
|
||||
assert(0);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
void MemoryManager::EvictVictims(uint64_t bytes)
|
||||
{
|
||||
assert(bytes<DeviceMaxBytes);
|
||||
while(bytes+DeviceLRUBytes > DeviceMaxBytes){
|
||||
if ( DeviceLRUBytes > 0){
|
||||
assert(LRU.size()>0);
|
||||
uint64_t victim = LRU.back(); // From the LRU
|
||||
auto AccCacheIterator = EntryLookup(victim);
|
||||
auto & AccCache = AccCacheIterator->second;
|
||||
Evict(AccCache);
|
||||
} else {
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
uint64_t MemoryManager::AcceleratorViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint)
|
||||
{
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Find if present, otherwise get or force an empty
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
if ( EntryPresent(CpuPtr)==0 ){
|
||||
EntryCreate(CpuPtr,bytes,mode,hint);
|
||||
}
|
||||
|
||||
auto AccCacheIterator = EntryLookup(CpuPtr);
|
||||
auto & AccCache = AccCacheIterator->second;
|
||||
if (!AccCache.AccPtr) {
|
||||
EvictVictims(bytes);
|
||||
}
|
||||
assert((mode==AcceleratorRead)||(mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard));
|
||||
|
||||
assert(AccCache.cpuLock==0); // Programming error
|
||||
|
||||
if(AccCache.state!=Empty) {
|
||||
dprintf("ViewOpen found entry %lx %lx : %ld %ld accLock %ld\n",
|
||||
(uint64_t)AccCache.CpuPtr,
|
||||
(uint64_t)CpuPtr,
|
||||
(uint64_t)AccCache.bytes,
|
||||
(uint64_t)bytes,
|
||||
(uint64_t)AccCache.accLock);
|
||||
assert(AccCache.CpuPtr == CpuPtr);
|
||||
assert(AccCache.bytes ==bytes);
|
||||
}
|
||||
/*
|
||||
* State transitions and actions
|
||||
*
|
||||
* Action State StateNext Flush Clone
|
||||
*
|
||||
* AccRead Empty Consistent - Y
|
||||
* AccWrite Empty AccDirty - Y
|
||||
* AccRead CpuDirty Consistent - Y
|
||||
* AccWrite CpuDirty AccDirty - Y
|
||||
* AccRead Consistent Consistent - -
|
||||
* AccWrite Consistent AccDirty - -
|
||||
* AccRead AccDirty AccDirty - -
|
||||
* AccWrite AccDirty AccDirty - -
|
||||
*/
|
||||
if(AccCache.state==Empty) {
|
||||
assert(AccCache.LRU_valid==0);
|
||||
AccCache.CpuPtr = CpuPtr;
|
||||
AccCache.AccPtr = (uint64_t)NULL;
|
||||
AccCache.bytes = bytes;
|
||||
AccCache.state = CpuDirty; // Cpu starts primary
|
||||
if(mode==AcceleratorWriteDiscard){
|
||||
CpuDiscard(AccCache);
|
||||
AccCache.state = AccDirty; // Empty + AcceleratorWrite=> AccDirty
|
||||
} else if(mode==AcceleratorWrite){
|
||||
Clone(AccCache);
|
||||
AccCache.state = AccDirty; // Empty + AcceleratorWrite=> AccDirty
|
||||
} else {
|
||||
Clone(AccCache);
|
||||
AccCache.state = Consistent; // Empty + AccRead => Consistent
|
||||
}
|
||||
AccCache.accLock= 1;
|
||||
dprintf("Copied Empty entry into device accLock= %d\n",AccCache.accLock);
|
||||
} else if(AccCache.state==CpuDirty ){
|
||||
if(mode==AcceleratorWriteDiscard) {
|
||||
CpuDiscard(AccCache);
|
||||
AccCache.state = AccDirty; // CpuDirty + AcceleratorWrite=> AccDirty
|
||||
} else if(mode==AcceleratorWrite) {
|
||||
Clone(AccCache);
|
||||
AccCache.state = AccDirty; // CpuDirty + AcceleratorWrite=> AccDirty
|
||||
} else {
|
||||
Clone(AccCache);
|
||||
AccCache.state = Consistent; // CpuDirty + AccRead => Consistent
|
||||
}
|
||||
AccCache.accLock++;
|
||||
dprintf("CpuDirty entry into device ++accLock= %d\n",AccCache.accLock);
|
||||
} else if(AccCache.state==Consistent) {
|
||||
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
|
||||
AccCache.state = AccDirty; // Consistent + AcceleratorWrite=> AccDirty
|
||||
else
|
||||
AccCache.state = Consistent; // Consistent + AccRead => Consistent
|
||||
AccCache.accLock++;
|
||||
dprintf("Consistent entry into device ++accLock= %d\n",AccCache.accLock);
|
||||
} else if(AccCache.state==AccDirty) {
|
||||
if((mode==AcceleratorWrite)||(mode==AcceleratorWriteDiscard))
|
||||
AccCache.state = AccDirty; // AccDirty + AcceleratorWrite=> AccDirty
|
||||
else
|
||||
AccCache.state = AccDirty; // AccDirty + AccRead => AccDirty
|
||||
AccCache.accLock++;
|
||||
dprintf("AccDirty entry ++accLock= %d\n",AccCache.accLock);
|
||||
} else {
|
||||
assert(0);
|
||||
}
|
||||
|
||||
assert(AccCache.accLock>0);
|
||||
// If view is opened on device must remove from LRU
|
||||
if(AccCache.LRU_valid==1){
|
||||
// must possibly remove from LRU as now locked on GPU
|
||||
dprintf("AccCache entry removed from LRU \n");
|
||||
LRUremove(AccCache);
|
||||
}
|
||||
|
||||
int transient =hint;
|
||||
AccCache.transient= transient? EvictNext : 0;
|
||||
|
||||
return AccCache.AccPtr;
|
||||
}
|
||||
////////////////////////////////////
|
||||
// look up & decrement lock count
|
||||
////////////////////////////////////
|
||||
void MemoryManager::AcceleratorViewClose(uint64_t CpuPtr)
|
||||
{
|
||||
auto AccCacheIterator = EntryLookup(CpuPtr);
|
||||
auto & AccCache = AccCacheIterator->second;
|
||||
|
||||
assert(AccCache.cpuLock==0);
|
||||
assert(AccCache.accLock>0);
|
||||
|
||||
AccCache.accLock--;
|
||||
// Move to LRU queue if not locked and close on device
|
||||
if(AccCache.accLock==0) {
|
||||
dprintf("AccleratorViewClose %lx AccLock decremented to %ld move to LRU queue\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
|
||||
LRUinsert(AccCache);
|
||||
} else {
|
||||
dprintf("AccleratorViewClose %lx AccLock decremented to %ld\n",(uint64_t)CpuPtr,(uint64_t)AccCache.accLock);
|
||||
}
|
||||
}
|
||||
void MemoryManager::CpuViewClose(uint64_t CpuPtr)
|
||||
{
|
||||
auto AccCacheIterator = EntryLookup(CpuPtr);
|
||||
auto & AccCache = AccCacheIterator->second;
|
||||
|
||||
assert(AccCache.cpuLock>0);
|
||||
assert(AccCache.accLock==0);
|
||||
|
||||
AccCache.cpuLock--;
|
||||
}
|
||||
/*
|
||||
* Action State StateNext Flush Clone
|
||||
*
|
||||
* CpuRead Empty CpuDirty - -
|
||||
* CpuWrite Empty CpuDirty - -
|
||||
* CpuRead CpuDirty CpuDirty - -
|
||||
* CpuWrite CpuDirty CpuDirty - -
|
||||
* CpuRead Consistent Consistent - -
|
||||
* CpuWrite Consistent CpuDirty - -
|
||||
* CpuRead AccDirty Consistent Y -
|
||||
* CpuWrite AccDirty CpuDirty Y -
|
||||
*/
|
||||
uint64_t MemoryManager::CpuViewOpen(uint64_t CpuPtr,size_t bytes,ViewMode mode,ViewAdvise transient)
|
||||
{
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Find if present, otherwise get or force an empty
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
if ( EntryPresent(CpuPtr)==0 ){
|
||||
EntryCreate(CpuPtr,bytes,mode,transient);
|
||||
}
|
||||
|
||||
auto AccCacheIterator = EntryLookup(CpuPtr);
|
||||
auto & AccCache = AccCacheIterator->second;
|
||||
|
||||
// CPU doesn't need to free space
|
||||
// if (!AccCache.AccPtr) {
|
||||
// EvictVictims(bytes);
|
||||
// }
|
||||
|
||||
assert((mode==CpuRead)||(mode==CpuWrite));
|
||||
assert(AccCache.accLock==0); // Programming error
|
||||
|
||||
if(AccCache.state!=Empty) {
|
||||
assert(AccCache.CpuPtr == CpuPtr);
|
||||
assert(AccCache.bytes==bytes);
|
||||
}
|
||||
|
||||
if(AccCache.state==Empty) {
|
||||
AccCache.CpuPtr = CpuPtr;
|
||||
AccCache.AccPtr = (uint64_t)NULL;
|
||||
AccCache.bytes = bytes;
|
||||
AccCache.state = CpuDirty; // Empty + CpuRead/CpuWrite => CpuDirty
|
||||
AccCache.accLock= 0;
|
||||
AccCache.cpuLock= 1;
|
||||
} else if(AccCache.state==CpuDirty ){
|
||||
// AccPtr dont care, deferred allocate
|
||||
AccCache.state = CpuDirty; // CpuDirty +CpuRead/CpuWrite => CpuDirty
|
||||
AccCache.cpuLock++;
|
||||
} else if(AccCache.state==Consistent) {
|
||||
assert(AccCache.AccPtr != (uint64_t)NULL);
|
||||
if(mode==CpuWrite)
|
||||
AccCache.state = CpuDirty; // Consistent +CpuWrite => CpuDirty
|
||||
else
|
||||
AccCache.state = Consistent; // Consistent +CpuRead => Consistent
|
||||
AccCache.cpuLock++;
|
||||
} else if(AccCache.state==AccDirty) {
|
||||
assert(AccCache.AccPtr != (uint64_t)NULL);
|
||||
Flush(AccCache);
|
||||
if(mode==CpuWrite) AccCache.state = CpuDirty; // AccDirty +CpuWrite => CpuDirty, Flush
|
||||
else AccCache.state = Consistent; // AccDirty +CpuRead => Consistent, Flush
|
||||
AccCache.cpuLock++;
|
||||
} else {
|
||||
assert(0); // should be unreachable
|
||||
}
|
||||
|
||||
AccCache.transient= transient? EvictNext : 0;
|
||||
|
||||
return AccCache.CpuPtr;
|
||||
}
|
||||
void MemoryManager::NotifyDeletion(void *_ptr)
|
||||
{
|
||||
// Look up in ViewCache
|
||||
uint64_t ptr = (uint64_t)_ptr;
|
||||
if(EntryPresent(ptr)) {
|
||||
auto e = EntryLookup(ptr);
|
||||
AccDiscard(e->second);
|
||||
}
|
||||
}
|
||||
void MemoryManager::Print(void)
|
||||
{
|
||||
PrintBytes();
|
||||
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
|
||||
std::cout << GridLogMessage << "Memory Manager " << std::endl;
|
||||
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
|
||||
std::cout << GridLogMessage << DeviceBytes << " bytes allocated on device " << std::endl;
|
||||
std::cout << GridLogMessage << DeviceLRUBytes<< " bytes evictable on device " << std::endl;
|
||||
std::cout << GridLogMessage << DeviceMaxBytes<< " bytes max on device " << std::endl;
|
||||
std::cout << GridLogMessage << HostToDeviceXfer << " transfers to device " << std::endl;
|
||||
std::cout << GridLogMessage << DeviceToHostXfer << " transfers from device " << std::endl;
|
||||
std::cout << GridLogMessage << HostToDeviceBytes<< " bytes transfered to device " << std::endl;
|
||||
std::cout << GridLogMessage << DeviceToHostBytes<< " bytes transfered from device " << std::endl;
|
||||
std::cout << GridLogMessage << DeviceEvictions << " Evictions from device " << std::endl;
|
||||
std::cout << GridLogMessage << DeviceDestroy << " Destroyed vectors on device " << std::endl;
|
||||
std::cout << GridLogMessage << AccViewTable.size()<< " vectors " << LRU.size()<<" evictable"<< std::endl;
|
||||
acceleratorMem();
|
||||
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
|
||||
}
|
||||
void MemoryManager::PrintAll(void)
|
||||
{
|
||||
Print();
|
||||
std::cout << GridLogMessage << std::endl;
|
||||
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
|
||||
std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
|
||||
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
|
||||
for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
|
||||
auto &AccCache = it->second;
|
||||
|
||||
std::string str;
|
||||
if ( AccCache.state==Empty ) str = std::string("Empty");
|
||||
if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
|
||||
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
|
||||
if ( AccCache.state==Consistent)str = std::string("Consistent");
|
||||
|
||||
std::cout << GridLogMessage << "0x"<<std::hex<<AccCache.CpuPtr<<std::dec
|
||||
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
|
||||
<< "\t" << AccCache.cpuLock
|
||||
<< "\t" << AccCache.accLock
|
||||
<< "\t" << AccCache.LRU_valid<<std::endl;
|
||||
}
|
||||
std::cout << GridLogMessage << "--------------------------------------------" << std::endl;
|
||||
|
||||
};
|
||||
int MemoryManager::isOpen (void* _CpuPtr)
|
||||
{
|
||||
uint64_t CpuPtr = (uint64_t)_CpuPtr;
|
||||
if ( EntryPresent(CpuPtr) ){
|
||||
auto AccCacheIterator = EntryLookup(CpuPtr);
|
||||
auto & AccCache = AccCacheIterator->second;
|
||||
return AccCache.cpuLock+AccCache.accLock;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
void MemoryManager::Audit(std::string s)
|
||||
{
|
||||
uint64_t CpuBytes=0;
|
||||
uint64_t AccBytes=0;
|
||||
uint64_t LruBytes1=0;
|
||||
uint64_t LruBytes2=0;
|
||||
uint64_t LruCnt=0;
|
||||
|
||||
std::cout << " Memory Manager::Audit() from "<<s<<std::endl;
|
||||
for(auto it=LRU.begin();it!=LRU.end();it++){
|
||||
uint64_t cpuPtr = *it;
|
||||
assert(EntryPresent(cpuPtr));
|
||||
auto AccCacheIterator = EntryLookup(cpuPtr);
|
||||
auto & AccCache = AccCacheIterator->second;
|
||||
LruBytes2+=AccCache.bytes;
|
||||
assert(AccCache.LRU_valid==1);
|
||||
assert(AccCache.LRU_entry==it);
|
||||
}
|
||||
std::cout << " Memory Manager::Audit() LRU queue matches table entries "<<std::endl;
|
||||
|
||||
for(auto it=AccViewTable.begin();it!=AccViewTable.end();it++){
|
||||
auto &AccCache = it->second;
|
||||
|
||||
std::string str;
|
||||
if ( AccCache.state==Empty ) str = std::string("Empty");
|
||||
if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
|
||||
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
|
||||
if ( AccCache.state==Consistent)str = std::string("Consistent");
|
||||
|
||||
CpuBytes+=AccCache.bytes;
|
||||
if( AccCache.AccPtr ) AccBytes+=AccCache.bytes;
|
||||
if( AccCache.LRU_valid ) LruBytes1+=AccCache.bytes;
|
||||
if( AccCache.LRU_valid ) LruCnt++;
|
||||
|
||||
if ( AccCache.cpuLock || AccCache.accLock ) {
|
||||
assert(AccCache.LRU_valid==0);
|
||||
|
||||
std::cout << GridLogError << s<< "\n\t 0x"<<std::hex<<AccCache.CpuPtr<<std::dec
|
||||
<< "\t0x"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
|
||||
<< "\t cpuLock " << AccCache.cpuLock
|
||||
<< "\t accLock " << AccCache.accLock
|
||||
<< "\t LRUvalid " << AccCache.LRU_valid<<std::endl;
|
||||
}
|
||||
|
||||
assert( AccCache.cpuLock== 0 ) ;
|
||||
assert( AccCache.accLock== 0 ) ;
|
||||
}
|
||||
std::cout << " Memory Manager::Audit() no locked table entries "<<std::endl;
|
||||
assert(LruBytes1==LruBytes2);
|
||||
assert(LruBytes1==DeviceLRUBytes);
|
||||
std::cout << " Memory Manager::Audit() evictable bytes matches sum over table "<<std::endl;
|
||||
assert(AccBytes==DeviceBytes);
|
||||
std::cout << " Memory Manager::Audit() device bytes matches sum over table "<<std::endl;
|
||||
assert(LruCnt == LRU.size());
|
||||
std::cout << " Memory Manager::Audit() LRU entry count matches "<<std::endl;
|
||||
|
||||
}
|
||||
|
||||
void MemoryManager::PrintState(void* _CpuPtr)
|
||||
{
|
||||
uint64_t CpuPtr = (uint64_t)_CpuPtr;
|
||||
|
||||
if ( EntryPresent(CpuPtr) ){
|
||||
auto AccCacheIterator = EntryLookup(CpuPtr);
|
||||
auto & AccCache = AccCacheIterator->second;
|
||||
std::string str;
|
||||
if ( AccCache.state==Empty ) str = std::string("Empty");
|
||||
if ( AccCache.state==CpuDirty ) str = std::string("CpuDirty");
|
||||
if ( AccCache.state==AccDirty ) str = std::string("AccDirty");
|
||||
if ( AccCache.state==Consistent)str = std::string("Consistent");
|
||||
if ( AccCache.state==EvictNext) str = std::string("EvictNext");
|
||||
|
||||
std::cout << GridLogMessage << "CpuAddr\t\tAccAddr\t\tState\t\tcpuLock\taccLock\tLRU_valid "<<std::endl;
|
||||
std::cout << GridLogMessage << "\tx"<<std::hex<<AccCache.CpuPtr<<std::dec
|
||||
<< "\tx"<<std::hex<<AccCache.AccPtr<<std::dec<<"\t" <<str
|
||||
<< "\t" << AccCache.cpuLock
|
||||
<< "\t" << AccCache.accLock
|
||||
<< "\t" << AccCache.LRU_valid<<std::endl;
|
||||
|
||||
} else {
|
||||
std::cout << GridLogMessage << "No Entry in AccCache table." << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
31
Grid/allocator/MemoryManagerShared.cc
Normal file
31
Grid/allocator/MemoryManagerShared.cc
Normal file
@ -0,0 +1,31 @@
|
||||
#include <Grid/GridCore.h>
|
||||
#ifdef GRID_UVM
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
// View management is 1:1 address space mapping
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
uint64_t MemoryManager::DeviceBytes;
|
||||
uint64_t MemoryManager::DeviceLRUBytes;
|
||||
uint64_t MemoryManager::DeviceMaxBytes = 1024*1024*128;
|
||||
uint64_t MemoryManager::HostToDeviceBytes;
|
||||
uint64_t MemoryManager::DeviceToHostBytes;
|
||||
uint64_t MemoryManager::HostToDeviceXfer;
|
||||
uint64_t MemoryManager::DeviceToHostXfer;
|
||||
uint64_t MemoryManager::DeviceEvictions;
|
||||
uint64_t MemoryManager::DeviceDestroy;
|
||||
|
||||
void MemoryManager::Audit(std::string s){};
|
||||
void MemoryManager::ViewClose(void* AccPtr,ViewMode mode){};
|
||||
void *MemoryManager::ViewOpen(void* CpuPtr,size_t bytes,ViewMode mode,ViewAdvise hint){ return CpuPtr; };
|
||||
int MemoryManager::isOpen (void* CpuPtr) { return 0;}
|
||||
void MemoryManager::PrintState(void* CpuPtr)
|
||||
{
|
||||
std::cout << GridLogMessage << "Host<->Device memory movement not currently managed by Grid." << std::endl;
|
||||
};
|
||||
void MemoryManager::Print(void){};
|
||||
void MemoryManager::PrintAll(void){};
|
||||
void MemoryManager::NotifyDeletion(void *ptr){};
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
@ -6,72 +6,6 @@ NAMESPACE_BEGIN(Grid);
|
||||
MemoryStats *MemoryProfiler::stats = nullptr;
|
||||
bool MemoryProfiler::debug = false;
|
||||
|
||||
#ifdef GRID_NVCC
|
||||
#define SMALL_LIMIT (0)
|
||||
#else
|
||||
#define SMALL_LIMIT (4096)
|
||||
#endif
|
||||
|
||||
#ifdef POINTER_CACHE
|
||||
int PointerCache::victim;
|
||||
|
||||
PointerCache::PointerCacheEntry PointerCache::Entries[PointerCache::Ncache];
|
||||
|
||||
void *PointerCache::Insert(void *ptr,size_t bytes) {
|
||||
|
||||
if (bytes < SMALL_LIMIT ) return ptr;
|
||||
|
||||
#ifdef GRID_OMP
|
||||
assert(omp_in_parallel()==0);
|
||||
#endif
|
||||
|
||||
void * ret = NULL;
|
||||
int v = -1;
|
||||
|
||||
for(int e=0;e<Ncache;e++) {
|
||||
if ( Entries[e].valid==0 ) {
|
||||
v=e;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if ( v==-1 ) {
|
||||
v=victim;
|
||||
victim = (victim+1)%Ncache;
|
||||
}
|
||||
|
||||
if ( Entries[v].valid ) {
|
||||
ret = Entries[v].address;
|
||||
Entries[v].valid = 0;
|
||||
Entries[v].address = NULL;
|
||||
Entries[v].bytes = 0;
|
||||
}
|
||||
|
||||
Entries[v].address=ptr;
|
||||
Entries[v].bytes =bytes;
|
||||
Entries[v].valid =1;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void *PointerCache::Lookup(size_t bytes) {
|
||||
|
||||
if (bytes < SMALL_LIMIT ) return NULL;
|
||||
|
||||
#ifdef GRID_OMP
|
||||
assert(omp_in_parallel()==0);
|
||||
#endif
|
||||
|
||||
for(int e=0;e<Ncache;e++){
|
||||
if ( Entries[e].valid && ( Entries[e].bytes == bytes ) ) {
|
||||
Entries[e].valid = 0;
|
||||
return Entries[e].address;
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
#endif
|
||||
|
||||
void check_huge_pages(void *Buf,uint64_t BYTES)
|
||||
{
|
||||
#ifdef __linux__
|
95
Grid/allocator/MemoryStats.h
Normal file
95
Grid/allocator/MemoryStats.h
Normal file
@ -0,0 +1,95 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/MemoryStats.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
std::string sizeString(size_t bytes);
|
||||
|
||||
struct MemoryStats
|
||||
{
|
||||
size_t totalAllocated{0}, maxAllocated{0},
|
||||
currentlyAllocated{0}, totalFreed{0};
|
||||
};
|
||||
|
||||
class MemoryProfiler
|
||||
{
|
||||
public:
|
||||
static MemoryStats *stats;
|
||||
static bool debug;
|
||||
};
|
||||
|
||||
#define memString(bytes) std::to_string(bytes) + " (" + sizeString(bytes) + ")"
|
||||
#define profilerDebugPrint \
|
||||
if (MemoryProfiler::stats) \
|
||||
{ \
|
||||
auto s = MemoryProfiler::stats; \
|
||||
std::cout << GridLogDebug << "[Memory debug] Stats " << MemoryProfiler::stats << std::endl; \
|
||||
std::cout << GridLogDebug << "[Memory debug] total : " << memString(s->totalAllocated) \
|
||||
<< std::endl; \
|
||||
std::cout << GridLogDebug << "[Memory debug] max : " << memString(s->maxAllocated) \
|
||||
<< std::endl; \
|
||||
std::cout << GridLogDebug << "[Memory debug] current: " << memString(s->currentlyAllocated) \
|
||||
<< std::endl; \
|
||||
std::cout << GridLogDebug << "[Memory debug] freed : " << memString(s->totalFreed) \
|
||||
<< std::endl; \
|
||||
}
|
||||
|
||||
#define profilerAllocate(bytes) \
|
||||
if (MemoryProfiler::stats) \
|
||||
{ \
|
||||
auto s = MemoryProfiler::stats; \
|
||||
s->totalAllocated += (bytes); \
|
||||
s->currentlyAllocated += (bytes); \
|
||||
s->maxAllocated = std::max(s->maxAllocated, s->currentlyAllocated); \
|
||||
} \
|
||||
if (MemoryProfiler::debug) \
|
||||
{ \
|
||||
std::cout << GridLogDebug << "[Memory debug] allocating " << memString(bytes) << std::endl; \
|
||||
profilerDebugPrint; \
|
||||
}
|
||||
|
||||
#define profilerFree(bytes) \
|
||||
if (MemoryProfiler::stats) \
|
||||
{ \
|
||||
auto s = MemoryProfiler::stats; \
|
||||
s->totalFreed += (bytes); \
|
||||
s->currentlyAllocated -= (bytes); \
|
||||
} \
|
||||
if (MemoryProfiler::debug) \
|
||||
{ \
|
||||
std::cout << GridLogDebug << "[Memory debug] freeing " << memString(bytes) << std::endl; \
|
||||
profilerDebugPrint; \
|
||||
}
|
||||
|
||||
void check_huge_pages(void *Buf,uint64_t BYTES);
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
@ -70,8 +70,8 @@ public:
|
||||
Coordinate _istride; // Inner stride i.e. within simd lane
|
||||
int _osites; // _isites*_osites = product(dimensions).
|
||||
int _isites;
|
||||
int _fsites; // _isites*_osites = product(dimensions).
|
||||
int _gsites;
|
||||
int64_t _fsites; // _isites*_osites = product(dimensions).
|
||||
int64_t _gsites;
|
||||
Coordinate _slice_block;// subslice information
|
||||
Coordinate _slice_stride;
|
||||
Coordinate _slice_nblock;
|
||||
@ -81,6 +81,7 @@ public:
|
||||
|
||||
bool _isCheckerBoarded;
|
||||
int LocallyPeriodic;
|
||||
Coordinate _checker_dim_mask;
|
||||
|
||||
public:
|
||||
|
||||
@ -182,7 +183,7 @@ public:
|
||||
inline int Nsimd(void) const { return _isites; };// Synonymous with iSites
|
||||
inline int oSites(void) const { return _osites; };
|
||||
inline int lSites(void) const { return _isites*_osites; };
|
||||
inline int gSites(void) const { return _isites*_osites*_Nprocessors; };
|
||||
inline int64_t gSites(void) const { return (int64_t)_isites*(int64_t)_osites*(int64_t)_Nprocessors; };
|
||||
inline int Nd (void) const { return _ndimension;};
|
||||
|
||||
inline const Coordinate LocalStarts(void) { return _lstart; };
|
||||
@ -213,7 +214,7 @@ public:
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Global addressing
|
||||
////////////////////////////////////////////////////////////////
|
||||
void GlobalIndexToGlobalCoor(int gidx,Coordinate &gcoor){
|
||||
void GlobalIndexToGlobalCoor(int64_t gidx,Coordinate &gcoor){
|
||||
assert(gidx< gSites());
|
||||
Lexicographic::CoorFromIndex(gcoor,gidx,_gdimensions);
|
||||
}
|
||||
@ -221,7 +222,7 @@ public:
|
||||
assert(lidx<lSites());
|
||||
Lexicographic::CoorFromIndex(lcoor,lidx,_ldimensions);
|
||||
}
|
||||
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int & gidx){
|
||||
void GlobalCoorToGlobalIndex(const Coordinate & gcoor,int64_t & gidx){
|
||||
gidx=0;
|
||||
int mult=1;
|
||||
for(int mu=0;mu<_ndimension;mu++) {
|
||||
|
@ -38,6 +38,7 @@ class GridCartesian: public GridBase {
|
||||
|
||||
public:
|
||||
int dummy;
|
||||
Coordinate _checker_dim_mask;
|
||||
virtual int CheckerBoardFromOindexTable (int Oindex) {
|
||||
return 0;
|
||||
}
|
||||
@ -104,6 +105,7 @@ public:
|
||||
_ldimensions.resize(_ndimension);
|
||||
_rdimensions.resize(_ndimension);
|
||||
_simd_layout.resize(_ndimension);
|
||||
_checker_dim_mask.resize(_ndimension);;
|
||||
_lstart.resize(_ndimension);
|
||||
_lend.resize(_ndimension);
|
||||
|
||||
@ -114,6 +116,8 @@ public:
|
||||
|
||||
for (int d = 0; d < _ndimension; d++)
|
||||
{
|
||||
_checker_dim_mask[d]=0;
|
||||
|
||||
_fdimensions[d] = dimensions[d]; // Global dimensions
|
||||
_gdimensions[d] = _fdimensions[d]; // Global dimensions
|
||||
_simd_layout[d] = simd_layout[d];
|
||||
|
@ -35,12 +35,28 @@ static const int CbRed =0;
|
||||
static const int CbBlack=1;
|
||||
static const int Even =CbRed;
|
||||
static const int Odd =CbBlack;
|
||||
|
||||
accelerator_inline int RedBlackCheckerBoardFromOindex (int oindex,const Coordinate &rdim,const Coordinate &chk_dim_msk)
|
||||
{
|
||||
int nd=rdim.size();
|
||||
Coordinate coor(nd);
|
||||
|
||||
Lexicographic::CoorFromIndex(coor,oindex,rdim);
|
||||
|
||||
int linear=0;
|
||||
for(int d=0;d<nd;d++){
|
||||
if(chk_dim_msk[d])
|
||||
linear=linear+coor[d];
|
||||
}
|
||||
return (linear&0x1);
|
||||
}
|
||||
|
||||
|
||||
// Specialise this for red black grids storing half the data like a chess board.
|
||||
class GridRedBlackCartesian : public GridBase
|
||||
{
|
||||
public:
|
||||
Coordinate _checker_dim_mask;
|
||||
// Coordinate _checker_dim_mask;
|
||||
int _checker_dim;
|
||||
std::vector<int> _checker_board;
|
||||
|
||||
|
@ -33,6 +33,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
bool Stencil_force_mpi = true;
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Info that is setup once and indept of cartesian layout
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
@ -1,4 +1,3 @@
|
||||
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
@ -36,6 +35,8 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
extern bool Stencil_force_mpi ;
|
||||
|
||||
class CartesianCommunicator : public SharedMemory {
|
||||
|
||||
public:
|
||||
@ -52,10 +53,11 @@ public:
|
||||
// Communicator should know nothing of the physics grid, only processor grid.
|
||||
////////////////////////////////////////////
|
||||
int _Nprocessors; // How many in all
|
||||
Coordinate _processors; // Which dimensions get relayed out over processors lanes.
|
||||
int _processor; // linear processor rank
|
||||
Coordinate _processor_coor; // linear processor coordinate
|
||||
unsigned long _ndimension;
|
||||
Coordinate _shm_processors; // Which dimensions get relayed out over processors lanes.
|
||||
Coordinate _processors; // Which dimensions get relayed out over processors lanes.
|
||||
Coordinate _processor_coor; // linear processor coordinate
|
||||
static Grid_MPI_Comm communicator_world;
|
||||
Grid_MPI_Comm communicator;
|
||||
std::vector<Grid_MPI_Comm> communicator_halo;
|
||||
@ -96,24 +98,29 @@ public:
|
||||
int BossRank(void) ;
|
||||
int ThisRank(void) ;
|
||||
const Coordinate & ThisProcessorCoor(void) ;
|
||||
const Coordinate & ShmGrid(void) { return _shm_processors; } ;
|
||||
const Coordinate & ProcessorGrid(void) ;
|
||||
int ProcessorCount(void) ;
|
||||
int ProcessorCount(void) ;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// very VERY rarely (Log, serial RNG) we need world without a grid
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
static int RankWorld(void) ;
|
||||
static void BroadcastWorld(int root,void* data, int bytes);
|
||||
static void BarrierWorld(void);
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// Reduction
|
||||
////////////////////////////////////////////////////////////
|
||||
void GlobalMax(RealD &);
|
||||
void GlobalMax(RealF &);
|
||||
void GlobalSum(RealF &);
|
||||
void GlobalSumVector(RealF *,int N);
|
||||
void GlobalSum(RealD &);
|
||||
void GlobalSumVector(RealD *,int N);
|
||||
void GlobalSum(uint32_t &);
|
||||
void GlobalSum(uint64_t &);
|
||||
void GlobalSumVector(uint64_t*,int N);
|
||||
void GlobalSum(ComplexF &c);
|
||||
void GlobalSumVector(ComplexF *c,int N);
|
||||
void GlobalSum(ComplexD &c);
|
||||
@ -124,46 +131,39 @@ public:
|
||||
template<class obj> void GlobalSum(obj &o){
|
||||
typedef typename obj::scalar_type scalar_type;
|
||||
int words = sizeof(obj)/sizeof(scalar_type);
|
||||
scalar_type * ptr = (scalar_type *)& o;
|
||||
scalar_type * ptr = (scalar_type *)& o; // Safe alias
|
||||
GlobalSumVector(ptr,words);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// Face exchange, buffer swap in translational invariant way
|
||||
////////////////////////////////////////////////////////////
|
||||
void CommsComplete(std::vector<CommsRequest_t> &list);
|
||||
void SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes,int dir);
|
||||
|
||||
void SendToRecvFrom(void *xmit,
|
||||
int xmit_to_rank,
|
||||
void *recv,
|
||||
int recv_from_rank,
|
||||
int bytes);
|
||||
|
||||
void SendRecvPacket(void *xmit,
|
||||
void *recv,
|
||||
int xmit_to_rank,
|
||||
int recv_from_rank,
|
||||
int bytes);
|
||||
|
||||
void SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int xmit_to_rank,
|
||||
void *recv,
|
||||
int recv_from_rank,
|
||||
int bytes);
|
||||
|
||||
void SendToRecvFromComplete(std::vector<CommsRequest_t> &waitall);
|
||||
|
||||
double StencilSendToRecvFrom(void *xmit,
|
||||
int xmit_to_rank,
|
||||
int xmit_to_rank,int do_xmit,
|
||||
void *recv,
|
||||
int recv_from_rank,
|
||||
int recv_from_rank,int do_recv,
|
||||
int bytes,int dir);
|
||||
|
||||
double StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int xmit_to_rank,
|
||||
int xmit_to_rank,int do_xmit,
|
||||
void *recv,
|
||||
int recv_from_rank,
|
||||
int bytes,int dir);
|
||||
int recv_from_rank,int do_recv,
|
||||
int xbytes,int rbytes,int dir);
|
||||
|
||||
|
||||
void StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int i);
|
||||
|
@ -1,6 +1,6 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/communicator/Communicator_mpi.cc
|
||||
|
||||
@ -35,7 +35,7 @@ Grid_MPI_Comm CartesianCommunicator::communicator_world;
|
||||
////////////////////////////////////////////
|
||||
// First initialise of comms system
|
||||
////////////////////////////////////////////
|
||||
void CartesianCommunicator::Init(int *argc, char ***argv)
|
||||
void CartesianCommunicator::Init(int *argc, char ***argv)
|
||||
{
|
||||
|
||||
int flag;
|
||||
@ -43,8 +43,16 @@ void CartesianCommunicator::Init(int *argc, char ***argv)
|
||||
|
||||
MPI_Initialized(&flag); // needed to coexist with other libs apparently
|
||||
if ( !flag ) {
|
||||
MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided);
|
||||
|
||||
#ifndef GRID_COMMS_THREADS
|
||||
nCommThreads=1;
|
||||
// wrong results here too
|
||||
// For now: comms-overlap leads to wrong results in Benchmark_wilson even on single node MPI runs
|
||||
// other comms schemes are ok
|
||||
MPI_Init_thread(argc,argv,MPI_THREAD_SERIALIZED,&provided);
|
||||
#else
|
||||
MPI_Init_thread(argc,argv,MPI_THREAD_MULTIPLE,&provided);
|
||||
#endif
|
||||
//If only 1 comms thread we require any threading mode other than SINGLE, but for multiple comms threads we need MULTIPLE
|
||||
if( (nCommThreads == 1) && (provided == MPI_THREAD_SINGLE) ) {
|
||||
assert(0);
|
||||
@ -91,14 +99,14 @@ void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor)
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Initialises from communicator_world
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
|
||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
|
||||
{
|
||||
MPI_Comm optimal_comm;
|
||||
////////////////////////////////////////////////////
|
||||
// Remap using the shared memory optimising routine
|
||||
// The remap creates a comm which must be freed
|
||||
////////////////////////////////////////////////////
|
||||
GlobalSharedMemory::OptimalCommunicator (processors,optimal_comm);
|
||||
GlobalSharedMemory::OptimalCommunicator (processors,optimal_comm,_shm_processors);
|
||||
InitFromMPICommunicator(processors,optimal_comm);
|
||||
SetCommunicator(optimal_comm);
|
||||
///////////////////////////////////////////////////
|
||||
@ -110,24 +118,25 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
|
||||
//////////////////////////////////
|
||||
// Try to subdivide communicator
|
||||
//////////////////////////////////
|
||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
|
||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
|
||||
{
|
||||
_ndimension = processors.size(); assert(_ndimension>=1);
|
||||
int parent_ndimension = parent._ndimension; assert(_ndimension >= parent._ndimension);
|
||||
Coordinate parent_processor_coor(_ndimension,0);
|
||||
Coordinate parent_processors (_ndimension,1);
|
||||
|
||||
Coordinate shm_processors (_ndimension,1);
|
||||
// Can make 5d grid from 4d etc...
|
||||
int pad = _ndimension-parent_ndimension;
|
||||
for(int d=0;d<parent_ndimension;d++){
|
||||
parent_processor_coor[pad+d]=parent._processor_coor[d];
|
||||
parent_processors [pad+d]=parent._processors[d];
|
||||
shm_processors [pad+d]=parent._shm_processors[d];
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// split the communicator
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// int Nparent = parent._processors ;
|
||||
// int Nparent = parent._processors ;
|
||||
int Nparent;
|
||||
MPI_Comm_size(parent.communicator,&Nparent);
|
||||
|
||||
@ -146,16 +155,17 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
|
||||
ccoor[d] = parent_processor_coor[d] % processors[d];
|
||||
scoor[d] = parent_processor_coor[d] / processors[d];
|
||||
ssize[d] = parent_processors[d] / processors[d];
|
||||
if ( processors[d] < shm_processors[d] ) shm_processors[d] = processors[d]; // subnode splitting.
|
||||
}
|
||||
|
||||
// rank within subcomm ; srank is rank of subcomm within blocks of subcomms
|
||||
int crank;
|
||||
int crank;
|
||||
// Mpi uses the reverse Lexico convention to us; so reversed routines called
|
||||
Lexicographic::IndexFromCoorReversed(ccoor,crank,processors); // processors is the split grid dimensions
|
||||
Lexicographic::IndexFromCoorReversed(scoor,srank,ssize); // ssize is the number of split grids
|
||||
|
||||
MPI_Comm comm_split;
|
||||
if ( Nchild > 1 ) {
|
||||
if ( Nchild > 1 ) {
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Split the communicator
|
||||
@ -180,11 +190,11 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const
|
||||
SetCommunicator(comm_split);
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// Free the temp communicator
|
||||
// Free the temp communicator
|
||||
///////////////////////////////////////////////
|
||||
MPI_Comm_free(&comm_split);
|
||||
|
||||
if(0){
|
||||
if(0){
|
||||
std::cout << " ndim " <<_ndimension<<" " << parent._ndimension << std::endl;
|
||||
for(int d=0;d<processors.size();d++){
|
||||
std::cout << d<< " " << _processor_coor[d] <<" " << ccoor[d]<<std::endl;
|
||||
@ -245,7 +255,7 @@ CartesianCommunicator::~CartesianCommunicator()
|
||||
for(int i=0;i<communicator_halo.size();i++){
|
||||
MPI_Comm_free(&communicator_halo[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(uint32_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
|
||||
@ -255,6 +265,10 @@ void CartesianCommunicator::GlobalSum(uint64_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSumVector(uint64_t* u,int N){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,u,N,MPI_UINT64_T,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalXOR(uint32_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_BXOR,communicator);
|
||||
assert(ierr==0);
|
||||
@ -263,6 +277,16 @@ void CartesianCommunicator::GlobalXOR(uint64_t &u){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT64_T,MPI_BXOR,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalMax(float &f)
|
||||
{
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_MAX,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalMax(double &d)
|
||||
{
|
||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_MAX,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::GlobalSum(float &f){
|
||||
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
@ -282,6 +306,44 @@ void CartesianCommunicator::GlobalSumVector(double *d,int N)
|
||||
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes,int dir)
|
||||
{
|
||||
MPI_Request xrq;
|
||||
MPI_Request rrq;
|
||||
|
||||
assert(dest != _processor);
|
||||
assert(from != _processor);
|
||||
|
||||
int tag;
|
||||
|
||||
tag= dir+from*32;
|
||||
int ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,tag,communicator,&rrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(rrq);
|
||||
|
||||
tag= dir+_processor*32;
|
||||
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,tag,communicator,&xrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(xrq);
|
||||
}
|
||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list)
|
||||
{
|
||||
int nreq=list.size();
|
||||
|
||||
if (nreq==0) return;
|
||||
|
||||
std::vector<MPI_Status> status(nreq);
|
||||
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
|
||||
assert(ierr==0);
|
||||
list.resize(0);
|
||||
}
|
||||
|
||||
// Basic Halo comms primitive
|
||||
void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
||||
int dest,
|
||||
@ -290,80 +352,49 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
||||
int bytes)
|
||||
{
|
||||
std::vector<CommsRequest_t> reqs(0);
|
||||
// unsigned long xcrc = crc32(0L, Z_NULL, 0);
|
||||
// unsigned long rcrc = crc32(0L, Z_NULL, 0);
|
||||
// xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
|
||||
SendToRecvFromBegin(reqs,xmit,dest,recv,from,bytes);
|
||||
SendToRecvFromComplete(reqs);
|
||||
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
|
||||
// printf("proc %d SendToRecvFrom %d bytes %lx %lx\n",_processor,bytes,xcrc,rcrc);
|
||||
}
|
||||
void CartesianCommunicator::SendRecvPacket(void *xmit,
|
||||
void *recv,
|
||||
int sender,
|
||||
int receiver,
|
||||
int bytes)
|
||||
{
|
||||
MPI_Status stat;
|
||||
assert(sender != receiver);
|
||||
int tag = sender;
|
||||
if ( _processor == sender ) {
|
||||
MPI_Send(xmit, bytes, MPI_CHAR,receiver,tag,communicator);
|
||||
}
|
||||
if ( _processor == receiver ) {
|
||||
MPI_Recv(recv, bytes, MPI_CHAR,sender,tag,communicator,&stat);
|
||||
}
|
||||
}
|
||||
// Basic Halo comms primitive
|
||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes)
|
||||
{
|
||||
unsigned long xcrc = crc32(0L, Z_NULL, 0);
|
||||
unsigned long rcrc = crc32(0L, Z_NULL, 0);
|
||||
|
||||
int myrank = _processor;
|
||||
int ierr;
|
||||
|
||||
if ( CommunicatorPolicy == CommunicatorPolicyConcurrent ) {
|
||||
MPI_Request xrq;
|
||||
MPI_Request rrq;
|
||||
// Enforce no UVM in comms, device or host OK
|
||||
assert(acceleratorIsCommunicable(xmit));
|
||||
assert(acceleratorIsCommunicable(recv));
|
||||
|
||||
ierr =MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
|
||||
ierr|=MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
|
||||
|
||||
assert(ierr==0);
|
||||
list.push_back(xrq);
|
||||
list.push_back(rrq);
|
||||
} else {
|
||||
// Give the CPU to MPI immediately; can use threads to overlap optionally
|
||||
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
|
||||
recv,bytes,MPI_CHAR,from, from,
|
||||
communicator,MPI_STATUS_IGNORE);
|
||||
assert(ierr==0);
|
||||
}
|
||||
// Give the CPU to MPI immediately; can use threads to overlap optionally
|
||||
// printf("proc %d SendToRecvFrom %d bytes Sendrecv \n",_processor,bytes);
|
||||
ierr=MPI_Sendrecv(xmit,bytes,MPI_CHAR,dest,myrank,
|
||||
recv,bytes,MPI_CHAR,from, from,
|
||||
communicator,MPI_STATUS_IGNORE);
|
||||
assert(ierr==0);
|
||||
|
||||
// xcrc = crc32(xcrc,(unsigned char *)xmit,bytes);
|
||||
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
|
||||
// printf("proc %d SendToRecvFrom %d bytes xcrc %lx rcrc %lx\n",_processor,bytes,xcrc,rcrc); fflush
|
||||
}
|
||||
|
||||
// Basic Halo comms primitive
|
||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
|
||||
int dest,
|
||||
int dest, int dox,
|
||||
void *recv,
|
||||
int from,
|
||||
int from, int dor,
|
||||
int bytes,int dir)
|
||||
{
|
||||
std::vector<CommsRequest_t> list;
|
||||
double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,recv,from,bytes,dir);
|
||||
double offbytes = StencilSendToRecvFromBegin(list,xmit,dest,dox,recv,from,dor,bytes,bytes,dir);
|
||||
StencilSendToRecvFromComplete(list,dir);
|
||||
return offbytes;
|
||||
}
|
||||
|
||||
#undef NVLINK_GET // Define to use get instead of put DMA
|
||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
int dest,int dox,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes,int dir)
|
||||
int from,int dor,
|
||||
int xbytes,int rbytes,int dir)
|
||||
{
|
||||
int ncomm =communicator_halo.size();
|
||||
int ncomm =communicator_halo.size();
|
||||
int commdir=dir%ncomm;
|
||||
|
||||
MPI_Request xrq;
|
||||
@ -378,39 +409,49 @@ double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsReques
|
||||
assert(from != _processor);
|
||||
assert(gme == ShmRank);
|
||||
double off_node_bytes=0.0;
|
||||
int tag;
|
||||
|
||||
if ( gfrom ==MPI_UNDEFINED) {
|
||||
ierr=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator_halo[commdir],&rrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(rrq);
|
||||
off_node_bytes+=bytes;
|
||||
if ( dor ) {
|
||||
if ( (gfrom ==MPI_UNDEFINED) || Stencil_force_mpi ) {
|
||||
tag= dir+from*32;
|
||||
ierr=MPI_Irecv(recv, rbytes, MPI_CHAR,from,tag,communicator_halo[commdir],&rrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(rrq);
|
||||
off_node_bytes+=rbytes;
|
||||
}
|
||||
#ifdef NVLINK_GET
|
||||
void *shm = (void *) this->ShmBufferTranslate(from,xmit);
|
||||
assert(shm!=NULL);
|
||||
acceleratorCopyDeviceToDeviceAsynch(shm,recv,rbytes);
|
||||
#endif
|
||||
}
|
||||
|
||||
if ( gdest == MPI_UNDEFINED ) {
|
||||
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator_halo[commdir],&xrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(xrq);
|
||||
off_node_bytes+=bytes;
|
||||
}
|
||||
|
||||
if ( CommunicatorPolicy == CommunicatorPolicySequential ) {
|
||||
this->StencilSendToRecvFromComplete(list,dir);
|
||||
|
||||
if (dox) {
|
||||
// rcrc = crc32(rcrc,(unsigned char *)recv,bytes);
|
||||
if ( (gdest == MPI_UNDEFINED) || Stencil_force_mpi ) {
|
||||
tag= dir+_processor*32;
|
||||
ierr =MPI_Isend(xmit, xbytes, MPI_CHAR,dest,tag,communicator_halo[commdir],&xrq);
|
||||
assert(ierr==0);
|
||||
list.push_back(xrq);
|
||||
off_node_bytes+=xbytes;
|
||||
} else {
|
||||
#ifndef NVLINK_GET
|
||||
void *shm = (void *) this->ShmBufferTranslate(dest,recv);
|
||||
assert(shm!=NULL);
|
||||
acceleratorCopyDeviceToDeviceAsynch(xmit,shm,xbytes);
|
||||
#endif
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
return off_node_bytes;
|
||||
}
|
||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
|
||||
{
|
||||
SendToRecvFromComplete(waitall);
|
||||
}
|
||||
void CartesianCommunicator::StencilBarrier(void)
|
||||
{
|
||||
MPI_Barrier (ShmComm);
|
||||
}
|
||||
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
|
||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &list,int dir)
|
||||
{
|
||||
int nreq=list.size();
|
||||
|
||||
acceleratorCopySynchronise();
|
||||
|
||||
if (nreq==0) return;
|
||||
|
||||
std::vector<MPI_Status> status(nreq);
|
||||
@ -418,6 +459,13 @@ void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &
|
||||
assert(ierr==0);
|
||||
list.resize(0);
|
||||
}
|
||||
void CartesianCommunicator::StencilBarrier(void)
|
||||
{
|
||||
MPI_Barrier (ShmComm);
|
||||
}
|
||||
//void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
|
||||
//{
|
||||
//}
|
||||
void CartesianCommunicator::Barrier(void)
|
||||
{
|
||||
int ierr = MPI_Barrier(communicator);
|
||||
@ -432,11 +480,15 @@ void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
|
||||
communicator);
|
||||
assert(ierr==0);
|
||||
}
|
||||
int CartesianCommunicator::RankWorld(void){
|
||||
int r;
|
||||
int CartesianCommunicator::RankWorld(void){
|
||||
int r;
|
||||
MPI_Comm_rank(communicator_world,&r);
|
||||
return r;
|
||||
}
|
||||
void CartesianCommunicator::BarrierWorld(void){
|
||||
int ierr = MPI_Barrier(communicator_world);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
|
||||
{
|
||||
int ierr= MPI_Bcast(data,
|
||||
@ -466,7 +518,7 @@ void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t
|
||||
// When 24*4 bytes multiples get 50x 10^9 >>> 2x10^9 Y2K bug.
|
||||
// (Turns up on 32^3 x 64 Gparity too)
|
||||
MPI_Datatype object;
|
||||
int iwords;
|
||||
int iwords;
|
||||
int ibytes;
|
||||
iwords = words;
|
||||
ibytes = bytes;
|
||||
@ -479,5 +531,3 @@ void CartesianCommunicator::AllToAll(void *in,void *out,uint64_t words,uint64_t
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
||||
|
@ -45,12 +45,14 @@ void CartesianCommunicator::Init(int *argc, char *** arv)
|
||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors,const CartesianCommunicator &parent,int &srank)
|
||||
: CartesianCommunicator(processors)
|
||||
{
|
||||
_shm_processors = Coordinate(processors.size(),1);
|
||||
srank=0;
|
||||
SetCommunicator(communicator_world);
|
||||
}
|
||||
|
||||
CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
|
||||
{
|
||||
_shm_processors = Coordinate(processors.size(),1);
|
||||
_processors = processors;
|
||||
_ndimension = processors.size(); assert(_ndimension>=1);
|
||||
_processor_coor.resize(_ndimension);
|
||||
@ -67,24 +69,18 @@ CartesianCommunicator::CartesianCommunicator(const Coordinate &processors)
|
||||
|
||||
CartesianCommunicator::~CartesianCommunicator(){}
|
||||
|
||||
void CartesianCommunicator::GlobalMax(float &){}
|
||||
void CartesianCommunicator::GlobalMax(double &){}
|
||||
void CartesianCommunicator::GlobalSum(float &){}
|
||||
void CartesianCommunicator::GlobalSumVector(float *,int N){}
|
||||
void CartesianCommunicator::GlobalSum(double &){}
|
||||
void CartesianCommunicator::GlobalSumVector(double *,int N){}
|
||||
void CartesianCommunicator::GlobalSum(uint32_t &){}
|
||||
void CartesianCommunicator::GlobalSum(uint64_t &){}
|
||||
void CartesianCommunicator::GlobalSumVector(double *,int N){}
|
||||
void CartesianCommunicator::GlobalSumVector(uint64_t *,int N){}
|
||||
void CartesianCommunicator::GlobalXOR(uint32_t &){}
|
||||
void CartesianCommunicator::GlobalXOR(uint64_t &){}
|
||||
|
||||
void CartesianCommunicator::SendRecvPacket(void *xmit,
|
||||
void *recv,
|
||||
int xmit_to_rank,
|
||||
int recv_from_rank,
|
||||
int bytes)
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
|
||||
|
||||
// Basic Halo comms primitive -- should never call in single node
|
||||
void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
||||
@ -95,20 +91,17 @@ void CartesianCommunicator::SendToRecvFrom(void *xmit,
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
void CartesianCommunicator::CommsComplete(std::vector<CommsRequest_t> &list){ assert(0);}
|
||||
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int dest,
|
||||
void *recv,
|
||||
int from,
|
||||
int bytes)
|
||||
int bytes,int dir)
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
|
||||
{
|
||||
assert(0);
|
||||
}
|
||||
void CartesianCommunicator::AllToAll(int dim,void *in,void *out,uint64_t words,uint64_t bytes)
|
||||
{
|
||||
bcopy(in,out,bytes*words);
|
||||
@ -122,6 +115,7 @@ int CartesianCommunicator::RankWorld(void){return 0;}
|
||||
void CartesianCommunicator::Barrier(void){}
|
||||
void CartesianCommunicator::Broadcast(int root,void* data, int bytes) {}
|
||||
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes) { }
|
||||
void CartesianCommunicator::BarrierWorld(void) { }
|
||||
int CartesianCommunicator::RankFromProcessorCoor(Coordinate &coor) { return 0;}
|
||||
void CartesianCommunicator::ProcessorCoorFromRank(int rank, Coordinate &coor){ coor = _processor_coor; }
|
||||
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
|
||||
@ -131,31 +125,24 @@ void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest
|
||||
}
|
||||
|
||||
double CartesianCommunicator::StencilSendToRecvFrom( void *xmit,
|
||||
int xmit_to_rank,
|
||||
int xmit_to_rank,int dox,
|
||||
void *recv,
|
||||
int recv_from_rank,
|
||||
int recv_from_rank,int dor,
|
||||
int bytes, int dir)
|
||||
{
|
||||
std::vector<CommsRequest_t> list;
|
||||
// Discard the "dir"
|
||||
SendToRecvFromBegin (list,xmit,xmit_to_rank,recv,recv_from_rank,bytes);
|
||||
SendToRecvFromComplete(list);
|
||||
return 2.0*bytes;
|
||||
}
|
||||
double CartesianCommunicator::StencilSendToRecvFromBegin(std::vector<CommsRequest_t> &list,
|
||||
void *xmit,
|
||||
int xmit_to_rank,
|
||||
int xmit_to_rank,int dox,
|
||||
void *recv,
|
||||
int recv_from_rank,
|
||||
int bytes, int dir)
|
||||
int recv_from_rank,int dor,
|
||||
int xbytes,int rbytes, int dir)
|
||||
{
|
||||
// Discard the "dir"
|
||||
SendToRecvFromBegin(list,xmit,xmit_to_rank,recv,recv_from_rank,bytes);
|
||||
return 2.0*bytes;
|
||||
return xbytes+rbytes;
|
||||
}
|
||||
void CartesianCommunicator::StencilSendToRecvFromComplete(std::vector<CommsRequest_t> &waitall,int dir)
|
||||
{
|
||||
SendToRecvFromComplete(waitall);
|
||||
}
|
||||
|
||||
void CartesianCommunicator::StencilBarrier(void){};
|
||||
|
@ -40,6 +40,9 @@ int GlobalSharedMemory::_ShmAlloc;
|
||||
uint64_t GlobalSharedMemory::_ShmAllocBytes;
|
||||
|
||||
std::vector<void *> GlobalSharedMemory::WorldShmCommBufs;
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
void * GlobalSharedMemory::HostCommBuf;
|
||||
#endif
|
||||
|
||||
Grid_MPI_Comm GlobalSharedMemory::WorldShmComm;
|
||||
int GlobalSharedMemory::WorldShmRank;
|
||||
@ -66,6 +69,26 @@ void GlobalSharedMemory::SharedMemoryFree(void)
|
||||
/////////////////////////////////
|
||||
// Alloc, free shmem region
|
||||
/////////////////////////////////
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
void *SharedMemory::HostBufferMalloc(size_t bytes){
|
||||
void *ptr = (void *)host_heap_top;
|
||||
host_heap_top += bytes;
|
||||
host_heap_bytes+= bytes;
|
||||
if (host_heap_bytes >= host_heap_size) {
|
||||
std::cout<< " HostBufferMalloc exceeded heap size -- try increasing with --shm <MB> flag" <<std::endl;
|
||||
std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
|
||||
std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
|
||||
std::cout<< " Current bytes is " << (host_heap_bytes/(1024*1024)) <<"MB"<<std::endl;
|
||||
std::cout<< " Current heap is " << (host_heap_size/(1024*1024)) <<"MB"<<std::endl;
|
||||
assert(host_heap_bytes<host_heap_size);
|
||||
}
|
||||
return ptr;
|
||||
}
|
||||
void SharedMemory::HostBufferFreeAll(void) {
|
||||
host_heap_top =(size_t)HostCommBuf;
|
||||
host_heap_bytes=0;
|
||||
}
|
||||
#endif
|
||||
void *SharedMemory::ShmBufferMalloc(size_t bytes){
|
||||
// bytes = (bytes+sizeof(vRealD))&(~(sizeof(vRealD)-1));// align up bytes
|
||||
void *ptr = (void *)heap_top;
|
||||
@ -74,7 +97,9 @@ void *SharedMemory::ShmBufferMalloc(size_t bytes){
|
||||
if (heap_bytes >= heap_size) {
|
||||
std::cout<< " ShmBufferMalloc exceeded shared heap size -- try increasing with --shm <MB> flag" <<std::endl;
|
||||
std::cout<< " Parameter specified in units of MB (megabytes) " <<std::endl;
|
||||
std::cout<< " Current value is " << (heap_size/(1024*1024)) <<std::endl;
|
||||
std::cout<< " Current alloc is " << (bytes/(1024*1024)) <<"MB"<<std::endl;
|
||||
std::cout<< " Current bytes is " << (heap_bytes/(1024*1024)) <<"MB"<<std::endl;
|
||||
std::cout<< " Current heap is " << (heap_size/(1024*1024)) <<"MB"<<std::endl;
|
||||
assert(heap_bytes<heap_size);
|
||||
}
|
||||
//std::cerr << "ShmBufferMalloc "<<std::hex<< ptr<<" - "<<((uint64_t)ptr+bytes)<<std::dec<<std::endl;
|
||||
@ -89,6 +114,59 @@ void *SharedMemory::ShmBufferSelf(void)
|
||||
//std::cerr << "ShmBufferSelf "<<ShmRank<<" "<<std::hex<< ShmCommBufs[ShmRank] <<std::dec<<std::endl;
|
||||
return ShmCommBufs[ShmRank];
|
||||
}
|
||||
static inline int divides(int a,int b)
|
||||
{
|
||||
return ( b == ( (b/a)*a ) );
|
||||
}
|
||||
void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
|
||||
{
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Allow user to configure through environment variable
|
||||
////////////////////////////////////////////////////////////////
|
||||
char* str = getenv(("GRID_SHM_DIMS_" + std::to_string(ShmDims.size())).c_str());
|
||||
if ( str ) {
|
||||
std::vector<int> IntShmDims;
|
||||
GridCmdOptionIntVector(std::string(str),IntShmDims);
|
||||
assert(IntShmDims.size() == WorldDims.size());
|
||||
long ShmSize = 1;
|
||||
for (int dim=0;dim<WorldDims.size();dim++) {
|
||||
ShmSize *= (ShmDims[dim] = IntShmDims[dim]);
|
||||
assert(divides(ShmDims[dim],WorldDims[dim]));
|
||||
}
|
||||
assert(ShmSize == WorldShmSize);
|
||||
return;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Powers of 2,3,5 only in prime decomposition for now
|
||||
////////////////////////////////////////////////////////////////
|
||||
int ndimension = WorldDims.size();
|
||||
ShmDims=Coordinate(ndimension,1);
|
||||
|
||||
std::vector<int> primes({2,3,5});
|
||||
|
||||
int dim = 0;
|
||||
int last_dim = ndimension - 1;
|
||||
int AutoShmSize = 1;
|
||||
while(AutoShmSize != WorldShmSize) {
|
||||
int p;
|
||||
for(p=0;p<primes.size();p++) {
|
||||
int prime=primes[p];
|
||||
if ( divides(prime,WorldDims[dim]/ShmDims[dim])
|
||||
&& divides(prime,WorldShmSize/AutoShmSize) ) {
|
||||
AutoShmSize*=prime;
|
||||
ShmDims[dim]*=prime;
|
||||
last_dim = dim;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (p == primes.size() && last_dim == dim) {
|
||||
std::cerr << "GlobalSharedMemory::GetShmDims failed" << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
dim=(dim+1) %ndimension;
|
||||
}
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -75,7 +75,9 @@ public:
|
||||
static int Hugepages;
|
||||
|
||||
static std::vector<void *> WorldShmCommBufs;
|
||||
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
static void *HostCommBuf;
|
||||
#endif
|
||||
static Grid_MPI_Comm WorldComm;
|
||||
static int WorldRank;
|
||||
static int WorldSize;
|
||||
@ -93,16 +95,17 @@ public:
|
||||
// Create an optimal reordered communicator that makes MPI_Cart_create get it right
|
||||
//////////////////////////////////////////////////////////////////////////////////////
|
||||
static void Init(Grid_MPI_Comm comm); // Typically MPI_COMM_WORLD
|
||||
static void OptimalCommunicator (const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
|
||||
static void OptimalCommunicatorHypercube (const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
|
||||
static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm); // Turns MPI_COMM_WORLD into right layout for Cartesian
|
||||
// Turns MPI_COMM_WORLD into right layout for Cartesian
|
||||
static void OptimalCommunicator (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);
|
||||
static void OptimalCommunicatorHypercube (const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);
|
||||
static void OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &ShmDims);
|
||||
static void GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims);
|
||||
///////////////////////////////////////////////////
|
||||
// Provide shared memory facilities off comm world
|
||||
///////////////////////////////////////////////////
|
||||
static void SharedMemoryAllocate(uint64_t bytes, int flags);
|
||||
static void SharedMemoryFree(void);
|
||||
static void SharedMemoryCopy(void *dest,const void *src,size_t bytes);
|
||||
static void SharedMemoryCopy(void *dest,void *src,size_t bytes);
|
||||
static void SharedMemoryZero(void *dest,size_t bytes);
|
||||
|
||||
};
|
||||
@ -119,6 +122,13 @@ private:
|
||||
size_t heap_bytes;
|
||||
size_t heap_size;
|
||||
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
size_t host_heap_top; // set in free all
|
||||
size_t host_heap_bytes;// set in free all
|
||||
void *HostCommBuf; // set in SetCommunicator
|
||||
size_t host_heap_size; // set in SetCommunicator
|
||||
#endif
|
||||
|
||||
protected:
|
||||
|
||||
Grid_MPI_Comm ShmComm; // for barriers
|
||||
@ -150,7 +160,10 @@ public:
|
||||
void *ShmBufferTranslate(int rank,void * local_p);
|
||||
void *ShmBufferMalloc(size_t bytes);
|
||||
void ShmBufferFreeAll(void) ;
|
||||
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
void *HostBufferMalloc(size_t bytes);
|
||||
void HostBufferFreeAll(void);
|
||||
#endif
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Make info on Nodes & ranks and Shared memory available
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
|
@ -7,6 +7,7 @@
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Christoph Lehner <christoph@lhnr.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -26,15 +27,133 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#define Mheader "SharedMemoryMpi: "
|
||||
|
||||
#include <Grid/GridCore.h>
|
||||
#include <pwd.h>
|
||||
|
||||
#ifdef GRID_NVCC
|
||||
#ifdef GRID_CUDA
|
||||
#include <cuda_runtime_api.h>
|
||||
#endif
|
||||
#ifdef GRID_HIP
|
||||
#include <hip/hip_runtime_api.h>
|
||||
#endif
|
||||
#ifdef GRID_SYCL
|
||||
#ifdef ACCELERATOR_AWARE_MPI
|
||||
#define GRID_SYCL_LEVEL_ZERO_IPC
|
||||
#define SHM_SOCKETS
|
||||
#endif
|
||||
#include <syscall.h>
|
||||
#endif
|
||||
|
||||
#include <sys/socket.h>
|
||||
#include <sys/un.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
#define header "SharedMemoryMpi: "
|
||||
|
||||
#ifdef SHM_SOCKETS
|
||||
|
||||
/*
|
||||
* Barbaric extra intranode communication route in case we need sockets to pass FDs
|
||||
* Forced by level_zero not being nicely designed
|
||||
*/
|
||||
static int sock;
|
||||
static const char *sock_path_fmt = "/tmp/GridUnixSocket.%d";
|
||||
static char sock_path[256];
|
||||
class UnixSockets {
|
||||
public:
|
||||
static void Open(int rank)
|
||||
{
|
||||
int errnum;
|
||||
|
||||
sock = socket(AF_UNIX, SOCK_DGRAM, 0); assert(sock>0);
|
||||
|
||||
struct sockaddr_un sa_un = { 0 };
|
||||
sa_un.sun_family = AF_UNIX;
|
||||
snprintf(sa_un.sun_path, sizeof(sa_un.sun_path),sock_path_fmt,rank);
|
||||
unlink(sa_un.sun_path);
|
||||
if (bind(sock, (struct sockaddr *)&sa_un, sizeof(sa_un))) {
|
||||
perror("bind failure");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
|
||||
static int RecvFileDescriptor(void)
|
||||
{
|
||||
int n;
|
||||
int fd;
|
||||
char buf[1];
|
||||
struct iovec iov;
|
||||
struct msghdr msg;
|
||||
struct cmsghdr *cmsg;
|
||||
char cms[CMSG_SPACE(sizeof(int))];
|
||||
|
||||
iov.iov_base = buf;
|
||||
iov.iov_len = 1;
|
||||
|
||||
memset(&msg, 0, sizeof msg);
|
||||
msg.msg_name = 0;
|
||||
msg.msg_namelen = 0;
|
||||
msg.msg_iov = &iov;
|
||||
msg.msg_iovlen = 1;
|
||||
|
||||
msg.msg_control = (caddr_t)cms;
|
||||
msg.msg_controllen = sizeof cms;
|
||||
|
||||
if((n=recvmsg(sock, &msg, 0)) < 0) {
|
||||
perror("recvmsg failed");
|
||||
return -1;
|
||||
}
|
||||
if(n == 0){
|
||||
perror("recvmsg returned 0");
|
||||
return -1;
|
||||
}
|
||||
cmsg = CMSG_FIRSTHDR(&msg);
|
||||
|
||||
memmove(&fd, CMSG_DATA(cmsg), sizeof(int));
|
||||
|
||||
return fd;
|
||||
}
|
||||
|
||||
static void SendFileDescriptor(int fildes,int xmit_to_rank)
|
||||
{
|
||||
struct msghdr msg;
|
||||
struct iovec iov;
|
||||
struct cmsghdr *cmsg = NULL;
|
||||
char ctrl[CMSG_SPACE(sizeof(int))];
|
||||
char data = ' ';
|
||||
|
||||
memset(&msg, 0, sizeof(struct msghdr));
|
||||
memset(ctrl, 0, CMSG_SPACE(sizeof(int)));
|
||||
iov.iov_base = &data;
|
||||
iov.iov_len = sizeof(data);
|
||||
|
||||
sprintf(sock_path,sock_path_fmt,xmit_to_rank);
|
||||
|
||||
struct sockaddr_un sa_un = { 0 };
|
||||
sa_un.sun_family = AF_UNIX;
|
||||
snprintf(sa_un.sun_path, sizeof(sa_un.sun_path),sock_path_fmt,xmit_to_rank);
|
||||
|
||||
msg.msg_name = (void *)&sa_un;
|
||||
msg.msg_namelen = sizeof(sa_un);
|
||||
msg.msg_iov = &iov;
|
||||
msg.msg_iovlen = 1;
|
||||
msg.msg_controllen = CMSG_SPACE(sizeof(int));
|
||||
msg.msg_control = ctrl;
|
||||
|
||||
cmsg = CMSG_FIRSTHDR(&msg);
|
||||
cmsg->cmsg_level = SOL_SOCKET;
|
||||
cmsg->cmsg_type = SCM_RIGHTS;
|
||||
cmsg->cmsg_len = CMSG_LEN(sizeof(int));
|
||||
|
||||
*((int *) CMSG_DATA(cmsg)) = fildes;
|
||||
|
||||
sendmsg(sock, &msg, 0);
|
||||
};
|
||||
};
|
||||
#endif
|
||||
|
||||
|
||||
/*Construct from an MPI communicator*/
|
||||
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
||||
{
|
||||
@ -47,13 +166,18 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Split into groups that can share memory
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
#ifndef GRID_MPI3_SHM_NONE
|
||||
MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&WorldShmComm);
|
||||
#else
|
||||
MPI_Comm_split(comm, WorldRank, 0, &WorldShmComm);
|
||||
#endif
|
||||
|
||||
MPI_Comm_rank(WorldShmComm ,&WorldShmRank);
|
||||
MPI_Comm_size(WorldShmComm ,&WorldShmSize);
|
||||
|
||||
if ( WorldRank == 0) {
|
||||
std::cout << header " World communicator of size " <<WorldSize << std::endl;
|
||||
std::cout << header " Node communicator of size " <<WorldShmSize << std::endl;
|
||||
std::cout << Mheader " World communicator of size " <<WorldSize << std::endl;
|
||||
std::cout << Mheader " Node communicator of size " <<WorldShmSize << std::endl;
|
||||
}
|
||||
// WorldShmComm, WorldShmSize, WorldShmRank
|
||||
|
||||
@ -61,6 +185,7 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
||||
WorldNodes = WorldSize/WorldShmSize;
|
||||
assert( (WorldNodes * WorldShmSize) == WorldSize );
|
||||
|
||||
|
||||
// FIXME: Check all WorldShmSize are the same ?
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
@ -139,7 +264,7 @@ int Log2Size(int TwoToPower,int MAXLOG2)
|
||||
}
|
||||
return log2size;
|
||||
}
|
||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
|
||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
|
||||
{
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Look and see if it looks like an HPE 8600 based on hostname conventions
|
||||
@ -152,39 +277,11 @@ void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_M
|
||||
gethostname(name,namelen);
|
||||
int nscan = sscanf(name,"r%di%dn%d",&R,&I,&N) ;
|
||||
|
||||
if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm);
|
||||
else OptimalCommunicatorSharedMemory(processors,optimal_comm);
|
||||
if(nscan==3 && HPEhypercube ) OptimalCommunicatorHypercube(processors,optimal_comm,SHM);
|
||||
else OptimalCommunicatorSharedMemory(processors,optimal_comm,SHM);
|
||||
}
|
||||
static inline int divides(int a,int b)
|
||||
{
|
||||
return ( b == ( (b/a)*a ) );
|
||||
}
|
||||
void GlobalSharedMemory::GetShmDims(const Coordinate &WorldDims,Coordinate &ShmDims)
|
||||
{
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Powers of 2,3,5 only in prime decomposition for now
|
||||
////////////////////////////////////////////////////////////////
|
||||
int ndimension = WorldDims.size();
|
||||
ShmDims=Coordinate(ndimension,1);
|
||||
|
||||
std::vector<int> primes({2,3,5});
|
||||
|
||||
int dim = 0;
|
||||
int AutoShmSize = 1;
|
||||
while(AutoShmSize != WorldShmSize) {
|
||||
for(int p=0;p<primes.size();p++) {
|
||||
int prime=primes[p];
|
||||
if ( divides(prime,WorldDims[dim]/ShmDims[dim])
|
||||
&& divides(prime,WorldShmSize/AutoShmSize) ) {
|
||||
AutoShmSize*=prime;
|
||||
ShmDims[dim]*=prime;
|
||||
break;
|
||||
}
|
||||
}
|
||||
dim=(dim+1) %ndimension;
|
||||
}
|
||||
}
|
||||
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
|
||||
void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
|
||||
{
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Assert power of two shm_size.
|
||||
@ -257,7 +354,8 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
|
||||
Coordinate HyperCoor(ndimension);
|
||||
|
||||
GetShmDims(WorldDims,ShmDims);
|
||||
|
||||
SHM = ShmDims;
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Establish torus of processes and nodes with sub-blockings
|
||||
////////////////////////////////////////////////////////////////
|
||||
@ -304,7 +402,7 @@ void GlobalSharedMemory::OptimalCommunicatorHypercube(const Coordinate &processo
|
||||
int ierr= MPI_Comm_split(WorldComm,0,rank,&optimal_comm);
|
||||
assert(ierr==0);
|
||||
}
|
||||
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
|
||||
void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
|
||||
{
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Identify subblock of ranks on node spreading across dims
|
||||
@ -316,6 +414,8 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
|
||||
Coordinate ShmCoor(ndimension); Coordinate NodeCoor(ndimension); Coordinate WorldCoor(ndimension);
|
||||
|
||||
GetShmDims(WorldDims,ShmDims);
|
||||
SHM=ShmDims;
|
||||
|
||||
////////////////////////////////////////////////////////////////
|
||||
// Establish torus of processes and nodes with sub-blockings
|
||||
////////////////////////////////////////////////////////////////
|
||||
@ -354,7 +454,7 @@ void GlobalSharedMemory::OptimalCommunicatorSharedMemory(const Coordinate &proce
|
||||
#ifdef GRID_MPI3_SHMGET
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
std::cout << header "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
|
||||
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " shmget implementation "<<std::endl;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
|
||||
@ -413,7 +513,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Hugetlbfs mapping intended
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#ifdef GRID_NVCC
|
||||
#if defined(GRID_CUDA) ||defined(GRID_HIP) || defined(GRID_SYCL)
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
void * ShmCommBuf ;
|
||||
@ -433,51 +533,94 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// cudaDeviceGetP2PAttribute(&perfRank, cudaDevP2PAttrPerformanceRank, device1, device2);
|
||||
|
||||
#ifdef GRID_IBM_SUMMIT
|
||||
// IBM Jsrun makes cuda Device numbering screwy and not match rank
|
||||
std::cout << "IBM Summit or similar - NOT setting device to WorldShmRank"<<std::endl;
|
||||
#else
|
||||
std::cout << "setting device to WorldShmRank"<<std::endl;
|
||||
cudaSetDevice(WorldShmRank);
|
||||
#endif
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Each MPI rank should allocate our own buffer
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
auto err = cudaMalloc(&ShmCommBuf, bytes);
|
||||
if ( err != cudaSuccess) {
|
||||
std::cerr << " SharedMemoryMPI.cc cudaMallocManaged failed for " << bytes<<" bytes " <<cudaGetErrorString(err)<< std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
HostCommBuf= malloc(bytes);
|
||||
#endif
|
||||
ShmCommBuf = acceleratorAllocDevice(bytes);
|
||||
if (ShmCommBuf == (void *)NULL ) {
|
||||
std::cerr << " SharedMemoryMPI.cc cudaMallocManaged failed NULL pointer for " << bytes<<" bytes " << std::endl;
|
||||
std::cerr << " SharedMemoryMPI.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if ( WorldRank == 0 ){
|
||||
std::cout << header " SharedMemoryMPI.cc cudaMalloc "<< bytes << "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
|
||||
std::cout << WorldRank << Mheader " SharedMemoryMPI.cc acceleratorAllocDevice "<< bytes
|
||||
<< "bytes at "<< std::hex<< ShmCommBuf << " - "<<(bytes-1+(uint64_t)ShmCommBuf) <<std::dec<<" for comms buffers " <<std::endl;
|
||||
}
|
||||
SharedMemoryZero(ShmCommBuf,bytes);
|
||||
|
||||
std::cout<< "Setting up IPC"<<std::endl;
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Loop over ranks/gpu's on our node
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#ifdef SHM_SOCKETS
|
||||
UnixSockets::Open(WorldShmRank);
|
||||
#endif
|
||||
for(int r=0;r<WorldShmSize;r++){
|
||||
|
||||
|
||||
MPI_Barrier(WorldShmComm);
|
||||
|
||||
#ifndef GRID_MPI3_SHM_NONE
|
||||
//////////////////////////////////////////////////
|
||||
// If it is me, pass around the IPC access key
|
||||
//////////////////////////////////////////////////
|
||||
cudaIpcMemHandle_t handle;
|
||||
void * thisBuf = ShmCommBuf;
|
||||
if(!Stencil_force_mpi) {
|
||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
|
||||
typedef struct { int fd; pid_t pid ; ze_ipc_mem_handle_t ze; } clone_mem_t;
|
||||
|
||||
auto zeDevice = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_device());
|
||||
auto zeContext = cl::sycl::get_native<cl::sycl::backend::ext_oneapi_level_zero>(theGridAccelerator->get_context());
|
||||
|
||||
ze_ipc_mem_handle_t ihandle;
|
||||
clone_mem_t handle;
|
||||
|
||||
if ( r==WorldShmRank ) {
|
||||
err = cudaIpcGetMemHandle(&handle,ShmCommBuf);
|
||||
auto err = zeMemGetIpcHandle(zeContext,ShmCommBuf,&ihandle);
|
||||
if ( err != ZE_RESULT_SUCCESS ) {
|
||||
std::cerr << "SharedMemoryMPI.cc zeMemGetIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
} else {
|
||||
std::cout << "SharedMemoryMPI.cc zeMemGetIpcHandle succeeded for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
|
||||
}
|
||||
memcpy((void *)&handle.fd,(void *)&ihandle,sizeof(int));
|
||||
handle.pid = getpid();
|
||||
memcpy((void *)&handle.ze,(void *)&ihandle,sizeof(ihandle));
|
||||
#ifdef SHM_SOCKETS
|
||||
for(int rr=0;rr<WorldShmSize;rr++){
|
||||
if(rr!=r){
|
||||
UnixSockets::SendFileDescriptor(handle.fd,rr);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
cudaIpcMemHandle_t handle;
|
||||
if ( r==WorldShmRank ) {
|
||||
auto err = cudaIpcGetMemHandle(&handle,ShmCommBuf);
|
||||
if ( err != cudaSuccess) {
|
||||
std::cerr << " SharedMemoryMPI.cc cudaIpcGetMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#ifdef GRID_HIP
|
||||
hipIpcMemHandle_t handle;
|
||||
if ( r==WorldShmRank ) {
|
||||
auto err = hipIpcGetMemHandle(&handle,ShmCommBuf);
|
||||
if ( err != hipSuccess) {
|
||||
std::cerr << " SharedMemoryMPI.cc hipIpcGetMemHandle failed for rank" << r <<" "<<hipGetErrorString(err)<< std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
// Share this IPC handle across the Shm Comm
|
||||
//////////////////////////////////////////////////
|
||||
{
|
||||
MPI_Barrier(WorldShmComm);
|
||||
int ierr=MPI_Bcast(&handle,
|
||||
sizeof(handle),
|
||||
MPI_BYTE,
|
||||
@ -489,28 +632,83 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
///////////////////////////////////////////////////////////////
|
||||
// If I am not the source, overwrite thisBuf with remote buffer
|
||||
///////////////////////////////////////////////////////////////
|
||||
void * thisBuf = ShmCommBuf;
|
||||
|
||||
#ifdef GRID_SYCL_LEVEL_ZERO_IPC
|
||||
if ( r!=WorldShmRank ) {
|
||||
thisBuf = nullptr;
|
||||
int myfd;
|
||||
#ifdef SHM_SOCKETS
|
||||
myfd=UnixSockets::RecvFileDescriptor();
|
||||
#else
|
||||
std::cout<<"mapping seeking remote pid/fd "
|
||||
<<handle.pid<<"/"
|
||||
<<handle.fd<<std::endl;
|
||||
|
||||
int pidfd = syscall(SYS_pidfd_open,handle.pid,0);
|
||||
std::cout<<"Using IpcHandle pidfd "<<pidfd<<"\n";
|
||||
// int myfd = syscall(SYS_pidfd_getfd,pidfd,handle.fd,0);
|
||||
myfd = syscall(438,pidfd,handle.fd,0);
|
||||
int err_t = errno;
|
||||
if (myfd < 0) {
|
||||
fprintf(stderr,"pidfd_getfd returned %d errno was %d\n", myfd,err_t); fflush(stderr);
|
||||
perror("pidfd_getfd failed ");
|
||||
assert(0);
|
||||
}
|
||||
#endif
|
||||
std::cout<<"Using IpcHandle mapped remote pid "<<handle.pid <<" FD "<<handle.fd <<" to myfd "<<myfd<<"\n";
|
||||
memcpy((void *)&ihandle,(void *)&handle.ze,sizeof(ihandle));
|
||||
memcpy((void *)&ihandle,(void *)&myfd,sizeof(int));
|
||||
|
||||
auto err = zeMemOpenIpcHandle(zeContext,zeDevice,ihandle,0,&thisBuf);
|
||||
if ( err != ZE_RESULT_SUCCESS ) {
|
||||
std::cerr << "SharedMemoryMPI.cc "<<zeContext<<" "<<zeDevice<<std::endl;
|
||||
std::cerr << "SharedMemoryMPI.cc zeMemOpenIpcHandle failed for rank "<<r<<" "<<std::hex<<err<<std::dec<<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
} else {
|
||||
std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle succeeded for rank "<<r<<std::endl;
|
||||
std::cout << "SharedMemoryMPI.cc zeMemOpenIpcHandle pointer is "<<std::hex<<thisBuf<<std::dec<<std::endl;
|
||||
}
|
||||
assert(thisBuf!=nullptr);
|
||||
}
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
if ( r!=WorldShmRank ) {
|
||||
err = cudaIpcOpenMemHandle(&thisBuf,handle,cudaIpcMemLazyEnablePeerAccess);
|
||||
auto err = cudaIpcOpenMemHandle(&thisBuf,handle,cudaIpcMemLazyEnablePeerAccess);
|
||||
if ( err != cudaSuccess) {
|
||||
std::cerr << " SharedMemoryMPI.cc cudaIpcOpenMemHandle failed for rank" << r <<" "<<cudaGetErrorString(err)<< std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#ifdef GRID_HIP
|
||||
if ( r!=WorldShmRank ) {
|
||||
auto err = hipIpcOpenMemHandle(&thisBuf,handle,hipIpcMemLazyEnablePeerAccess);
|
||||
if ( err != hipSuccess) {
|
||||
std::cerr << " SharedMemoryMPI.cc hipIpcOpenMemHandle failed for rank" << r <<" "<<hipGetErrorString(err)<< std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
///////////////////////////////////////////////////////////////
|
||||
// Save a copy of the device buffers
|
||||
///////////////////////////////////////////////////////////////
|
||||
}
|
||||
WorldShmCommBufs[r] = thisBuf;
|
||||
#else
|
||||
WorldShmCommBufs[r] = ShmCommBuf;
|
||||
#endif
|
||||
MPI_Barrier(WorldShmComm);
|
||||
}
|
||||
|
||||
_ShmAllocBytes=bytes;
|
||||
_ShmAlloc=1;
|
||||
}
|
||||
|
||||
#else
|
||||
#ifdef GRID_MPI3_SHMMMAP
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
|
||||
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP implementation "<< GRID_SHM_PATH <<std::endl;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -547,7 +745,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
assert(((uint64_t)ptr&0x3F)==0);
|
||||
close(fd);
|
||||
WorldShmCommBufs[r] =ptr;
|
||||
// std::cout << header "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
|
||||
// std::cout << Mheader "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< bytes<< "bytes)"<<std::endl;
|
||||
}
|
||||
_ShmAlloc=1;
|
||||
_ShmAllocBytes = bytes;
|
||||
@ -557,7 +755,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
#ifdef GRID_MPI3_SHM_NONE
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
std::cout << header "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
|
||||
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " MMAP anonymous implementation "<<std::endl;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -604,7 +802,7 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
std::cout << header "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
|
||||
std::cout << Mheader "SharedMemoryAllocate "<< bytes<< " SHMOPEN implementation "<<std::endl;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
MPI_Barrier(WorldShmComm);
|
||||
@ -633,7 +831,6 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
#endif
|
||||
void * ptr = mmap(NULL,size, PROT_READ | PROT_WRITE, mmap_flag, fd, 0);
|
||||
|
||||
// std::cout << "Set WorldShmCommBufs["<<r<<"]="<<ptr<< "("<< size<< "bytes)"<<std::endl;
|
||||
if ( ptr == (void * )MAP_FAILED ) {
|
||||
perror("failed mmap");
|
||||
assert(0);
|
||||
@ -677,16 +874,16 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
/////////////////////////////////////////////////////////////////////////
|
||||
void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
|
||||
{
|
||||
#ifdef GRID_NVCC
|
||||
cudaMemset(dest,0,bytes);
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
|
||||
acceleratorMemSet(dest,0,bytes);
|
||||
#else
|
||||
bzero(dest,bytes);
|
||||
#endif
|
||||
}
|
||||
void GlobalSharedMemory::SharedMemoryCopy(void *dest,const void *src,size_t bytes)
|
||||
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
|
||||
{
|
||||
#ifdef GRID_NVCC
|
||||
cudaMemcpy(dest,src,bytes,cudaMemcpyDefault);
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
|
||||
acceleratorCopyToDevice(src,dest,bytes);
|
||||
#else
|
||||
bcopy(src,dest,bytes);
|
||||
#endif
|
||||
@ -705,7 +902,11 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Split into groups that can share memory
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
#ifndef GRID_MPI3_SHM_NONE
|
||||
MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL,&ShmComm);
|
||||
#else
|
||||
MPI_Comm_split(comm, rank, 0, &ShmComm);
|
||||
#endif
|
||||
MPI_Comm_rank(ShmComm ,&ShmRank);
|
||||
MPI_Comm_size(ShmComm ,&ShmSize);
|
||||
ShmCommBufs.resize(ShmSize);
|
||||
@ -725,6 +926,12 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
|
||||
}
|
||||
ShmBufferFreeAll();
|
||||
|
||||
#ifndef ACCELERATOR_AWARE_MPI
|
||||
host_heap_size = heap_size;
|
||||
HostCommBuf= GlobalSharedMemory::HostCommBuf;
|
||||
HostBufferFreeAll();
|
||||
#endif
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// find comm ranks in our SHM group (i.e. which ranks are on our node)
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
@ -735,25 +942,18 @@ void SharedMemory::SetCommunicator(Grid_MPI_Comm comm)
|
||||
std::vector<int> ranks(size); for(int r=0;r<size;r++) ranks[r]=r;
|
||||
MPI_Group_translate_ranks (FullGroup,size,&ranks[0],ShmGroup, &ShmRanks[0]);
|
||||
|
||||
#ifdef GRID_IBM_SUMMIT
|
||||
// Hide the shared memory path between sockets
|
||||
// if even number of nodes
|
||||
if ( (ShmSize & 0x1)==0 ) {
|
||||
int SocketSize = ShmSize/2;
|
||||
int mySocket = ShmRank/SocketSize;
|
||||
#ifdef GRID_SHM_FORCE_MPI
|
||||
// Hide the shared memory path between ranks
|
||||
{
|
||||
for(int r=0;r<size;r++){
|
||||
int hisRank=ShmRanks[r];
|
||||
if ( hisRank!= MPI_UNDEFINED ) {
|
||||
int hisSocket=hisRank/SocketSize;
|
||||
if ( hisSocket != mySocket ) {
|
||||
ShmRanks[r] = MPI_UNDEFINED;
|
||||
}
|
||||
if ( r!=rank ) {
|
||||
ShmRanks[r] = MPI_UNDEFINED;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
SharedMemoryTest();
|
||||
//SharedMemoryTest();
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////
|
||||
// On node barrier
|
||||
|
@ -29,6 +29,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/GridCore.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
#define header "SharedMemoryNone: "
|
||||
|
||||
/*Construct from an MPI communicator*/
|
||||
void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
||||
@ -47,14 +48,47 @@ void GlobalSharedMemory::Init(Grid_MPI_Comm comm)
|
||||
_ShmSetup=1;
|
||||
}
|
||||
|
||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm)
|
||||
void GlobalSharedMemory::OptimalCommunicator(const Coordinate &processors,Grid_MPI_Comm & optimal_comm,Coordinate &SHM)
|
||||
{
|
||||
optimal_comm = WorldComm;
|
||||
SHM = Coordinate(processors.size(),1);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Hugetlbfs mapping intended, use anonymous mmap
|
||||
////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#if 1
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
std::cout << header "SharedMemoryAllocate "<< bytes<< " GPU implementation "<<std::endl;
|
||||
void * ShmCommBuf ;
|
||||
assert(_ShmSetup==1);
|
||||
assert(_ShmAlloc==0);
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Each MPI rank should allocate our own buffer
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
ShmCommBuf = acceleratorAllocDevice(bytes);
|
||||
|
||||
if (ShmCommBuf == (void *)NULL ) {
|
||||
std::cerr << " SharedMemoryNone.cc acceleratorAllocDevice failed NULL pointer for " << bytes<<" bytes " << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if ( WorldRank == 0 ){
|
||||
std::cout << WorldRank << header " SharedMemoryNone.cc acceleratorAllocDevice "<< bytes
|
||||
<< "bytes at "<< std::hex<< ShmCommBuf <<std::dec<<" for comms buffers " <<std::endl;
|
||||
}
|
||||
SharedMemoryZero(ShmCommBuf,bytes);
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Loop over ranks/gpu's on our node
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
WorldShmCommBufs[0] = ShmCommBuf;
|
||||
|
||||
_ShmAllocBytes=bytes;
|
||||
_ShmAlloc=1;
|
||||
}
|
||||
#else
|
||||
void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
{
|
||||
void * ShmCommBuf ;
|
||||
@ -83,7 +117,15 @@ void GlobalSharedMemory::SharedMemoryAllocate(uint64_t bytes, int flags)
|
||||
_ShmAllocBytes=bytes;
|
||||
_ShmAlloc=1;
|
||||
};
|
||||
|
||||
#endif
|
||||
void GlobalSharedMemory::SharedMemoryZero(void *dest,size_t bytes)
|
||||
{
|
||||
acceleratorMemSet(dest,0,bytes);
|
||||
}
|
||||
void GlobalSharedMemory::SharedMemoryCopy(void *dest,void *src,size_t bytes)
|
||||
{
|
||||
acceleratorCopyToDevice(src,dest,bytes);
|
||||
}
|
||||
////////////////////////////////////////////////////////
|
||||
// Global shared functionality finished
|
||||
// Now move to per communicator functionality
|
||||
|
@ -49,4 +49,14 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#ifdef GRID_COMMS_SHMEM
|
||||
#include <Grid/cshift/Cshift_mpi.h> // uses same implementation of communicator
|
||||
#endif
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
|
||||
auto Cshift(const Expression &expr,int dim,int shift) -> decltype(closure(expr))
|
||||
{
|
||||
return Cshift(closure(expr),dim,shift);
|
||||
}
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
||||
|
@ -29,11 +29,32 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
extern std::vector<std::pair<int,int> > Cshift_table;
|
||||
extern commVector<std::pair<int,int> > Cshift_table_device;
|
||||
|
||||
inline std::pair<int,int> *MapCshiftTable(void)
|
||||
{
|
||||
// GPU version
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
uint64_t sz=Cshift_table.size();
|
||||
if (Cshift_table_device.size()!=sz ) {
|
||||
Cshift_table_device.resize(sz);
|
||||
}
|
||||
acceleratorCopyToDevice((void *)&Cshift_table[0],
|
||||
(void *)&Cshift_table_device[0],
|
||||
sizeof(Cshift_table[0])*sz);
|
||||
|
||||
return &Cshift_table_device[0];
|
||||
#else
|
||||
return &Cshift_table[0];
|
||||
#endif
|
||||
// CPU version use identify map
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// Gather for when there is no need to SIMD split
|
||||
///////////////////////////////////////////////////////////////////
|
||||
template<class vobj> void
|
||||
Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
|
||||
Gather_plane_simple (const Lattice<vobj> &rhs,cshiftVector<vobj> &buffer,int dimension,int plane,int cbmask, int off=0)
|
||||
{
|
||||
int rd = rhs.Grid()->_rdimensions[dimension];
|
||||
|
||||
@ -46,16 +67,16 @@ Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer,int dimen
|
||||
int e2=rhs.Grid()->_slice_block[dimension];
|
||||
int ent = 0;
|
||||
|
||||
static Vector<std::pair<int,int> > table; table.resize(e1*e2);
|
||||
if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
|
||||
|
||||
int stride=rhs.Grid()->_slice_stride[dimension];
|
||||
|
||||
auto rhs_v = rhs.View();
|
||||
if ( cbmask == 0x3 ) {
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
int o = n*stride;
|
||||
int bo = n*e2;
|
||||
table[ent++] = std::pair<int,int>(off+bo+b,so+o+b);
|
||||
Cshift_table[ent++] = std::pair<int,int>(off+bo+b,so+o+b);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -65,14 +86,26 @@ Gather_plane_simple (const Lattice<vobj> &rhs,commVector<vobj> &buffer,int dimen
|
||||
int o = n*stride;
|
||||
int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);
|
||||
if ( ocb &cbmask ) {
|
||||
table[ent++]=std::pair<int,int> (off+bo++,so+o+b);
|
||||
Cshift_table[ent++]=std::pair<int,int> (off+bo++,so+o+b);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
thread_for(i,ent,{
|
||||
buffer[table[i].first]=rhs_v[table[i].second];
|
||||
});
|
||||
{
|
||||
auto buffer_p = & buffer[0];
|
||||
auto table = MapCshiftTable();
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView(rhs_v , rhs, AcceleratorRead);
|
||||
accelerator_for(i,ent,vobj::Nsimd(),{
|
||||
coalescedWrite(buffer_p[table[i].first],coalescedRead(rhs_v[table[i].second]));
|
||||
});
|
||||
#else
|
||||
autoView(rhs_v , rhs, CpuRead);
|
||||
thread_for(i,ent,{
|
||||
buffer_p[table[i].first]=rhs_v[table[i].second];
|
||||
});
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
@ -95,43 +128,80 @@ Gather_plane_extract(const Lattice<vobj> &rhs,
|
||||
int e2=rhs.Grid()->_slice_block[dimension];
|
||||
int n1=rhs.Grid()->_slice_stride[dimension];
|
||||
|
||||
auto rhs_v = rhs.View();
|
||||
if ( cbmask ==0x3){
|
||||
thread_for_collapse(2,n,e1,{
|
||||
for(int b=0;b<e2;b++){
|
||||
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView(rhs_v , rhs, AcceleratorRead);
|
||||
accelerator_for(nn,e1*e2,1,{
|
||||
int n = nn%e1;
|
||||
int b = nn/e1;
|
||||
int o = n*n1;
|
||||
int offset = b+n*e2;
|
||||
|
||||
vobj temp =rhs_v[so+o+b];
|
||||
extract<vobj>(temp,pointers,offset);
|
||||
}
|
||||
});
|
||||
});
|
||||
#else
|
||||
autoView(rhs_v , rhs, CpuRead);
|
||||
thread_for2d(n,e1,b,e2,{
|
||||
int o = n*n1;
|
||||
int offset = b+n*e2;
|
||||
|
||||
vobj temp =rhs_v[so+o+b];
|
||||
extract<vobj>(temp,pointers,offset);
|
||||
});
|
||||
#endif
|
||||
} else {
|
||||
Coordinate rdim=rhs.Grid()->_rdimensions;
|
||||
Coordinate cdm =rhs.Grid()->_checker_dim_mask;
|
||||
std::cout << " Dense packed buffer WARNING " <<std::endl; // Does this get called twice once for each cb?
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView(rhs_v , rhs, AcceleratorRead);
|
||||
accelerator_for(nn,e1*e2,1,{
|
||||
int n = nn%e1;
|
||||
int b = nn/e1;
|
||||
|
||||
// Case of SIMD split AND checker dim cannot currently be hit, except in
|
||||
// Test_cshift_red_black code.
|
||||
std::cout << " Dense packed buffer WARNING " <<std::endl;
|
||||
thread_for_collapse(2,n,e1,{
|
||||
for(int b=0;b<e2;b++){
|
||||
Coordinate coor;
|
||||
|
||||
int o=n*n1;
|
||||
int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);
|
||||
int oindex = o+b;
|
||||
|
||||
int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
|
||||
|
||||
int ocb=1<<cb;
|
||||
int offset = b+n*e2;
|
||||
|
||||
if ( ocb & cbmask ) {
|
||||
vobj temp =rhs_v[so+o+b];
|
||||
extract<vobj>(temp,pointers,offset);
|
||||
}
|
||||
}
|
||||
});
|
||||
});
|
||||
#else
|
||||
autoView(rhs_v , rhs, CpuRead);
|
||||
thread_for2d(n,e1,b,e2,{
|
||||
|
||||
Coordinate coor;
|
||||
|
||||
int o=n*n1;
|
||||
int oindex = o+b;
|
||||
|
||||
int cb = RedBlackCheckerBoardFromOindex(oindex, rdim, cdm);
|
||||
|
||||
int ocb=1<<cb;
|
||||
int offset = b+n*e2;
|
||||
|
||||
if ( ocb & cbmask ) {
|
||||
vobj temp =rhs_v[so+o+b];
|
||||
extract<vobj>(temp,pointers,offset);
|
||||
}
|
||||
});
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// Scatter for when there is no need to SIMD split
|
||||
//////////////////////////////////////////////////////
|
||||
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vobj> &buffer, int dimension,int plane,int cbmask)
|
||||
template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,cshiftVector<vobj> &buffer, int dimension,int plane,int cbmask)
|
||||
{
|
||||
int rd = rhs.Grid()->_rdimensions[dimension];
|
||||
|
||||
@ -145,7 +215,8 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vo
|
||||
int e2=rhs.Grid()->_slice_block[dimension];
|
||||
int stride=rhs.Grid()->_slice_stride[dimension];
|
||||
|
||||
static std::vector<std::pair<int,int> > table; table.resize(e1*e2);
|
||||
if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
|
||||
|
||||
int ent =0;
|
||||
|
||||
if ( cbmask ==0x3 ) {
|
||||
@ -154,7 +225,7 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vo
|
||||
for(int b=0;b<e2;b++){
|
||||
int o =n*rhs.Grid()->_slice_stride[dimension];
|
||||
int bo =n*rhs.Grid()->_slice_block[dimension];
|
||||
table[ent++] = std::pair<int,int>(so+o+b,bo+b);
|
||||
Cshift_table[ent++] = std::pair<int,int>(so+o+b,bo+b);
|
||||
}
|
||||
}
|
||||
|
||||
@ -165,16 +236,27 @@ template<class vobj> void Scatter_plane_simple (Lattice<vobj> &rhs,commVector<vo
|
||||
int o =n*rhs.Grid()->_slice_stride[dimension];
|
||||
int ocb=1<<rhs.Grid()->CheckerBoardFromOindex(o+b);// Could easily be a table lookup
|
||||
if ( ocb & cbmask ) {
|
||||
table[ent++]=std::pair<int,int> (so+o+b,bo++);
|
||||
Cshift_table[ent++]=std::pair<int,int> (so+o+b,bo++);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
auto rhs_v = rhs.View();
|
||||
thread_for(i,ent,{
|
||||
rhs_v[table[i].first]=buffer[table[i].second];
|
||||
});
|
||||
{
|
||||
auto buffer_p = & buffer[0];
|
||||
auto table = MapCshiftTable();
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView( rhs_v, rhs, AcceleratorWrite);
|
||||
accelerator_for(i,ent,vobj::Nsimd(),{
|
||||
coalescedWrite(rhs_v[table[i].first],coalescedRead(buffer_p[table[i].second]));
|
||||
});
|
||||
#else
|
||||
autoView( rhs_v, rhs, CpuWrite);
|
||||
thread_for(i,ent,{
|
||||
rhs_v[table[i].first]=buffer_p[table[i].second];
|
||||
});
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
@ -194,21 +276,33 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
|
||||
int e2=rhs.Grid()->_slice_block[dimension];
|
||||
|
||||
if(cbmask ==0x3 ) {
|
||||
auto rhs_v = rhs.View();
|
||||
thread_for_collapse(2,n,e1,{
|
||||
for(int b=0;b<e2;b++){
|
||||
int o = n*rhs.Grid()->_slice_stride[dimension];
|
||||
int offset = b+n*rhs.Grid()->_slice_block[dimension];
|
||||
int _slice_stride = rhs.Grid()->_slice_stride[dimension];
|
||||
int _slice_block = rhs.Grid()->_slice_block[dimension];
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView( rhs_v , rhs, AcceleratorWrite);
|
||||
accelerator_for(nn,e1*e2,1,{
|
||||
int n = nn%e1;
|
||||
int b = nn/e1;
|
||||
int o = n*_slice_stride;
|
||||
int offset = b+n*_slice_block;
|
||||
merge(rhs_v[so+o+b],pointers,offset);
|
||||
});
|
||||
#else
|
||||
autoView( rhs_v , rhs, CpuWrite);
|
||||
thread_for2d(n,e1,b,e2,{
|
||||
int o = n*_slice_stride;
|
||||
int offset = b+n*_slice_block;
|
||||
merge(rhs_v[so+o+b],pointers,offset);
|
||||
}
|
||||
});
|
||||
#endif
|
||||
} else {
|
||||
|
||||
// Case of SIMD split AND checker dim cannot currently be hit, except in
|
||||
// Test_cshift_red_black code.
|
||||
// std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
|
||||
std::cout << "Scatter_plane merge assert(0); think this is buggy FIXME "<< std::endl;// think this is buggy FIXME
|
||||
std::cout<<" Unthreaded warning -- buffer is not densely packed ??"<<std::endl;
|
||||
auto rhs_v = rhs.View();
|
||||
assert(0); // This will fail if hit on GPU
|
||||
autoView( rhs_v, rhs, CpuWrite);
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
int o = n*rhs.Grid()->_slice_stride[dimension];
|
||||
@ -225,6 +319,7 @@ template<class vobj> void Scatter_plane_merge(Lattice<vobj> &rhs,ExtractPointerA
|
||||
//////////////////////////////////////////////////////
|
||||
// local to node block strided copies
|
||||
//////////////////////////////////////////////////////
|
||||
|
||||
template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask)
|
||||
{
|
||||
int rd = rhs.Grid()->_rdimensions[dimension];
|
||||
@ -239,14 +334,16 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
|
||||
int e1=rhs.Grid()->_slice_nblock[dimension]; // clearly loop invariant for icpc
|
||||
int e2=rhs.Grid()->_slice_block[dimension];
|
||||
int stride = rhs.Grid()->_slice_stride[dimension];
|
||||
static std::vector<std::pair<int,int> > table; table.resize(e1*e2);
|
||||
|
||||
if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
|
||||
|
||||
int ent=0;
|
||||
|
||||
if(cbmask == 0x3 ){
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
int o =n*stride+b;
|
||||
table[ent++] = std::pair<int,int>(lo+o,ro+o);
|
||||
Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -255,23 +352,32 @@ template<class vobj> void Copy_plane(Lattice<vobj>& lhs,const Lattice<vobj> &rhs
|
||||
int o =n*stride+b;
|
||||
int ocb=1<<lhs.Grid()->CheckerBoardFromOindex(o);
|
||||
if ( ocb&cbmask ) {
|
||||
table[ent++] = std::pair<int,int>(lo+o,ro+o);
|
||||
Cshift_table[ent++] = std::pair<int,int>(lo+o,ro+o);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
auto rhs_v = rhs.View();
|
||||
auto lhs_v = lhs.View();
|
||||
thread_for(i,ent,{
|
||||
lhs_v[table[i].first]=rhs_v[table[i].second];
|
||||
});
|
||||
|
||||
{
|
||||
auto table = MapCshiftTable();
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView(rhs_v , rhs, AcceleratorRead);
|
||||
autoView(lhs_v , lhs, AcceleratorWrite);
|
||||
accelerator_for(i,ent,vobj::Nsimd(),{
|
||||
coalescedWrite(lhs_v[table[i].first],coalescedRead(rhs_v[table[i].second]));
|
||||
});
|
||||
#else
|
||||
autoView(rhs_v , rhs, CpuRead);
|
||||
autoView(lhs_v , lhs, CpuWrite);
|
||||
thread_for(i,ent,{
|
||||
lhs_v[table[i].first]=rhs_v[table[i].second];
|
||||
});
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vobj> &rhs, int dimension,int lplane,int rplane,int cbmask,int permute_type)
|
||||
{
|
||||
|
||||
int rd = rhs.Grid()->_rdimensions[dimension];
|
||||
|
||||
if ( !rhs.Grid()->CheckerBoarded(dimension) ) {
|
||||
@ -285,29 +391,41 @@ template<class vobj> void Copy_plane_permute(Lattice<vobj>& lhs,const Lattice<vo
|
||||
int e2=rhs.Grid()->_slice_block [dimension];
|
||||
int stride = rhs.Grid()->_slice_stride[dimension];
|
||||
|
||||
static std::vector<std::pair<int,int> > table; table.resize(e1*e2);
|
||||
if(Cshift_table.size()<e1*e2) Cshift_table.resize(e1*e2); // Let it grow to biggest
|
||||
|
||||
int ent=0;
|
||||
|
||||
if ( cbmask == 0x3 ) {
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
int o =n*stride;
|
||||
table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
|
||||
Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
|
||||
}}
|
||||
} else {
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
int o =n*stride;
|
||||
int ocb=1<<lhs.Grid()->CheckerBoardFromOindex(o+b);
|
||||
if ( ocb&cbmask ) table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
|
||||
if ( ocb&cbmask ) Cshift_table[ent++] = std::pair<int,int>(lo+o+b,ro+o+b);
|
||||
}}
|
||||
}
|
||||
|
||||
auto rhs_v = rhs.View();
|
||||
auto lhs_v = lhs.View();
|
||||
thread_for(i,ent,{
|
||||
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
|
||||
});
|
||||
{
|
||||
auto table = MapCshiftTable();
|
||||
#ifdef ACCELERATOR_CSHIFT
|
||||
autoView( rhs_v, rhs, AcceleratorRead);
|
||||
autoView( lhs_v, lhs, AcceleratorWrite);
|
||||
accelerator_for(i,ent,1,{
|
||||
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
|
||||
});
|
||||
#else
|
||||
autoView( rhs_v, rhs, CpuRead);
|
||||
autoView( lhs_v, lhs, CpuWrite);
|
||||
thread_for(i,ent,{
|
||||
permute(lhs_v[table[i].first],rhs_v[table[i].second],permute_type);
|
||||
});
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
|
@ -52,7 +52,8 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
|
||||
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
|
||||
int splice_dim = rhs.Grid()->_simd_layout[dimension]>1 && (comm_dim);
|
||||
|
||||
|
||||
RealD t1,t0;
|
||||
t0=usecond();
|
||||
if ( !comm_dim ) {
|
||||
//std::cout << "CSHIFT: Cshift_local" <<std::endl;
|
||||
Cshift_local(ret,rhs,dimension,shift); // Handles checkerboarding
|
||||
@ -63,6 +64,8 @@ template<class vobj> Lattice<vobj> Cshift(const Lattice<vobj> &rhs,int dimension
|
||||
//std::cout << "CSHIFT: Cshift_comms" <<std::endl;
|
||||
Cshift_comms(ret,rhs,dimension,shift);
|
||||
}
|
||||
t1=usecond();
|
||||
// std::cout << GridLogPerformance << "Cshift took "<< (t1-t0)/1e3 << " ms"<<std::endl;
|
||||
return ret;
|
||||
}
|
||||
|
||||
@ -101,7 +104,8 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj>& ret,const Lattice<vob
|
||||
Cshift_comms_simd(ret,rhs,dimension,shift,0x2);// both with block stride loop iteration
|
||||
}
|
||||
}
|
||||
|
||||
#define ACCELERATOR_CSHIFT_NO_COPY
|
||||
#ifdef ACCELERATOR_CSHIFT_NO_COPY
|
||||
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
||||
{
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
@ -121,46 +125,65 @@ template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &r
|
||||
assert(shift<fd);
|
||||
|
||||
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
|
||||
commVector<vobj> send_buf(buffer_size);
|
||||
commVector<vobj> recv_buf(buffer_size);
|
||||
|
||||
static cshiftVector<vobj> send_buf; send_buf.resize(buffer_size);
|
||||
static cshiftVector<vobj> recv_buf; recv_buf.resize(buffer_size);
|
||||
|
||||
int cb= (cbmask==0x2)? Odd : Even;
|
||||
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
|
||||
|
||||
RealD tcopy=0.0;
|
||||
RealD tgather=0.0;
|
||||
RealD tscatter=0.0;
|
||||
RealD tcomms=0.0;
|
||||
uint64_t xbytes=0;
|
||||
for(int x=0;x<rd;x++){
|
||||
|
||||
int sx = (x+sshift)%rd;
|
||||
int comm_proc = ((x+sshift)/rd)%pd;
|
||||
|
||||
if (comm_proc==0) {
|
||||
|
||||
tcopy-=usecond();
|
||||
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
|
||||
|
||||
tcopy+=usecond();
|
||||
} else {
|
||||
|
||||
int words = send_buf.size();
|
||||
int words = buffer_size;
|
||||
if (cbmask != 0x3) words=words>>1;
|
||||
|
||||
int bytes = words * sizeof(vobj);
|
||||
|
||||
tgather-=usecond();
|
||||
Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask);
|
||||
tgather+=usecond();
|
||||
|
||||
// int rank = grid->_processor;
|
||||
int recv_from_rank;
|
||||
int xmit_to_rank;
|
||||
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
|
||||
tcomms-=usecond();
|
||||
// grid->Barrier();
|
||||
|
||||
grid->SendToRecvFrom((void *)&send_buf[0],
|
||||
xmit_to_rank,
|
||||
(void *)&recv_buf[0],
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
grid->Barrier();
|
||||
xbytes+=bytes;
|
||||
// grid->Barrier();
|
||||
tcomms+=usecond();
|
||||
|
||||
tscatter-=usecond();
|
||||
Scatter_plane_simple (ret,recv_buf,dimension,x,cbmask);
|
||||
tscatter+=usecond();
|
||||
}
|
||||
}
|
||||
/*
|
||||
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
|
||||
*/
|
||||
}
|
||||
|
||||
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
||||
@ -187,6 +210,12 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
assert(shift>=0);
|
||||
assert(shift<fd);
|
||||
|
||||
RealD tcopy=0.0;
|
||||
RealD tgather=0.0;
|
||||
RealD tscatter=0.0;
|
||||
RealD tcomms=0.0;
|
||||
uint64_t xbytes=0;
|
||||
|
||||
int permute_type=grid->PermuteType(dimension);
|
||||
|
||||
///////////////////////////////////////////////
|
||||
@ -195,8 +224,15 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
|
||||
// int words = sizeof(vobj)/sizeof(vector_type);
|
||||
|
||||
std::vector<commVector<scalar_object> > send_buf_extract(Nsimd,commVector<scalar_object>(buffer_size) );
|
||||
std::vector<commVector<scalar_object> > recv_buf_extract(Nsimd,commVector<scalar_object>(buffer_size) );
|
||||
static std::vector<cshiftVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
|
||||
static std::vector<cshiftVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
|
||||
scalar_object * recv_buf_extract_mpi;
|
||||
scalar_object * send_buf_extract_mpi;
|
||||
|
||||
for(int s=0;s<Nsimd;s++){
|
||||
send_buf_extract[s].resize(buffer_size);
|
||||
recv_buf_extract[s].resize(buffer_size);
|
||||
}
|
||||
|
||||
int bytes = buffer_size*sizeof(scalar_object);
|
||||
|
||||
@ -217,7 +253,9 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
pointers[i] = &send_buf_extract[i][0];
|
||||
}
|
||||
int sx = (x+sshift)%rd;
|
||||
tgather-=usecond();
|
||||
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
|
||||
tgather+=usecond();
|
||||
|
||||
for(int i=0;i<Nsimd;i++){
|
||||
|
||||
@ -242,23 +280,267 @@ template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vo
|
||||
if(nbr_proc){
|
||||
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
grid->SendToRecvFrom((void *)&send_buf_extract[nbr_lane][0],
|
||||
tcomms-=usecond();
|
||||
// grid->Barrier();
|
||||
|
||||
send_buf_extract_mpi = &send_buf_extract[nbr_lane][0];
|
||||
recv_buf_extract_mpi = &recv_buf_extract[i][0];
|
||||
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
|
||||
xmit_to_rank,
|
||||
(void *)&recv_buf_extract[i][0],
|
||||
(void *)recv_buf_extract_mpi,
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
grid->Barrier();
|
||||
|
||||
xbytes+=bytes;
|
||||
// grid->Barrier();
|
||||
tcomms+=usecond();
|
||||
|
||||
rpointers[i] = &recv_buf_extract[i][0];
|
||||
} else {
|
||||
rpointers[i] = &send_buf_extract[nbr_lane][0];
|
||||
}
|
||||
|
||||
}
|
||||
tscatter-=usecond();
|
||||
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
|
||||
tscatter+=usecond();
|
||||
}
|
||||
/*
|
||||
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
|
||||
*/
|
||||
}
|
||||
#else
|
||||
template<class vobj> void Cshift_comms(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
||||
{
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
|
||||
GridBase *grid=rhs.Grid();
|
||||
Lattice<vobj> temp(rhs.Grid());
|
||||
|
||||
int fd = rhs.Grid()->_fdimensions[dimension];
|
||||
int rd = rhs.Grid()->_rdimensions[dimension];
|
||||
int pd = rhs.Grid()->_processors[dimension];
|
||||
int simd_layout = rhs.Grid()->_simd_layout[dimension];
|
||||
int comm_dim = rhs.Grid()->_processors[dimension] >1 ;
|
||||
assert(simd_layout==1);
|
||||
assert(comm_dim==1);
|
||||
assert(shift>=0);
|
||||
assert(shift<fd);
|
||||
RealD tcopy=0.0;
|
||||
RealD tgather=0.0;
|
||||
RealD tscatter=0.0;
|
||||
RealD tcomms=0.0;
|
||||
uint64_t xbytes=0;
|
||||
|
||||
int buffer_size = rhs.Grid()->_slice_nblock[dimension]*rhs.Grid()->_slice_block[dimension];
|
||||
static cshiftVector<vobj> send_buf_v; send_buf_v.resize(buffer_size);
|
||||
static cshiftVector<vobj> recv_buf_v; recv_buf_v.resize(buffer_size);
|
||||
vobj *send_buf;
|
||||
vobj *recv_buf;
|
||||
{
|
||||
grid->ShmBufferFreeAll();
|
||||
size_t bytes = buffer_size*sizeof(vobj);
|
||||
send_buf=(vobj *)grid->ShmBufferMalloc(bytes);
|
||||
recv_buf=(vobj *)grid->ShmBufferMalloc(bytes);
|
||||
}
|
||||
|
||||
int cb= (cbmask==0x2)? Odd : Even;
|
||||
int sshift= rhs.Grid()->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
|
||||
|
||||
for(int x=0;x<rd;x++){
|
||||
|
||||
int sx = (x+sshift)%rd;
|
||||
int comm_proc = ((x+sshift)/rd)%pd;
|
||||
|
||||
if (comm_proc==0) {
|
||||
|
||||
tcopy-=usecond();
|
||||
Copy_plane(ret,rhs,dimension,x,sx,cbmask);
|
||||
tcopy+=usecond();
|
||||
|
||||
} else {
|
||||
|
||||
int words = buffer_size;
|
||||
if (cbmask != 0x3) words=words>>1;
|
||||
|
||||
int bytes = words * sizeof(vobj);
|
||||
|
||||
tgather-=usecond();
|
||||
Gather_plane_simple (rhs,send_buf_v,dimension,sx,cbmask);
|
||||
tgather+=usecond();
|
||||
|
||||
// int rank = grid->_processor;
|
||||
int recv_from_rank;
|
||||
int xmit_to_rank;
|
||||
grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
|
||||
tcomms-=usecond();
|
||||
// grid->Barrier();
|
||||
|
||||
acceleratorCopyDeviceToDevice((void *)&send_buf_v[0],(void *)&send_buf[0],bytes);
|
||||
grid->SendToRecvFrom((void *)&send_buf[0],
|
||||
xmit_to_rank,
|
||||
(void *)&recv_buf[0],
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
xbytes+=bytes;
|
||||
acceleratorCopyDeviceToDevice((void *)&recv_buf[0],(void *)&recv_buf_v[0],bytes);
|
||||
|
||||
// grid->Barrier();
|
||||
tcomms+=usecond();
|
||||
|
||||
tscatter-=usecond();
|
||||
Scatter_plane_simple (ret,recv_buf_v,dimension,x,cbmask);
|
||||
tscatter+=usecond();
|
||||
}
|
||||
}
|
||||
/*
|
||||
std::cout << GridLogPerformance << " Cshift copy "<<tcopy/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift gather "<<tgather/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift comm "<<tcomms/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s "<<2*xbytes<< " Bytes "<<std::endl;
|
||||
*/
|
||||
}
|
||||
|
||||
template<class vobj> void Cshift_comms_simd(Lattice<vobj> &ret,const Lattice<vobj> &rhs,int dimension,int shift,int cbmask)
|
||||
{
|
||||
GridBase *grid=rhs.Grid();
|
||||
const int Nsimd = grid->Nsimd();
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
typedef typename vobj::scalar_object scalar_object;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
|
||||
int fd = grid->_fdimensions[dimension];
|
||||
int rd = grid->_rdimensions[dimension];
|
||||
int ld = grid->_ldimensions[dimension];
|
||||
int pd = grid->_processors[dimension];
|
||||
int simd_layout = grid->_simd_layout[dimension];
|
||||
int comm_dim = grid->_processors[dimension] >1 ;
|
||||
|
||||
//std::cout << "Cshift_comms_simd dim "<< dimension << " fd "<<fd<<" rd "<<rd
|
||||
// << " ld "<<ld<<" pd " << pd<<" simd_layout "<<simd_layout
|
||||
// << " comm_dim " << comm_dim << " cbmask " << cbmask <<std::endl;
|
||||
|
||||
assert(comm_dim==1);
|
||||
assert(simd_layout==2);
|
||||
assert(shift>=0);
|
||||
assert(shift<fd);
|
||||
RealD tcopy=0.0;
|
||||
RealD tgather=0.0;
|
||||
RealD tscatter=0.0;
|
||||
RealD tcomms=0.0;
|
||||
uint64_t xbytes=0;
|
||||
|
||||
int permute_type=grid->PermuteType(dimension);
|
||||
|
||||
///////////////////////////////////////////////
|
||||
// Simd direction uses an extract/merge pair
|
||||
///////////////////////////////////////////////
|
||||
int buffer_size = grid->_slice_nblock[dimension]*grid->_slice_block[dimension];
|
||||
// int words = sizeof(vobj)/sizeof(vector_type);
|
||||
|
||||
static std::vector<cshiftVector<scalar_object> > send_buf_extract; send_buf_extract.resize(Nsimd);
|
||||
static std::vector<cshiftVector<scalar_object> > recv_buf_extract; recv_buf_extract.resize(Nsimd);
|
||||
scalar_object * recv_buf_extract_mpi;
|
||||
scalar_object * send_buf_extract_mpi;
|
||||
{
|
||||
size_t bytes = sizeof(scalar_object)*buffer_size;
|
||||
grid->ShmBufferFreeAll();
|
||||
send_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
|
||||
recv_buf_extract_mpi = (scalar_object *)grid->ShmBufferMalloc(bytes);
|
||||
}
|
||||
for(int s=0;s<Nsimd;s++){
|
||||
send_buf_extract[s].resize(buffer_size);
|
||||
recv_buf_extract[s].resize(buffer_size);
|
||||
}
|
||||
|
||||
int bytes = buffer_size*sizeof(scalar_object);
|
||||
|
||||
ExtractPointerArray<scalar_object> pointers(Nsimd); //
|
||||
ExtractPointerArray<scalar_object> rpointers(Nsimd); // received pointers
|
||||
|
||||
///////////////////////////////////////////
|
||||
// Work out what to send where
|
||||
///////////////////////////////////////////
|
||||
int cb = (cbmask==0x2)? Odd : Even;
|
||||
int sshift= grid->CheckerBoardShiftForCB(rhs.Checkerboard(),dimension,shift,cb);
|
||||
|
||||
// loop over outer coord planes orthog to dim
|
||||
for(int x=0;x<rd;x++){
|
||||
|
||||
// FIXME call local permute copy if none are offnode.
|
||||
for(int i=0;i<Nsimd;i++){
|
||||
pointers[i] = &send_buf_extract[i][0];
|
||||
}
|
||||
tgather-=usecond();
|
||||
int sx = (x+sshift)%rd;
|
||||
Gather_plane_extract(rhs,pointers,dimension,sx,cbmask);
|
||||
tgather+=usecond();
|
||||
|
||||
for(int i=0;i<Nsimd;i++){
|
||||
|
||||
int inner_bit = (Nsimd>>(permute_type+1));
|
||||
int ic= (i&inner_bit)? 1:0;
|
||||
|
||||
int my_coor = rd*ic + x;
|
||||
int nbr_coor = my_coor+sshift;
|
||||
int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
|
||||
|
||||
int nbr_ic = (nbr_coor%ld)/rd; // inner coord of peer
|
||||
int nbr_ox = (nbr_coor%rd); // outer coord of peer
|
||||
int nbr_lane = (i&(~inner_bit));
|
||||
|
||||
int recv_from_rank;
|
||||
int xmit_to_rank;
|
||||
|
||||
if (nbr_ic) nbr_lane|=inner_bit;
|
||||
|
||||
assert (sx == nbr_ox);
|
||||
|
||||
if(nbr_proc){
|
||||
grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
|
||||
|
||||
tcomms-=usecond();
|
||||
// grid->Barrier();
|
||||
|
||||
acceleratorCopyDeviceToDevice((void *)&send_buf_extract[nbr_lane][0],(void *)send_buf_extract_mpi,bytes);
|
||||
grid->SendToRecvFrom((void *)send_buf_extract_mpi,
|
||||
xmit_to_rank,
|
||||
(void *)recv_buf_extract_mpi,
|
||||
recv_from_rank,
|
||||
bytes);
|
||||
acceleratorCopyDeviceToDevice((void *)recv_buf_extract_mpi,(void *)&recv_buf_extract[i][0],bytes);
|
||||
xbytes+=bytes;
|
||||
|
||||
// grid->Barrier();
|
||||
tcomms+=usecond();
|
||||
rpointers[i] = &recv_buf_extract[i][0];
|
||||
} else {
|
||||
rpointers[i] = &send_buf_extract[nbr_lane][0];
|
||||
}
|
||||
|
||||
}
|
||||
tscatter-=usecond();
|
||||
Scatter_plane_merge(ret,rpointers,dimension,x,cbmask);
|
||||
tscatter+=usecond();
|
||||
|
||||
}
|
||||
/*
|
||||
std::cout << GridLogPerformance << " Cshift (s) copy "<<tcopy/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) gather "<<tgather/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) scatter "<<tscatter/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift (s) comm "<<tcomms/1e3<<" ms"<<std::endl;
|
||||
std::cout << GridLogPerformance << " Cshift BW "<<(2.0*xbytes)/tcomms<<" MB/s"<<std::endl;
|
||||
*/
|
||||
}
|
||||
#endif
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
||||
|
5
Grid/cshift/Cshift_table.cc
Normal file
5
Grid/cshift/Cshift_table.cc
Normal file
@ -0,0 +1,5 @@
|
||||
#include <Grid/GridCore.h>
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
std::vector<std::pair<int,int> > Cshift_table;
|
||||
commVector<std::pair<int,int> > Cshift_table_device;
|
||||
NAMESPACE_END(Grid);
|
24165
Grid/json/json.hpp
24165
Grid/json/json.hpp
File diff suppressed because it is too large
Load Diff
@ -26,6 +26,7 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#pragma once
|
||||
#include <Grid/lattice/Lattice_view.h>
|
||||
#include <Grid/lattice/Lattice_base.h>
|
||||
#include <Grid/lattice/Lattice_conformable.h>
|
||||
#include <Grid/lattice/Lattice_ET.h>
|
||||
@ -34,8 +35,10 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/lattice/Lattice_transpose.h>
|
||||
#include <Grid/lattice/Lattice_local.h>
|
||||
#include <Grid/lattice/Lattice_reduction.h>
|
||||
#include <Grid/lattice/Lattice_crc.h>
|
||||
#include <Grid/lattice/Lattice_peekpoke.h>
|
||||
#include <Grid/lattice/Lattice_reality.h>
|
||||
#include <Grid/lattice/Lattice_real_imag.h>
|
||||
#include <Grid/lattice/Lattice_comparison_utils.h>
|
||||
#include <Grid/lattice/Lattice_comparison.h>
|
||||
#include <Grid/lattice/Lattice_coordinate.h>
|
||||
@ -43,4 +46,5 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/lattice/Lattice_rng.h>
|
||||
#include <Grid/lattice/Lattice_unary.h>
|
||||
#include <Grid/lattice/Lattice_transfer.h>
|
||||
|
||||
#include <Grid/lattice/Lattice_basis.h>
|
||||
#include <Grid/lattice/PaddedCell.h>
|
||||
|
@ -9,6 +9,7 @@ Copyright (C) 2015
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: neo <cossu@post.kek.jp>
|
||||
Author: Christoph Lehner <christoph@lhnr.de
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -41,13 +42,28 @@ NAMESPACE_BEGIN(Grid);
|
||||
////////////////////////////////////////////////////
|
||||
// Predicated where support
|
||||
////////////////////////////////////////////////////
|
||||
#ifdef GRID_SIMT
|
||||
// drop to scalar in SIMT; cleaner in fact
|
||||
template <class iobj, class vobj, class robj>
|
||||
accelerator_inline vobj predicatedWhere(const iobj &predicate, const vobj &iftrue,
|
||||
const robj &iffalse) {
|
||||
accelerator_inline vobj predicatedWhere(const iobj &predicate,
|
||||
const vobj &iftrue,
|
||||
const robj &iffalse)
|
||||
{
|
||||
Integer mask = TensorRemove(predicate);
|
||||
typename std::remove_const<vobj>::type ret= iffalse;
|
||||
if (mask) ret=iftrue;
|
||||
return ret;
|
||||
}
|
||||
#else
|
||||
template <class iobj, class vobj, class robj>
|
||||
accelerator_inline vobj predicatedWhere(const iobj &predicate,
|
||||
const vobj &iftrue,
|
||||
const robj &iffalse)
|
||||
{
|
||||
typename std::remove_const<vobj>::type ret;
|
||||
|
||||
typedef typename vobj::scalar_object scalar_object;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
// typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
const int Nsimd = vobj::vector_type::Nsimd();
|
||||
@ -67,6 +83,7 @@ accelerator_inline vobj predicatedWhere(const iobj &predicate, const vobj &iftru
|
||||
merge(ret, falsevals);
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
|
||||
/////////////////////////////////////////////////////
|
||||
//Specialization of getVectorType for lattices
|
||||
@ -80,26 +97,62 @@ struct getVectorType<Lattice<T> >{
|
||||
//-- recursive evaluation of expressions; --
|
||||
// handle leaves of syntax tree
|
||||
///////////////////////////////////////////////////
|
||||
template<class sobj> accelerator_inline
|
||||
template<class sobj,
|
||||
typename std::enable_if<!is_lattice<sobj>::value&&!is_lattice_expr<sobj>::value,sobj>::type * = nullptr>
|
||||
accelerator_inline
|
||||
sobj eval(const uint64_t ss, const sobj &arg)
|
||||
{
|
||||
return arg;
|
||||
}
|
||||
|
||||
template <class lobj> accelerator_inline
|
||||
const lobj & eval(const uint64_t ss, const LatticeView<lobj> &arg)
|
||||
auto eval(const uint64_t ss, const LatticeView<lobj> &arg) -> decltype(arg(ss))
|
||||
{
|
||||
return arg[ss];
|
||||
return arg(ss);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////
|
||||
//-- recursive evaluation of expressions; --
|
||||
// whole vector return, used only for expression return type inference
|
||||
///////////////////////////////////////////////////
|
||||
template<class sobj> accelerator_inline
|
||||
sobj vecEval(const uint64_t ss, const sobj &arg)
|
||||
{
|
||||
return arg;
|
||||
}
|
||||
template <class lobj> accelerator_inline
|
||||
const lobj & eval(const uint64_t ss, const Lattice<lobj> &arg)
|
||||
const lobj & vecEval(const uint64_t ss, const LatticeView<lobj> &arg)
|
||||
{
|
||||
auto view = arg.View();
|
||||
return view[ss];
|
||||
return arg[ss];
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// handle nodes in syntax tree- eval one operand
|
||||
// vecEval needed (but never called as all expressions offloaded) to infer the return type
|
||||
// in SIMT contexts of closure.
|
||||
///////////////////////////////////////////////////
|
||||
template <typename Op, typename T1> accelerator_inline
|
||||
auto vecEval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
|
||||
-> decltype(expr.op.func( vecEval(ss, expr.arg1)))
|
||||
{
|
||||
return expr.op.func( vecEval(ss, expr.arg1) );
|
||||
}
|
||||
// vecEval two operands
|
||||
template <typename Op, typename T1, typename T2> accelerator_inline
|
||||
auto vecEval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)
|
||||
-> decltype(expr.op.func( vecEval(ss,expr.arg1),vecEval(ss,expr.arg2)))
|
||||
{
|
||||
return expr.op.func( vecEval(ss,expr.arg1), vecEval(ss,expr.arg2) );
|
||||
}
|
||||
// vecEval three operands
|
||||
template <typename Op, typename T1, typename T2, typename T3> accelerator_inline
|
||||
auto vecEval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
|
||||
-> decltype(expr.op.func(vecEval(ss, expr.arg1), vecEval(ss, expr.arg2), vecEval(ss, expr.arg3)))
|
||||
{
|
||||
return expr.op.func(vecEval(ss, expr.arg1), vecEval(ss, expr.arg2), vecEval(ss, expr.arg3));
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////
|
||||
// handle nodes in syntax tree- eval one operand coalesced
|
||||
///////////////////////////////////////////////////
|
||||
template <typename Op, typename T1> accelerator_inline
|
||||
auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
|
||||
@ -107,23 +160,41 @@ auto eval(const uint64_t ss, const LatticeUnaryExpression<Op, T1> &expr)
|
||||
{
|
||||
return expr.op.func( eval(ss, expr.arg1) );
|
||||
}
|
||||
///////////////////////
|
||||
// eval two operands
|
||||
///////////////////////
|
||||
template <typename Op, typename T1, typename T2> accelerator_inline
|
||||
auto eval(const uint64_t ss, const LatticeBinaryExpression<Op, T1, T2> &expr)
|
||||
-> decltype(expr.op.func( eval(ss,expr.arg1),eval(ss,expr.arg2)))
|
||||
{
|
||||
return expr.op.func( eval(ss,expr.arg1), eval(ss,expr.arg2) );
|
||||
}
|
||||
///////////////////////
|
||||
// eval three operands
|
||||
///////////////////////
|
||||
template <typename Op, typename T1, typename T2, typename T3> accelerator_inline
|
||||
auto eval(const uint64_t ss, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
|
||||
-> decltype(expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3)))
|
||||
-> decltype(expr.op.func(eval(ss, expr.arg1),
|
||||
eval(ss, expr.arg2),
|
||||
eval(ss, expr.arg3)))
|
||||
{
|
||||
return expr.op.func(eval(ss, expr.arg1), eval(ss, expr.arg2), eval(ss, expr.arg3));
|
||||
#ifdef GRID_SIMT
|
||||
// Handles Nsimd (vInteger) != Nsimd(ComplexD)
|
||||
typedef decltype(vecEval(ss, expr.arg2)) rvobj;
|
||||
typedef typename std::remove_reference<rvobj>::type vobj;
|
||||
|
||||
const int Nsimd = vobj::vector_type::Nsimd();
|
||||
|
||||
auto vpred = vecEval(ss,expr.arg1);
|
||||
|
||||
ExtractBuffer<Integer> mask(Nsimd);
|
||||
extract<vInteger, Integer>(TensorRemove(vpred), mask);
|
||||
|
||||
int s = acceleratorSIMTlane(Nsimd);
|
||||
return expr.op.func(mask[s],
|
||||
eval(ss, expr.arg2),
|
||||
eval(ss, expr.arg3));
|
||||
#else
|
||||
return expr.op.func(eval(ss, expr.arg1),
|
||||
eval(ss, expr.arg2),
|
||||
eval(ss, expr.arg3));
|
||||
#endif
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
@ -179,16 +250,12 @@ inline void CBFromExpression(int &cb, const T1 &lat) // Lattice leaf
|
||||
cb = lat.Checkerboard();
|
||||
}
|
||||
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
|
||||
inline void CBFromExpression(int &cb, const T1 ¬lat) // non-lattice leaf
|
||||
{
|
||||
}
|
||||
|
||||
inline void CBFromExpression(int &cb, const T1 ¬lat) {} // non-lattice leaf
|
||||
template <typename Op, typename T1> inline
|
||||
void CBFromExpression(int &cb,const LatticeUnaryExpression<Op, T1> &expr)
|
||||
{
|
||||
CBFromExpression(cb, expr.arg1); // recurse AST
|
||||
}
|
||||
|
||||
template <typename Op, typename T1, typename T2> inline
|
||||
void CBFromExpression(int &cb,const LatticeBinaryExpression<Op, T1, T2> &expr)
|
||||
{
|
||||
@ -203,32 +270,88 @@ inline void CBFromExpression(int &cb, const LatticeTrinaryExpression<Op, T1, T2,
|
||||
CBFromExpression(cb, expr.arg3); // recurse AST
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// ViewOpen
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
|
||||
inline void ExpressionViewOpen(T1 &lat) // Lattice leaf
|
||||
{
|
||||
lat.ViewOpen(AcceleratorRead);
|
||||
}
|
||||
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
|
||||
inline void ExpressionViewOpen(T1 ¬lat) {}
|
||||
|
||||
template <typename Op, typename T1> inline
|
||||
void ExpressionViewOpen(LatticeUnaryExpression<Op, T1> &expr)
|
||||
{
|
||||
ExpressionViewOpen(expr.arg1); // recurse AST
|
||||
}
|
||||
|
||||
template <typename Op, typename T1, typename T2> inline
|
||||
void ExpressionViewOpen(LatticeBinaryExpression<Op, T1, T2> &expr)
|
||||
{
|
||||
ExpressionViewOpen(expr.arg1); // recurse AST
|
||||
ExpressionViewOpen(expr.arg2); // rrecurse AST
|
||||
}
|
||||
template <typename Op, typename T1, typename T2, typename T3>
|
||||
inline void ExpressionViewOpen(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
|
||||
{
|
||||
ExpressionViewOpen(expr.arg1); // recurse AST
|
||||
ExpressionViewOpen(expr.arg2); // recurse AST
|
||||
ExpressionViewOpen(expr.arg3); // recurse AST
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// ViewClose
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
template <class T1,typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
|
||||
inline void ExpressionViewClose( T1 &lat) // Lattice leaf
|
||||
{
|
||||
lat.ViewClose();
|
||||
}
|
||||
template <class T1,typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
|
||||
inline void ExpressionViewClose(T1 ¬lat) {}
|
||||
|
||||
template <typename Op, typename T1> inline
|
||||
void ExpressionViewClose(LatticeUnaryExpression<Op, T1> &expr)
|
||||
{
|
||||
ExpressionViewClose(expr.arg1); // recurse AST
|
||||
}
|
||||
template <typename Op, typename T1, typename T2> inline
|
||||
void ExpressionViewClose(LatticeBinaryExpression<Op, T1, T2> &expr)
|
||||
{
|
||||
ExpressionViewClose(expr.arg1); // recurse AST
|
||||
ExpressionViewClose(expr.arg2); // recurse AST
|
||||
}
|
||||
template <typename Op, typename T1, typename T2, typename T3>
|
||||
inline void ExpressionViewClose(LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
|
||||
{
|
||||
ExpressionViewClose(expr.arg1); // recurse AST
|
||||
ExpressionViewClose(expr.arg2); // recurse AST
|
||||
ExpressionViewClose(expr.arg3); // recurse AST
|
||||
}
|
||||
|
||||
////////////////////////////////////////////
|
||||
// Unary operators and funcs
|
||||
////////////////////////////////////////////
|
||||
#define GridUnopClass(name, ret) \
|
||||
template <class arg> \
|
||||
struct name { \
|
||||
static auto accelerator_inline func(const arg a) -> decltype(ret) { return ret; } \
|
||||
template<class _arg> static auto accelerator_inline func(const _arg a) -> decltype(ret) { return ret; } \
|
||||
};
|
||||
|
||||
GridUnopClass(UnarySub, -a);
|
||||
GridUnopClass(UnaryNot, Not(a));
|
||||
GridUnopClass(UnaryAdj, adj(a));
|
||||
GridUnopClass(UnaryConj, conjugate(a));
|
||||
GridUnopClass(UnaryTrace, trace(a));
|
||||
GridUnopClass(UnaryTranspose, transpose(a));
|
||||
GridUnopClass(UnaryTa, Ta(a));
|
||||
GridUnopClass(UnarySpTa, SpTa(a));
|
||||
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
|
||||
GridUnopClass(UnaryReal, real(a));
|
||||
GridUnopClass(UnaryImag, imag(a));
|
||||
GridUnopClass(UnaryToReal, toReal(a));
|
||||
GridUnopClass(UnaryToComplex, toComplex(a));
|
||||
GridUnopClass(UnaryProjectOnSpGroup, ProjectOnSpGroup(a));
|
||||
GridUnopClass(UnaryTimesI, timesI(a));
|
||||
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
|
||||
GridUnopClass(UnaryAbs, abs(a));
|
||||
GridUnopClass(UnarySqrt, sqrt(a));
|
||||
GridUnopClass(UnaryRsqrt, rsqrt(a));
|
||||
GridUnopClass(UnarySin, sin(a));
|
||||
GridUnopClass(UnaryCos, cos(a));
|
||||
GridUnopClass(UnaryAsin, asin(a));
|
||||
@ -240,10 +363,10 @@ GridUnopClass(UnaryExp, exp(a));
|
||||
// Binary operators
|
||||
////////////////////////////////////////////
|
||||
#define GridBinOpClass(name, combination) \
|
||||
template <class left, class right> \
|
||||
struct name { \
|
||||
template <class _left, class _right> \
|
||||
static auto accelerator_inline \
|
||||
func(const left &lhs, const right &rhs) \
|
||||
func(const _left &lhs, const _right &rhs) \
|
||||
-> decltype(combination) const \
|
||||
{ \
|
||||
return combination; \
|
||||
@ -263,10 +386,10 @@ GridBinOpClass(BinaryOrOr, lhs || rhs);
|
||||
// Trinary conditional op
|
||||
////////////////////////////////////////////////////
|
||||
#define GridTrinOpClass(name, combination) \
|
||||
template <class predicate, class left, class right> \
|
||||
struct name { \
|
||||
template <class _predicate,class _left, class _right> \
|
||||
static auto accelerator_inline \
|
||||
func(const predicate &pred, const left &lhs, const right &rhs) \
|
||||
func(const _predicate &pred, const _left &lhs, const _right &rhs) \
|
||||
-> decltype(combination) const \
|
||||
{ \
|
||||
return combination; \
|
||||
@ -274,17 +397,17 @@ GridBinOpClass(BinaryOrOr, lhs || rhs);
|
||||
};
|
||||
|
||||
GridTrinOpClass(TrinaryWhere,
|
||||
(predicatedWhere<predicate,
|
||||
typename std::remove_reference<left>::type,
|
||||
typename std::remove_reference<right>::type>(pred, lhs,rhs)));
|
||||
(predicatedWhere<
|
||||
typename std::remove_reference<_predicate>::type,
|
||||
typename std::remove_reference<_left>::type,
|
||||
typename std::remove_reference<_right>::type>(pred, lhs,rhs)));
|
||||
|
||||
////////////////////////////////////////////
|
||||
// Operator syntactical glue
|
||||
////////////////////////////////////////////
|
||||
|
||||
#define GRID_UNOP(name) name<decltype(eval(0, arg))>
|
||||
#define GRID_BINOP(name) name<decltype(eval(0, lhs)), decltype(eval(0, rhs))>
|
||||
#define GRID_TRINOP(name) name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))>
|
||||
#define GRID_UNOP(name) name
|
||||
#define GRID_BINOP(name) name
|
||||
#define GRID_TRINOP(name) name
|
||||
|
||||
#define GRID_DEF_UNOP(op, name) \
|
||||
template <typename T1, typename std::enable_if<is_lattice<T1>::value||is_lattice_expr<T1>::value,T1>::type * = nullptr> \
|
||||
@ -330,22 +453,19 @@ GridTrinOpClass(TrinaryWhere,
|
||||
GRID_DEF_UNOP(operator-, UnarySub);
|
||||
GRID_DEF_UNOP(Not, UnaryNot);
|
||||
GRID_DEF_UNOP(operator!, UnaryNot);
|
||||
GRID_DEF_UNOP(adj, UnaryAdj);
|
||||
GRID_DEF_UNOP(conjugate, UnaryConj);
|
||||
//GRID_DEF_UNOP(adj, UnaryAdj);
|
||||
//GRID_DEF_UNOP(conjugate, UnaryConj);
|
||||
GRID_DEF_UNOP(trace, UnaryTrace);
|
||||
GRID_DEF_UNOP(transpose, UnaryTranspose);
|
||||
GRID_DEF_UNOP(Ta, UnaryTa);
|
||||
GRID_DEF_UNOP(SpTa, UnarySpTa);
|
||||
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
|
||||
GRID_DEF_UNOP(real, UnaryReal);
|
||||
GRID_DEF_UNOP(imag, UnaryImag);
|
||||
GRID_DEF_UNOP(toReal, UnaryToReal);
|
||||
GRID_DEF_UNOP(toComplex, UnaryToComplex);
|
||||
GRID_DEF_UNOP(ProjectOnSpGroup, UnaryProjectOnSpGroup);
|
||||
GRID_DEF_UNOP(timesI, UnaryTimesI);
|
||||
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
|
||||
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the
|
||||
// abs-fabs-dabs-labs thing
|
||||
GRID_DEF_UNOP(sqrt, UnarySqrt);
|
||||
GRID_DEF_UNOP(rsqrt, UnaryRsqrt);
|
||||
GRID_DEF_UNOP(sin, UnarySin);
|
||||
GRID_DEF_UNOP(cos, UnaryCos);
|
||||
GRID_DEF_UNOP(asin, UnaryAsin);
|
||||
@ -370,29 +490,36 @@ GRID_DEF_TRINOP(where, TrinaryWhere);
|
||||
/////////////////////////////////////////////////////////////
|
||||
template <class Op, class T1>
|
||||
auto closure(const LatticeUnaryExpression<Op, T1> &expr)
|
||||
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1)))>
|
||||
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type >
|
||||
{
|
||||
Lattice<decltype(expr.op.func(eval(0, expr.arg1)))> ret(expr);
|
||||
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1)))>::type > ret(expr);
|
||||
return ret;
|
||||
}
|
||||
template <class Op, class T1, class T2>
|
||||
auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr)
|
||||
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))>
|
||||
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type >
|
||||
{
|
||||
Lattice<decltype(expr.op.func(eval(0, expr.arg1),eval(0, expr.arg2)))> ret(expr);
|
||||
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),vecEval(0, expr.arg2)))>::type > ret(expr);
|
||||
return ret;
|
||||
}
|
||||
template <class Op, class T1, class T2, class T3>
|
||||
auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
|
||||
-> Lattice<decltype(expr.op.func(eval(0, expr.arg1),
|
||||
eval(0, expr.arg2),
|
||||
eval(0, expr.arg3)))>
|
||||
-> Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),
|
||||
vecEval(0, expr.arg2),
|
||||
vecEval(0, expr.arg3)))>::type >
|
||||
{
|
||||
Lattice<decltype(expr.op.func(eval(0, expr.arg1),
|
||||
eval(0, expr.arg2),
|
||||
eval(0, expr.arg3)))> ret(expr);
|
||||
Lattice<typename std::remove_const<decltype(expr.op.func(vecEval(0, expr.arg1),
|
||||
vecEval(0, expr.arg2),
|
||||
vecEval(0, expr.arg3)))>::type > ret(expr);
|
||||
return ret;
|
||||
}
|
||||
#define EXPRESSION_CLOSURE(function) \
|
||||
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr> \
|
||||
auto function(Expression &expr) -> decltype(function(closure(expr))) \
|
||||
{ \
|
||||
return function(closure(expr)); \
|
||||
}
|
||||
|
||||
|
||||
#undef GRID_UNOP
|
||||
#undef GRID_BINOP
|
||||
|
@ -7,6 +7,7 @@
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Christoph Lehner <christoph@lhnr.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -35,10 +36,11 @@ NAMESPACE_BEGIN(Grid);
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
||||
GRID_TRACE("mult");
|
||||
ret.Checkerboard() = lhs.Checkerboard();
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
auto rhs_v = rhs.View();
|
||||
autoView( ret_v , ret, AcceleratorWrite);
|
||||
autoView( lhs_v , lhs, AcceleratorRead);
|
||||
autoView( rhs_v , rhs, AcceleratorRead);
|
||||
conformable(ret,rhs);
|
||||
conformable(lhs,rhs);
|
||||
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
|
||||
@ -52,16 +54,17 @@ void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
||||
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
||||
GRID_TRACE("mac");
|
||||
ret.Checkerboard() = lhs.Checkerboard();
|
||||
conformable(ret,rhs);
|
||||
conformable(lhs,rhs);
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
auto rhs_v = rhs.View();
|
||||
autoView( ret_v , ret, AcceleratorWrite);
|
||||
autoView( lhs_v , lhs, AcceleratorRead);
|
||||
autoView( rhs_v , rhs, AcceleratorRead);
|
||||
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
auto lhs_t=lhs_v(ss);
|
||||
auto rhs_t=rhs_v(ss);
|
||||
auto tmp =ret_v(ss);
|
||||
mac(&tmp,&lhs_t,&rhs_t);
|
||||
coalescedWrite(ret_v[ss],tmp);
|
||||
});
|
||||
@ -69,12 +72,13 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
||||
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
||||
GRID_TRACE("sub");
|
||||
ret.Checkerboard() = lhs.Checkerboard();
|
||||
conformable(ret,rhs);
|
||||
conformable(lhs,rhs);
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
auto rhs_v = rhs.View();
|
||||
autoView( ret_v , ret, AcceleratorWrite);
|
||||
autoView( lhs_v , lhs, AcceleratorRead);
|
||||
autoView( rhs_v , rhs, AcceleratorRead);
|
||||
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
auto lhs_t=lhs_v(ss);
|
||||
@ -85,12 +89,13 @@ void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
||||
}
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
||||
GRID_TRACE("add");
|
||||
ret.Checkerboard() = lhs.Checkerboard();
|
||||
conformable(ret,rhs);
|
||||
conformable(lhs,rhs);
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
auto rhs_v = rhs.View();
|
||||
autoView( ret_v , ret, AcceleratorWrite);
|
||||
autoView( lhs_v , lhs, AcceleratorRead);
|
||||
autoView( rhs_v , rhs, AcceleratorRead);
|
||||
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
auto lhs_t=lhs_v(ss);
|
||||
@ -105,10 +110,11 @@ void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const Lattice<obj3> &rhs){
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
||||
GRID_TRACE("mult");
|
||||
ret.Checkerboard() = lhs.Checkerboard();
|
||||
conformable(lhs,ret);
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
autoView( ret_v , ret, AcceleratorWrite);
|
||||
autoView( lhs_v , lhs, AcceleratorRead);
|
||||
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
mult(&tmp,&lhs_v(ss),&rhs);
|
||||
@ -118,12 +124,13 @@ void mult(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
||||
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
||||
GRID_TRACE("mac");
|
||||
ret.Checkerboard() = lhs.Checkerboard();
|
||||
conformable(ret,lhs);
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
autoView( ret_v , ret, AcceleratorWrite);
|
||||
autoView( lhs_v , lhs, AcceleratorRead);
|
||||
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
auto tmp =ret_v(ss);
|
||||
auto lhs_t=lhs_v(ss);
|
||||
mac(&tmp,&lhs_t,&rhs);
|
||||
coalescedWrite(ret_v[ss],tmp);
|
||||
@ -132,10 +139,11 @@ void mac(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
||||
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
||||
GRID_TRACE("sub");
|
||||
ret.Checkerboard() = lhs.Checkerboard();
|
||||
conformable(ret,lhs);
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
autoView( ret_v , ret, AcceleratorWrite);
|
||||
autoView( lhs_v , lhs, AcceleratorRead);
|
||||
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
auto lhs_t=lhs_v(ss);
|
||||
@ -145,10 +153,11 @@ void sub(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
||||
}
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
||||
GRID_TRACE("add");
|
||||
ret.Checkerboard() = lhs.Checkerboard();
|
||||
conformable(lhs,ret);
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
autoView( ret_v , ret, AcceleratorWrite);
|
||||
autoView( lhs_v , lhs, AcceleratorRead);
|
||||
accelerator_for(ss,lhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
auto lhs_t=lhs_v(ss);
|
||||
@ -162,10 +171,11 @@ void add(Lattice<obj1> &ret,const Lattice<obj2> &lhs,const obj3 &rhs){
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
||||
GRID_TRACE("mult");
|
||||
ret.Checkerboard() = rhs.Checkerboard();
|
||||
conformable(ret,rhs);
|
||||
auto ret_v = ret.View();
|
||||
auto rhs_v = lhs.View();
|
||||
autoView( ret_v , ret, AcceleratorWrite);
|
||||
autoView( rhs_v , lhs, AcceleratorRead);
|
||||
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
auto rhs_t=rhs_v(ss);
|
||||
@ -176,12 +186,13 @@ void mult(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
||||
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
||||
GRID_TRACE("mac");
|
||||
ret.Checkerboard() = rhs.Checkerboard();
|
||||
conformable(ret,rhs);
|
||||
auto ret_v = ret.View();
|
||||
auto rhs_v = lhs.View();
|
||||
autoView( ret_v , ret, AcceleratorWrite);
|
||||
autoView( rhs_v , lhs, AcceleratorRead);
|
||||
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
auto tmp =ret_v(ss);
|
||||
auto rhs_t=rhs_v(ss);
|
||||
mac(&tmp,&lhs,&rhs_t);
|
||||
coalescedWrite(ret_v[ss],tmp);
|
||||
@ -190,10 +201,11 @@ void mac(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
||||
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
||||
GRID_TRACE("sub");
|
||||
ret.Checkerboard() = rhs.Checkerboard();
|
||||
conformable(ret,rhs);
|
||||
auto ret_v = ret.View();
|
||||
auto rhs_v = lhs.View();
|
||||
autoView( ret_v , ret, AcceleratorWrite);
|
||||
autoView( rhs_v , lhs, AcceleratorRead);
|
||||
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
auto rhs_t=rhs_v(ss);
|
||||
@ -203,10 +215,11 @@ void sub(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
||||
}
|
||||
template<class obj1,class obj2,class obj3> inline
|
||||
void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
||||
GRID_TRACE("add");
|
||||
ret.Checkerboard() = rhs.Checkerboard();
|
||||
conformable(ret,rhs);
|
||||
auto ret_v = ret.View();
|
||||
auto rhs_v = lhs.View();
|
||||
autoView( ret_v , ret, AcceleratorWrite);
|
||||
autoView( rhs_v , lhs, AcceleratorRead);
|
||||
accelerator_for(ss,rhs_v.size(),obj1::Nsimd(),{
|
||||
decltype(coalescedRead(obj1())) tmp;
|
||||
auto rhs_t=rhs_v(ss);
|
||||
@ -217,25 +230,27 @@ void add(Lattice<obj1> &ret,const obj2 &lhs,const Lattice<obj3> &rhs){
|
||||
|
||||
template<class sobj,class vobj> inline
|
||||
void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
|
||||
GRID_TRACE("axpy");
|
||||
ret.Checkerboard() = x.Checkerboard();
|
||||
conformable(ret,x);
|
||||
conformable(x,y);
|
||||
auto ret_v = ret.View();
|
||||
auto x_v = x.View();
|
||||
auto y_v = y.View();
|
||||
autoView( ret_v , ret, AcceleratorWrite);
|
||||
autoView( x_v , x, AcceleratorRead);
|
||||
autoView( y_v , y, AcceleratorRead);
|
||||
accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
|
||||
auto tmp = a*x_v(ss)+y_v(ss);
|
||||
auto tmp = a*coalescedRead(x_v[ss])+coalescedRead(y_v[ss]);
|
||||
coalescedWrite(ret_v[ss],tmp);
|
||||
});
|
||||
}
|
||||
template<class sobj,class vobj> inline
|
||||
void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y){
|
||||
GRID_TRACE("axpby");
|
||||
ret.Checkerboard() = x.Checkerboard();
|
||||
conformable(ret,x);
|
||||
conformable(x,y);
|
||||
auto ret_v = ret.View();
|
||||
auto x_v = x.View();
|
||||
auto y_v = y.View();
|
||||
autoView( ret_v , ret, AcceleratorWrite);
|
||||
autoView( x_v , x, AcceleratorRead);
|
||||
autoView( y_v , y, AcceleratorRead);
|
||||
accelerator_for(ss,x_v.size(),vobj::Nsimd(),{
|
||||
auto tmp = a*x_v(ss)+b*y_v(ss);
|
||||
coalescedWrite(ret_v[ss],tmp);
|
||||
@ -245,13 +260,52 @@ void axpby(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice
|
||||
template<class sobj,class vobj> inline
|
||||
RealD axpy_norm(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y)
|
||||
{
|
||||
GRID_TRACE("axpy_norm");
|
||||
return axpy_norm_fast(ret,a,x,y);
|
||||
}
|
||||
template<class sobj,class vobj> inline
|
||||
RealD axpby_norm(Lattice<vobj> &ret,sobj a,sobj b,const Lattice<vobj> &x,const Lattice<vobj> &y)
|
||||
{
|
||||
GRID_TRACE("axpby_norm");
|
||||
return axpby_norm_fast(ret,a,b,x,y);
|
||||
}
|
||||
|
||||
/// Trace product
|
||||
template<class obj> auto traceProduct(const Lattice<obj> &rhs_1,const Lattice<obj> &rhs_2)
|
||||
-> Lattice<decltype(trace(obj()))>
|
||||
{
|
||||
typedef decltype(trace(obj())) robj;
|
||||
Lattice<robj> ret_i(rhs_1.Grid());
|
||||
autoView( rhs1 , rhs_1, AcceleratorRead);
|
||||
autoView( rhs2 , rhs_2, AcceleratorRead);
|
||||
autoView( ret , ret_i, AcceleratorWrite);
|
||||
ret.Checkerboard() = rhs_1.Checkerboard();
|
||||
accelerator_for(ss,rhs1.size(),obj::Nsimd(),{
|
||||
coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2(ss)));
|
||||
});
|
||||
return ret_i;
|
||||
}
|
||||
|
||||
template<class obj1,class obj2> auto traceProduct(const Lattice<obj1> &rhs_1,const obj2 &rhs2)
|
||||
-> Lattice<decltype(trace(obj1()))>
|
||||
{
|
||||
typedef decltype(trace(obj1())) robj;
|
||||
Lattice<robj> ret_i(rhs_1.Grid());
|
||||
autoView( rhs1 , rhs_1, AcceleratorRead);
|
||||
autoView( ret , ret_i, AcceleratorWrite);
|
||||
ret.Checkerboard() = rhs_1.Checkerboard();
|
||||
accelerator_for(ss,rhs1.size(),obj1::Nsimd(),{
|
||||
coalescedWrite(ret[ss],traceProduct(rhs1(ss),rhs2));
|
||||
});
|
||||
return ret_i;
|
||||
}
|
||||
template<class obj1,class obj2> auto traceProduct(const obj2 &rhs_2,const Lattice<obj1> &rhs_1)
|
||||
-> Lattice<decltype(trace(obj1()))>
|
||||
{
|
||||
return traceProduct(rhs_1,rhs_2);
|
||||
}
|
||||
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
||||
|
@ -9,6 +9,7 @@ Copyright (C) 2015
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Christoph Lehner <christoph@lhnr.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@ -28,6 +29,7 @@ See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#pragma once
|
||||
|
||||
#define STREAMING_STORES
|
||||
@ -36,129 +38,6 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
extern int GridCshiftPermuteMap[4][16];
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// Base class which can be used by traits to pick up behaviour
|
||||
///////////////////////////////////////////////////////////////////
|
||||
class LatticeBase {};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Conformable checks; same instance of Grid required
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
void accelerator_inline conformable(GridBase *lhs,GridBase *rhs)
|
||||
{
|
||||
assert(lhs == rhs);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Minimal base class containing only data valid to access from accelerator
|
||||
// _odata will be a managed pointer in CUDA
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// Force access to lattice through a view object.
|
||||
// prevents writing of code that will not offload to GPU, but perhaps annoyingly
|
||||
// strict since host could could in principle direct access through the lattice object
|
||||
// Need to decide programming model.
|
||||
#define LATTICE_VIEW_STRICT
|
||||
template<class vobj> class LatticeAccelerator : public LatticeBase
|
||||
{
|
||||
protected:
|
||||
GridBase *_grid;
|
||||
int checkerboard;
|
||||
vobj *_odata; // A managed pointer
|
||||
uint64_t _odata_size;
|
||||
public:
|
||||
accelerator_inline LatticeAccelerator() : checkerboard(0), _odata(nullptr), _odata_size(0), _grid(nullptr) { };
|
||||
accelerator_inline uint64_t oSites(void) const { return _odata_size; };
|
||||
accelerator_inline int Checkerboard(void) const { return checkerboard; };
|
||||
accelerator_inline int &Checkerboard(void) { return this->checkerboard; }; // can assign checkerboard on a container, not a view
|
||||
accelerator_inline void Conformable(GridBase * &grid) const
|
||||
{
|
||||
if (grid) conformable(grid, _grid);
|
||||
else grid = _grid;
|
||||
};
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
// A View class which provides accessor to the data.
|
||||
// This will be safe to call from accelerator_for and is trivially copy constructible
|
||||
// The copy constructor for this will need to be used by device lambda functions
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
template<class vobj>
|
||||
class LatticeView : public LatticeAccelerator<vobj>
|
||||
{
|
||||
public:
|
||||
|
||||
|
||||
// Rvalue
|
||||
#ifdef __CUDA_ARCH__
|
||||
accelerator_inline const typename vobj::scalar_object operator()(size_t i) const { return coalescedRead(this->_odata[i]); }
|
||||
#else
|
||||
accelerator_inline const vobj & operator()(size_t i) const { return this->_odata[i]; }
|
||||
#endif
|
||||
|
||||
accelerator_inline const vobj & operator[](size_t i) const { return this->_odata[i]; };
|
||||
accelerator_inline vobj & operator[](size_t i) { return this->_odata[i]; };
|
||||
|
||||
accelerator_inline uint64_t begin(void) const { return 0;};
|
||||
accelerator_inline uint64_t end(void) const { return this->_odata_size; };
|
||||
accelerator_inline uint64_t size(void) const { return this->_odata_size; };
|
||||
|
||||
LatticeView(const LatticeAccelerator<vobj> &refer_to_me) : LatticeAccelerator<vobj> (refer_to_me)
|
||||
{
|
||||
}
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Lattice expression types used by ET to assemble the AST
|
||||
//
|
||||
// Need to be able to detect code paths according to the whether a lattice object or not
|
||||
// so introduce some trait type things
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
class LatticeExpressionBase {};
|
||||
|
||||
template <typename T> using is_lattice = std::is_base_of<LatticeBase, T>;
|
||||
template <typename T> using is_lattice_expr = std::is_base_of<LatticeExpressionBase,T >;
|
||||
|
||||
template<class T, bool isLattice> struct ViewMapBase { typedef T Type; };
|
||||
template<class T> struct ViewMapBase<T,true> { typedef LatticeView<typename T::vector_object> Type; };
|
||||
template<class T> using ViewMap = ViewMapBase<T,std::is_base_of<LatticeBase, T>::value >;
|
||||
|
||||
template <typename Op, typename _T1>
|
||||
class LatticeUnaryExpression : public LatticeExpressionBase
|
||||
{
|
||||
public:
|
||||
typedef typename ViewMap<_T1>::Type T1;
|
||||
Op op;
|
||||
T1 arg1;
|
||||
LatticeUnaryExpression(Op _op,const _T1 &_arg1) : op(_op), arg1(_arg1) {};
|
||||
};
|
||||
|
||||
template <typename Op, typename _T1, typename _T2>
|
||||
class LatticeBinaryExpression : public LatticeExpressionBase
|
||||
{
|
||||
public:
|
||||
typedef typename ViewMap<_T1>::Type T1;
|
||||
typedef typename ViewMap<_T2>::Type T2;
|
||||
Op op;
|
||||
T1 arg1;
|
||||
T2 arg2;
|
||||
LatticeBinaryExpression(Op _op,const _T1 &_arg1,const _T2 &_arg2) : op(_op), arg1(_arg1), arg2(_arg2) {};
|
||||
};
|
||||
|
||||
template <typename Op, typename _T1, typename _T2, typename _T3>
|
||||
class LatticeTrinaryExpression : public LatticeExpressionBase
|
||||
{
|
||||
public:
|
||||
typedef typename ViewMap<_T1>::Type T1;
|
||||
typedef typename ViewMap<_T2>::Type T2;
|
||||
typedef typename ViewMap<_T3>::Type T3;
|
||||
Op op;
|
||||
T1 arg1;
|
||||
T2 arg2;
|
||||
T3 arg3;
|
||||
LatticeTrinaryExpression(Op _op,const _T1 &_arg1,const _T2 &_arg2,const _T3 &_arg3) : op(_op), arg1(_arg1), arg2(_arg2), arg3(_arg3) {};
|
||||
};
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////
|
||||
// The real lattice class, with normal copy and assignment semantics.
|
||||
// This contains extra (host resident) grid pointer data that may be accessed by host code
|
||||
@ -194,24 +73,40 @@ private:
|
||||
dealloc();
|
||||
|
||||
this->_odata_size = size;
|
||||
if ( size )
|
||||
if ( size )
|
||||
this->_odata = alloc.allocate(this->_odata_size);
|
||||
else
|
||||
this->_odata = nullptr;
|
||||
}
|
||||
}
|
||||
public:
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
// Can use to make accelerator dirty without copy from host ; useful for temporaries "dont care" prev contents
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
void SetViewMode(ViewMode mode) {
|
||||
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);
|
||||
accessor.ViewClose();
|
||||
}
|
||||
|
||||
// Helper function to print the state of this object in the AccCache
|
||||
void PrintCacheState(void)
|
||||
{
|
||||
MemoryManager::PrintState(this->_odata);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
// Return a view object that may be dereferenced in site loops.
|
||||
// The view is trivially copy constructible and may be copied to an accelerator device
|
||||
// in device lambdas
|
||||
/////////////////////////////////////////////////////////////////////////////////
|
||||
LatticeView<vobj> View (void) const
|
||||
|
||||
LatticeView<vobj> View (ViewMode mode) const
|
||||
{
|
||||
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this));
|
||||
LatticeView<vobj> accessor(*( (LatticeAccelerator<vobj> *) this),mode);
|
||||
return accessor;
|
||||
}
|
||||
|
||||
|
||||
~Lattice() {
|
||||
if ( this->_odata_size ) {
|
||||
dealloc();
|
||||
@ -222,6 +117,7 @@ public:
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
template <typename Op, typename T1> inline Lattice<vobj> & operator=(const LatticeUnaryExpression<Op,T1> &expr)
|
||||
{
|
||||
GRID_TRACE("ExpressionTemplateEval");
|
||||
GridBase *egrid(nullptr);
|
||||
GridFromExpression(egrid,expr);
|
||||
assert(egrid!=nullptr);
|
||||
@ -231,16 +127,21 @@ public:
|
||||
CBFromExpression(cb,expr);
|
||||
assert( (cb==Odd) || (cb==Even));
|
||||
this->checkerboard=cb;
|
||||
|
||||
auto me = View();
|
||||
accelerator_for(ss,me.size(),1,{
|
||||
auto tmp = eval(ss,expr);
|
||||
vstream(me[ss],tmp);
|
||||
|
||||
auto exprCopy = expr;
|
||||
ExpressionViewOpen(exprCopy);
|
||||
auto me = View(AcceleratorWriteDiscard);
|
||||
accelerator_for(ss,me.size(),vobj::Nsimd(),{
|
||||
auto tmp = eval(ss,exprCopy);
|
||||
coalescedWrite(me[ss],tmp);
|
||||
});
|
||||
me.ViewClose();
|
||||
ExpressionViewClose(exprCopy);
|
||||
return *this;
|
||||
}
|
||||
template <typename Op, typename T1,typename T2> inline Lattice<vobj> & operator=(const LatticeBinaryExpression<Op,T1,T2> &expr)
|
||||
{
|
||||
GRID_TRACE("ExpressionTemplateEval");
|
||||
GridBase *egrid(nullptr);
|
||||
GridFromExpression(egrid,expr);
|
||||
assert(egrid!=nullptr);
|
||||
@ -251,15 +152,20 @@ public:
|
||||
assert( (cb==Odd) || (cb==Even));
|
||||
this->checkerboard=cb;
|
||||
|
||||
auto me = View();
|
||||
accelerator_for(ss,me.size(),1,{
|
||||
auto tmp = eval(ss,expr);
|
||||
vstream(me[ss],tmp);
|
||||
auto exprCopy = expr;
|
||||
ExpressionViewOpen(exprCopy);
|
||||
auto me = View(AcceleratorWriteDiscard);
|
||||
accelerator_for(ss,me.size(),vobj::Nsimd(),{
|
||||
auto tmp = eval(ss,exprCopy);
|
||||
coalescedWrite(me[ss],tmp);
|
||||
});
|
||||
me.ViewClose();
|
||||
ExpressionViewClose(exprCopy);
|
||||
return *this;
|
||||
}
|
||||
template <typename Op, typename T1,typename T2,typename T3> inline Lattice<vobj> & operator=(const LatticeTrinaryExpression<Op,T1,T2,T3> &expr)
|
||||
{
|
||||
GRID_TRACE("ExpressionTemplateEval");
|
||||
GridBase *egrid(nullptr);
|
||||
GridFromExpression(egrid,expr);
|
||||
assert(egrid!=nullptr);
|
||||
@ -269,11 +175,15 @@ public:
|
||||
CBFromExpression(cb,expr);
|
||||
assert( (cb==Odd) || (cb==Even));
|
||||
this->checkerboard=cb;
|
||||
auto me = View();
|
||||
accelerator_for(ss,me.size(),1,{
|
||||
auto tmp = eval(ss,expr);
|
||||
vstream(me[ss],tmp);
|
||||
auto exprCopy = expr;
|
||||
ExpressionViewOpen(exprCopy);
|
||||
auto me = View(AcceleratorWriteDiscard);
|
||||
accelerator_for(ss,me.size(),vobj::Nsimd(),{
|
||||
auto tmp = eval(ss,exprCopy);
|
||||
coalescedWrite(me[ss],tmp);
|
||||
});
|
||||
me.ViewClose();
|
||||
ExpressionViewClose(exprCopy);
|
||||
return *this;
|
||||
}
|
||||
//GridFromExpression is tricky to do
|
||||
@ -324,10 +234,21 @@ public:
|
||||
}
|
||||
|
||||
template<class sobj> inline Lattice<vobj> & operator = (const sobj & r){
|
||||
auto me = View();
|
||||
vobj vtmp;
|
||||
vtmp = r;
|
||||
#if 1
|
||||
auto me = View(CpuWrite);
|
||||
thread_for(ss,me.size(),{
|
||||
me[ss] = r;
|
||||
me[ss]= r;
|
||||
});
|
||||
#else
|
||||
auto me = View(AcceleratorWrite);
|
||||
accelerator_for(ss,me.size(),vobj::Nsimd(),{
|
||||
auto stmp=coalescedRead(vtmp);
|
||||
coalescedWrite(me[ss],stmp);
|
||||
});
|
||||
#endif
|
||||
me.ViewClose();
|
||||
return *this;
|
||||
}
|
||||
|
||||
@ -337,11 +258,12 @@ public:
|
||||
///////////////////////////////////////////
|
||||
// user defined constructor
|
||||
///////////////////////////////////////////
|
||||
Lattice(GridBase *grid) {
|
||||
Lattice(GridBase *grid,ViewMode mode=AcceleratorWriteDiscard) {
|
||||
this->_grid = grid;
|
||||
resize(this->_grid->oSites());
|
||||
assert((((uint64_t)&this->_odata[0])&0xF) ==0);
|
||||
this->checkerboard=0;
|
||||
SetViewMode(mode);
|
||||
}
|
||||
|
||||
// virtual ~Lattice(void) = default;
|
||||
@ -357,7 +279,6 @@ public:
|
||||
// copy constructor
|
||||
///////////////////////////////////////////
|
||||
Lattice(const Lattice& r){
|
||||
// std::cout << "Lattice constructor(const Lattice &) "<<this<<std::endl;
|
||||
this->_grid = r.Grid();
|
||||
resize(this->_grid->oSites());
|
||||
*this = r;
|
||||
@ -380,11 +301,12 @@ public:
|
||||
typename std::enable_if<!std::is_same<robj,vobj>::value,int>::type i=0;
|
||||
conformable(*this,r);
|
||||
this->checkerboard = r.Checkerboard();
|
||||
auto me = View();
|
||||
auto him= r.View();
|
||||
auto him= r.View(AcceleratorRead);
|
||||
auto me = View(AcceleratorWriteDiscard);
|
||||
accelerator_for(ss,me.size(),vobj::Nsimd(),{
|
||||
coalescedWrite(me[ss],him(ss));
|
||||
});
|
||||
me.ViewClose(); him.ViewClose();
|
||||
return *this;
|
||||
}
|
||||
|
||||
@ -394,11 +316,12 @@ public:
|
||||
inline Lattice<vobj> & operator = (const Lattice<vobj> & r){
|
||||
this->checkerboard = r.Checkerboard();
|
||||
conformable(*this,r);
|
||||
auto me = View();
|
||||
auto him= r.View();
|
||||
auto him= r.View(AcceleratorRead);
|
||||
auto me = View(AcceleratorWriteDiscard);
|
||||
accelerator_for(ss,me.size(),vobj::Nsimd(),{
|
||||
coalescedWrite(me[ss],him(ss));
|
||||
});
|
||||
me.ViewClose(); him.ViewClose();
|
||||
return *this;
|
||||
}
|
||||
///////////////////////////////////////////
|
||||
@ -447,7 +370,7 @@ public:
|
||||
|
||||
template<class vobj> std::ostream& operator<< (std::ostream& stream, const Lattice<vobj> &o){
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
for(int g=0;g<o.Grid()->_gsites;g++){
|
||||
for(int64_t g=0;g<o.Grid()->_gsites;g++){
|
||||
|
||||
Coordinate gcoor;
|
||||
o.Grid()->GlobalIndexToGlobalCoor(g,gcoor);
|
||||
|
248
Grid/lattice/Lattice_basis.h
Normal file
248
Grid/lattice/Lattice_basis.h
Normal file
@ -0,0 +1,248 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/lattice/Lattice_basis.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Christoph Lehner <christoph@lhnr.de>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution
|
||||
directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class Field>
|
||||
void basisOrthogonalize(std::vector<Field> &basis,Field &w,int k)
|
||||
{
|
||||
// If assume basis[j] are already orthonormal,
|
||||
// can take all inner products in parallel saving 2x bandwidth
|
||||
// Save 3x bandwidth on the second line of loop.
|
||||
// perhaps 2.5x speed up.
|
||||
// 2x overall in Multigrid Lanczos
|
||||
for(int j=0; j<k; ++j){
|
||||
auto ip = innerProduct(basis[j],w);
|
||||
w = w - ip*basis[j];
|
||||
}
|
||||
}
|
||||
|
||||
template<class VField, class Matrix>
|
||||
void basisRotate(VField &basis,Matrix& Qt,int j0, int j1, int k0,int k1,int Nm)
|
||||
{
|
||||
typedef decltype(basis[0]) Field;
|
||||
typedef decltype(basis[0].View(AcceleratorRead)) View;
|
||||
|
||||
Vector<View> basis_v; basis_v.reserve(basis.size());
|
||||
typedef typename std::remove_reference<decltype(basis_v[0][0])>::type vobj;
|
||||
typedef typename std::remove_reference<decltype(Qt(0,0))>::type Coeff_t;
|
||||
GridBase* grid = basis[0].Grid();
|
||||
|
||||
for(int k=0;k<basis.size();k++){
|
||||
basis_v.push_back(basis[k].View(AcceleratorWrite));
|
||||
}
|
||||
|
||||
#if ( !(defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)) )
|
||||
int max_threads = thread_max();
|
||||
Vector < vobj > Bt(Nm * max_threads);
|
||||
thread_region
|
||||
{
|
||||
vobj* B = &Bt[Nm * thread_num()];
|
||||
thread_for_in_region(ss, grid->oSites(),{
|
||||
for(int j=j0; j<j1; ++j) B[j]=0.;
|
||||
|
||||
for(int j=j0; j<j1; ++j){
|
||||
for(int k=k0; k<k1; ++k){
|
||||
B[j] +=Qt(j,k) * basis_v[k][ss];
|
||||
}
|
||||
}
|
||||
for(int j=j0; j<j1; ++j){
|
||||
basis_v[j][ss] = B[j];
|
||||
}
|
||||
});
|
||||
}
|
||||
#else
|
||||
View *basis_vp = &basis_v[0];
|
||||
|
||||
int nrot = j1-j0;
|
||||
if (!nrot) // edge case not handled gracefully by Cuda
|
||||
return;
|
||||
|
||||
uint64_t oSites =grid->oSites();
|
||||
uint64_t siteBlock=(grid->oSites()+nrot-1)/nrot; // Maximum 1 additional vector overhead
|
||||
|
||||
Vector <vobj> Bt(siteBlock * nrot);
|
||||
auto Bp=&Bt[0];
|
||||
|
||||
// GPU readable copy of matrix
|
||||
Vector<Coeff_t> Qt_jv(Nm*Nm);
|
||||
Coeff_t *Qt_p = & Qt_jv[0];
|
||||
thread_for(i,Nm*Nm,{
|
||||
int j = i/Nm;
|
||||
int k = i%Nm;
|
||||
Qt_p[i]=Qt(j,k);
|
||||
});
|
||||
|
||||
// Block the loop to keep storage footprint down
|
||||
for(uint64_t s=0;s<oSites;s+=siteBlock){
|
||||
|
||||
// remaining work in this block
|
||||
int ssites=MIN(siteBlock,oSites-s);
|
||||
|
||||
// zero out the accumulators
|
||||
accelerator_for(ss,siteBlock*nrot,vobj::Nsimd(),{
|
||||
decltype(coalescedRead(Bp[ss])) z;
|
||||
z=Zero();
|
||||
coalescedWrite(Bp[ss],z);
|
||||
});
|
||||
|
||||
accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
|
||||
|
||||
int j =sj%nrot;
|
||||
int jj =j0+j;
|
||||
int ss =sj/nrot;
|
||||
int sss=ss+s;
|
||||
|
||||
for(int k=k0; k<k1; ++k){
|
||||
auto tmp = coalescedRead(Bp[ss*nrot+j]);
|
||||
coalescedWrite(Bp[ss*nrot+j],tmp+ Qt_p[jj*Nm+k] * coalescedRead(basis_vp[k][sss]));
|
||||
}
|
||||
});
|
||||
|
||||
accelerator_for(sj,ssites*nrot,vobj::Nsimd(),{
|
||||
int j =sj%nrot;
|
||||
int jj =j0+j;
|
||||
int ss =sj/nrot;
|
||||
int sss=ss+s;
|
||||
coalescedWrite(basis_vp[jj][sss],coalescedRead(Bp[ss*nrot+j]));
|
||||
});
|
||||
}
|
||||
#endif
|
||||
|
||||
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
|
||||
}
|
||||
|
||||
// Extract a single rotated vector
|
||||
template<class Field>
|
||||
void basisRotateJ(Field &result,std::vector<Field> &basis,Eigen::MatrixXd& Qt,int j, int k0,int k1,int Nm)
|
||||
{
|
||||
typedef decltype(basis[0].View(AcceleratorRead)) View;
|
||||
typedef typename Field::vector_object vobj;
|
||||
GridBase* grid = basis[0].Grid();
|
||||
|
||||
result.Checkerboard() = basis[0].Checkerboard();
|
||||
|
||||
Vector<View> basis_v; basis_v.reserve(basis.size());
|
||||
for(int k=0;k<basis.size();k++){
|
||||
basis_v.push_back(basis[k].View(AcceleratorRead));
|
||||
}
|
||||
vobj zz=Zero();
|
||||
Vector<double> Qt_jv(Nm);
|
||||
double * Qt_j = & Qt_jv[0];
|
||||
for(int k=0;k<Nm;++k) Qt_j[k]=Qt(j,k);
|
||||
|
||||
auto basis_vp=& basis_v[0];
|
||||
autoView(result_v,result,AcceleratorWrite);
|
||||
accelerator_for(ss, grid->oSites(),vobj::Nsimd(),{
|
||||
vobj zzz=Zero();
|
||||
auto B=coalescedRead(zzz);
|
||||
for(int k=k0; k<k1; ++k){
|
||||
B +=Qt_j[k] * coalescedRead(basis_vp[k][ss]);
|
||||
}
|
||||
coalescedWrite(result_v[ss], B);
|
||||
});
|
||||
for(int k=0;k<basis.size();k++) basis_v[k].ViewClose();
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
void basisReorderInPlace(std::vector<Field> &_v,std::vector<RealD>& sort_vals, std::vector<int>& idx)
|
||||
{
|
||||
int vlen = idx.size();
|
||||
|
||||
assert(vlen>=1);
|
||||
assert(vlen<=sort_vals.size());
|
||||
assert(vlen<=_v.size());
|
||||
|
||||
for (size_t i=0;i<vlen;i++) {
|
||||
|
||||
if (idx[i] != i) {
|
||||
|
||||
//////////////////////////////////////
|
||||
// idx[i] is a table of desired sources giving a permutation.
|
||||
// Swap v[i] with v[idx[i]].
|
||||
// Find j>i for which _vnew[j] = _vold[i],
|
||||
// track the move idx[j] => idx[i]
|
||||
// track the move idx[i] => i
|
||||
//////////////////////////////////////
|
||||
size_t j;
|
||||
for (j=i;j<idx.size();j++)
|
||||
if (idx[j]==i)
|
||||
break;
|
||||
|
||||
assert(idx[i] > i); assert(j!=idx.size()); assert(idx[j]==i);
|
||||
|
||||
swap(_v[i],_v[idx[i]]); // should use vector move constructor, no data copy
|
||||
std::swap(sort_vals[i],sort_vals[idx[i]]);
|
||||
|
||||
idx[j] = idx[i];
|
||||
idx[i] = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
inline std::vector<int> basisSortGetIndex(std::vector<RealD>& sort_vals)
|
||||
{
|
||||
std::vector<int> idx(sort_vals.size());
|
||||
std::iota(idx.begin(), idx.end(), 0);
|
||||
|
||||
// sort indexes based on comparing values in v
|
||||
std::sort(idx.begin(), idx.end(), [&sort_vals](int i1, int i2) {
|
||||
return ::fabs(sort_vals[i1]) < ::fabs(sort_vals[i2]);
|
||||
});
|
||||
return idx;
|
||||
}
|
||||
|
||||
template<class Field>
|
||||
void basisSortInPlace(std::vector<Field> & _v,std::vector<RealD>& sort_vals, bool reverse)
|
||||
{
|
||||
std::vector<int> idx = basisSortGetIndex(sort_vals);
|
||||
if (reverse)
|
||||
std::reverse(idx.begin(), idx.end());
|
||||
|
||||
basisReorderInPlace(_v,sort_vals,idx);
|
||||
}
|
||||
|
||||
// PAB: faster to compute the inner products first then fuse loops.
|
||||
// If performance critical can improve.
|
||||
template<class Field>
|
||||
void basisDeflate(const std::vector<Field> &_v,const std::vector<RealD>& eval,const Field& src_orig,Field& result) {
|
||||
result = Zero();
|
||||
assert(_v.size()==eval.size());
|
||||
int N = (int)_v.size();
|
||||
for (int i=0;i<N;i++) {
|
||||
Field& tmp = _v[i];
|
||||
axpy(result,TensorRemove(innerProduct(tmp,src_orig)) / eval[i],tmp,result);
|
||||
}
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -42,34 +42,6 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
typedef iScalar<vInteger> vPredicate ;
|
||||
|
||||
/*
|
||||
template <class iobj, class vobj, class robj> accelerator_inline
|
||||
vobj predicatedWhere(const iobj &predicate, const vobj &iftrue, const robj &iffalse)
|
||||
{
|
||||
typename std::remove_const<vobj>::type ret;
|
||||
|
||||
typedef typename vobj::scalar_object scalar_object;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
const int Nsimd = vobj::vector_type::Nsimd();
|
||||
|
||||
ExtractBuffer<Integer> mask(Nsimd);
|
||||
ExtractBuffer<scalar_object> truevals(Nsimd);
|
||||
ExtractBuffer<scalar_object> falsevals(Nsimd);
|
||||
|
||||
extract(iftrue, truevals);
|
||||
extract(iffalse, falsevals);
|
||||
extract<vInteger, Integer>(TensorRemove(predicate), mask);
|
||||
|
||||
for (int s = 0; s < Nsimd; s++) {
|
||||
if (mask[s]) falsevals[s] = truevals[s];
|
||||
}
|
||||
|
||||
merge(ret, falsevals);
|
||||
return ret;
|
||||
}
|
||||
*/
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// compare lattice to lattice
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
@ -78,9 +50,9 @@ template<class vfunctor,class lobj,class robj>
|
||||
inline Lattice<vPredicate> LLComparison(vfunctor op,const Lattice<lobj> &lhs,const Lattice<robj> &rhs)
|
||||
{
|
||||
Lattice<vPredicate> ret(rhs.Grid());
|
||||
auto lhs_v = lhs.View();
|
||||
auto rhs_v = rhs.View();
|
||||
auto ret_v = ret.View();
|
||||
autoView( lhs_v, lhs, CpuRead);
|
||||
autoView( rhs_v, rhs, CpuRead);
|
||||
autoView( ret_v, ret, CpuWrite);
|
||||
thread_for( ss, rhs_v.size(), {
|
||||
ret_v[ss]=op(lhs_v[ss],rhs_v[ss]);
|
||||
});
|
||||
@ -93,8 +65,8 @@ template<class vfunctor,class lobj,class robj>
|
||||
inline Lattice<vPredicate> LSComparison(vfunctor op,const Lattice<lobj> &lhs,const robj &rhs)
|
||||
{
|
||||
Lattice<vPredicate> ret(lhs.Grid());
|
||||
auto lhs_v = lhs.View();
|
||||
auto ret_v = ret.View();
|
||||
autoView( lhs_v, lhs, CpuRead);
|
||||
autoView( ret_v, ret, CpuWrite);
|
||||
thread_for( ss, lhs_v.size(), {
|
||||
ret_v[ss]=op(lhs_v[ss],rhs);
|
||||
});
|
||||
@ -107,8 +79,8 @@ template<class vfunctor,class lobj,class robj>
|
||||
inline Lattice<vPredicate> SLComparison(vfunctor op,const lobj &lhs,const Lattice<robj> &rhs)
|
||||
{
|
||||
Lattice<vPredicate> ret(rhs.Grid());
|
||||
auto rhs_v = rhs.View();
|
||||
auto ret_v = ret.View();
|
||||
autoView( rhs_v, rhs, CpuRead);
|
||||
autoView( ret_v, ret, CpuWrite);
|
||||
thread_for( ss, rhs_v.size(), {
|
||||
ret_v[ss]=op(lhs,rhs_v[ss]);
|
||||
});
|
||||
|
@ -37,7 +37,7 @@ template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu)
|
||||
GridBase *grid = l.Grid();
|
||||
int Nsimd = grid->iSites();
|
||||
|
||||
auto l_v = l.View();
|
||||
autoView(l_v, l, CpuWrite);
|
||||
thread_for( o, grid->oSites(), {
|
||||
vector_type vI;
|
||||
Coordinate gcoor;
|
||||
@ -51,23 +51,5 @@ template<class iobj> inline void LatticeCoordinate(Lattice<iobj> &l,int mu)
|
||||
});
|
||||
};
|
||||
|
||||
// LatticeCoordinate();
|
||||
// FIXME for debug; deprecate this; made obscelete by
|
||||
template<class vobj> void lex_sites(Lattice<vobj> &l){
|
||||
auto l_v = l.View();
|
||||
Real *v_ptr = (Real *)&l_v[0];
|
||||
size_t o_len = l.Grid()->oSites();
|
||||
size_t v_len = sizeof(vobj)/sizeof(vRealF);
|
||||
size_t vec_len = vRealF::Nsimd();
|
||||
|
||||
for(int i=0;i<o_len;i++){
|
||||
for(int j=0;j<v_len;j++){
|
||||
for(int vv=0;vv<vec_len;vv+=2){
|
||||
v_ptr[i*v_len*vec_len+j*vec_len+vv ]= i+vv*500;
|
||||
v_ptr[i*v_len*vec_len+j*vec_len+vv+1]= i+vv*500;
|
||||
}
|
||||
}}
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -2,11 +2,10 @@
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/qcd/action/fermion/ContinuedFractionFermion5D.cc
|
||||
Source file: ./lib/lattice/Lattice_crc.h
|
||||
|
||||
Copyright (C) 2015
|
||||
Copyright (C) 2021
|
||||
|
||||
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
@ -26,13 +25,31 @@ Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#include <Grid/qcd/action/fermion/FermionCore.h>
|
||||
#include <Grid/qcd/action/fermion/ContinuedFractionFermion5D.h>
|
||||
#include <Grid/qcd/action/fermion/implementation/ContinuedFractionFermion5DImplementation.h>
|
||||
#pragma once
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#include "impl.h"
|
||||
template class ContinuedFractionFermion5D<IMPLEMENTATION>;
|
||||
template<class vobj> void DumpSliceNorm(std::string s,const Lattice<vobj> &f,int mu=-1)
|
||||
{
|
||||
auto ff = localNorm2(f);
|
||||
if ( mu==-1 ) mu = f.Grid()->Nd()-1;
|
||||
typedef typename vobj::tensor_reduced normtype;
|
||||
typedef typename normtype::scalar_object scalar;
|
||||
std::vector<scalar> sff;
|
||||
sliceSum(ff,sff,mu);
|
||||
for(int t=0;t<sff.size();t++){
|
||||
std::cout << s<<" "<<t<<" "<<sff[t]<<std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
template<class vobj> uint32_t crc(const Lattice<vobj> & buf)
|
||||
{
|
||||
autoView( buf_v , buf, CpuRead);
|
||||
return ::crc32(0L,(unsigned char *)&buf_v[0],(size_t)sizeof(vobj)*buf.oSites());
|
||||
}
|
||||
|
||||
#define CRC(U) std::cerr << "FingerPrint "<<__FILE__ <<" "<< __LINE__ <<" "<< #U <<" "<<crc(U)<<std::endl;
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
|
@ -43,8 +43,8 @@ template<class vobj>
|
||||
inline auto localNorm2 (const Lattice<vobj> &rhs)-> Lattice<typename vobj::tensor_reduced>
|
||||
{
|
||||
Lattice<typename vobj::tensor_reduced> ret(rhs.Grid());
|
||||
auto rhs_v = rhs.View();
|
||||
auto ret_v = ret.View();
|
||||
autoView( rhs_v , rhs, AcceleratorRead);
|
||||
autoView( ret_v , ret, AcceleratorWrite);
|
||||
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
|
||||
coalescedWrite(ret_v[ss],innerProduct(rhs_v(ss),rhs_v(ss)));
|
||||
});
|
||||
@ -56,9 +56,9 @@ template<class vobj>
|
||||
inline auto localInnerProduct (const Lattice<vobj> &lhs,const Lattice<vobj> &rhs) -> Lattice<typename vobj::tensor_reduced>
|
||||
{
|
||||
Lattice<typename vobj::tensor_reduced> ret(rhs.Grid());
|
||||
auto lhs_v = lhs.View();
|
||||
auto rhs_v = rhs.View();
|
||||
auto ret_v = ret.View();
|
||||
autoView( lhs_v , lhs, AcceleratorRead);
|
||||
autoView( rhs_v , rhs, AcceleratorRead);
|
||||
autoView( ret_v , ret, AcceleratorWrite);
|
||||
accelerator_for(ss,rhs_v.size(),vobj::Nsimd(),{
|
||||
coalescedWrite(ret_v[ss],innerProduct(lhs_v(ss),rhs_v(ss)));
|
||||
});
|
||||
@ -73,9 +73,9 @@ inline auto outerProduct (const Lattice<ll> &lhs,const Lattice<rr> &rhs) -> Latt
|
||||
typedef decltype(coalescedRead(ll())) sll;
|
||||
typedef decltype(coalescedRead(rr())) srr;
|
||||
Lattice<decltype(outerProduct(ll(),rr()))> ret(rhs.Grid());
|
||||
auto lhs_v = lhs.View();
|
||||
auto rhs_v = rhs.View();
|
||||
auto ret_v = ret.View();
|
||||
autoView( lhs_v , lhs, AcceleratorRead);
|
||||
autoView( rhs_v , rhs, AcceleratorRead);
|
||||
autoView( ret_v , ret, AcceleratorWrite);
|
||||
accelerator_for(ss,rhs_v.size(),1,{
|
||||
// FIXME had issues with scalar version of outer
|
||||
// Use vector [] operator and don't read coalesce this loop
|
||||
|
@ -32,7 +32,6 @@ template<class vobj>
|
||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
|
||||
@ -51,9 +50,9 @@ static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice
|
||||
int block =FullGrid->_slice_block [Orthog];
|
||||
int nblock=FullGrid->_slice_nblock[Orthog];
|
||||
int ostride=FullGrid->_ostride[Orthog];
|
||||
auto X_v = X.View();
|
||||
auto Y_v = Y.View();
|
||||
auto R_v = R.View();
|
||||
autoView( X_v , X, CpuRead);
|
||||
autoView( Y_v , Y, CpuRead);
|
||||
autoView( R_v , R, CpuWrite);
|
||||
thread_region
|
||||
{
|
||||
std::vector<vobj> s_x(Nblock);
|
||||
@ -82,7 +81,6 @@ template<class vobj>
|
||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
|
||||
@ -97,8 +95,8 @@ static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<
|
||||
int nblock=FullGrid->_slice_nblock[Orthog];
|
||||
int ostride=FullGrid->_ostride[Orthog];
|
||||
|
||||
auto X_v = X.View();
|
||||
auto R_v = R.View();
|
||||
autoView( X_v , X, CpuRead);
|
||||
autoView( R_v , R, CpuWrite);
|
||||
|
||||
thread_region
|
||||
{
|
||||
@ -130,7 +128,6 @@ template<class vobj>
|
||||
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
GridBase *FullGrid = lhs.Grid();
|
||||
@ -156,8 +153,8 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
|
||||
int ostride=FullGrid->_ostride[Orthog];
|
||||
|
||||
typedef typename vobj::vector_typeD vector_typeD;
|
||||
auto lhs_v = lhs.View();
|
||||
auto rhs_v = rhs.View();
|
||||
autoView( lhs_v , lhs, CpuRead);
|
||||
autoView( rhs_v , rhs, CpuRead);
|
||||
thread_region {
|
||||
std::vector<vobj> Left(Nblock);
|
||||
std::vector<vobj> Right(Nblock);
|
||||
|
@ -46,9 +46,9 @@ auto PeekIndex(const Lattice<vobj> &lhs,int i) -> Lattice<decltype(peekIndex<Ind
|
||||
{
|
||||
Lattice<decltype(peekIndex<Index>(vobj(),i))> ret(lhs.Grid());
|
||||
ret.Checkerboard()=lhs.Checkerboard();
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
thread_for( ss, lhs_v.size(), {
|
||||
autoView( ret_v, ret, AcceleratorWrite);
|
||||
autoView( lhs_v, lhs, AcceleratorRead);
|
||||
accelerator_for( ss, lhs_v.size(), 1, {
|
||||
ret_v[ss] = peekIndex<Index>(lhs_v[ss],i);
|
||||
});
|
||||
return ret;
|
||||
@ -58,9 +58,9 @@ auto PeekIndex(const Lattice<vobj> &lhs,int i,int j) -> Lattice<decltype(peekInd
|
||||
{
|
||||
Lattice<decltype(peekIndex<Index>(vobj(),i,j))> ret(lhs.Grid());
|
||||
ret.Checkerboard()=lhs.Checkerboard();
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
thread_for( ss, lhs_v.size(), {
|
||||
autoView( ret_v, ret, AcceleratorWrite);
|
||||
autoView( lhs_v, lhs, AcceleratorRead);
|
||||
accelerator_for( ss, lhs_v.size(), 1, {
|
||||
ret_v[ss] = peekIndex<Index>(lhs_v[ss],i,j);
|
||||
});
|
||||
return ret;
|
||||
@ -72,18 +72,18 @@ auto PeekIndex(const Lattice<vobj> &lhs,int i,int j) -> Lattice<decltype(peekInd
|
||||
template<int Index,class vobj>
|
||||
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0))> & rhs,int i)
|
||||
{
|
||||
auto rhs_v = rhs.View();
|
||||
auto lhs_v = lhs.View();
|
||||
thread_for( ss, lhs_v.size(), {
|
||||
autoView( rhs_v, rhs, AcceleratorRead);
|
||||
autoView( lhs_v, lhs, AcceleratorWrite);
|
||||
accelerator_for( ss, lhs_v.size(), 1, {
|
||||
pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i);
|
||||
});
|
||||
}
|
||||
template<int Index,class vobj>
|
||||
void PokeIndex(Lattice<vobj> &lhs,const Lattice<decltype(peekIndex<Index>(vobj(),0,0))> & rhs,int i,int j)
|
||||
{
|
||||
auto rhs_v = rhs.View();
|
||||
auto lhs_v = lhs.View();
|
||||
thread_for( ss, lhs_v.size(), {
|
||||
autoView( rhs_v, rhs, AcceleratorRead);
|
||||
autoView( lhs_v, lhs, AcceleratorWrite);
|
||||
accelerator_for( ss, lhs_v.size(), 1, {
|
||||
pokeIndex<Index>(lhs_v[ss],rhs_v[ss],i,j);
|
||||
});
|
||||
}
|
||||
@ -96,9 +96,6 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
|
||||
|
||||
GridBase *grid=l.Grid();
|
||||
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
int Nsimd = grid->Nsimd();
|
||||
|
||||
assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
|
||||
@ -111,7 +108,7 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
|
||||
|
||||
// extract-modify-merge cycle is easiest way and this is not perf critical
|
||||
ExtractBuffer<sobj> buf(Nsimd);
|
||||
auto l_v = l.View();
|
||||
autoView( l_v , l, CpuWrite);
|
||||
if ( rank == grid->ThisRank() ) {
|
||||
extract(l_v[odx],buf);
|
||||
buf[idx] = s;
|
||||
@ -125,14 +122,17 @@ void pokeSite(const sobj &s,Lattice<vobj> &l,const Coordinate &site){
|
||||
//////////////////////////////////////////////////////////
|
||||
// Peek a scalar object from the SIMD array
|
||||
//////////////////////////////////////////////////////////
|
||||
template<class vobj>
|
||||
typename vobj::scalar_object peekSite(const Lattice<vobj> &l,const Coordinate &site){
|
||||
typename vobj::scalar_object s;
|
||||
peekSite(s,l,site);
|
||||
return s;
|
||||
}
|
||||
template<class vobj,class sobj>
|
||||
void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
|
||||
|
||||
GridBase *grid=l.Grid();
|
||||
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
int Nsimd = grid->Nsimd();
|
||||
|
||||
assert( l.Checkerboard() == l.Grid()->CheckerBoard(site));
|
||||
@ -141,7 +141,7 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
|
||||
grid->GlobalCoorToRankIndex(rank,odx,idx,site);
|
||||
|
||||
ExtractBuffer<sobj> buf(Nsimd);
|
||||
auto l_v = l.View();
|
||||
autoView( l_v , l, CpuWrite);
|
||||
extract(l_v[odx],buf);
|
||||
|
||||
s = buf[idx];
|
||||
@ -151,21 +151,21 @@ void peekSite(sobj &s,const Lattice<vobj> &l,const Coordinate &site){
|
||||
return;
|
||||
};
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// Peek a scalar object from the SIMD array
|
||||
//////////////////////////////////////////////////////////
|
||||
// Must be CPU read view
|
||||
template<class vobj,class sobj>
|
||||
accelerator_inline void peekLocalSite(sobj &s,const Lattice<vobj> &l,Coordinate &site){
|
||||
|
||||
GridBase *grid = l.Grid();
|
||||
|
||||
inline void peekLocalSite(sobj &s,const LatticeView<vobj> &l,Coordinate &site)
|
||||
{
|
||||
GridBase *grid = l.getGrid();
|
||||
assert(l.mode==CpuRead);
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
int Nsimd = grid->Nsimd();
|
||||
|
||||
assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
|
||||
assert( l.Checkerboard()== grid->CheckerBoard(site));
|
||||
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
|
||||
|
||||
static const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
@ -173,28 +173,36 @@ accelerator_inline void peekLocalSite(sobj &s,const Lattice<vobj> &l,Coordinate
|
||||
idx= grid->iIndex(site);
|
||||
odx= grid->oIndex(site);
|
||||
|
||||
auto l_v = l.View();
|
||||
scalar_type * vp = (scalar_type *)&l_v[odx];
|
||||
const vector_type *vp = (const vector_type *) &l[odx];
|
||||
scalar_type * pt = (scalar_type *)&s;
|
||||
|
||||
for(int w=0;w<words;w++){
|
||||
pt[w] = vp[idx+w*Nsimd];
|
||||
pt[w] = getlane(vp[w],idx);
|
||||
}
|
||||
|
||||
return;
|
||||
};
|
||||
|
||||
template<class vobj,class sobj>
|
||||
accelerator_inline void pokeLocalSite(const sobj &s,Lattice<vobj> &l,Coordinate &site){
|
||||
inline void peekLocalSite(sobj &s,const Lattice<vobj> &l,Coordinate &site)
|
||||
{
|
||||
autoView(lv,l,CpuRead);
|
||||
peekLocalSite(s,lv,site);
|
||||
return;
|
||||
};
|
||||
|
||||
GridBase *grid=l.Grid();
|
||||
// Must be CPU write view
|
||||
template<class vobj,class sobj>
|
||||
inline void pokeLocalSite(const sobj &s,LatticeView<vobj> &l,Coordinate &site)
|
||||
{
|
||||
GridBase *grid=l.getGrid();
|
||||
assert(l.mode==CpuWrite);
|
||||
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
int Nsimd = grid->Nsimd();
|
||||
|
||||
assert( l.Checkerboard()== l.Grid()->CheckerBoard(site));
|
||||
assert( l.Checkerboard()== grid->CheckerBoard(site));
|
||||
assert( sizeof(sobj)*Nsimd == sizeof(vobj));
|
||||
|
||||
static const int words=sizeof(vobj)/sizeof(vector_type);
|
||||
@ -202,13 +210,19 @@ accelerator_inline void pokeLocalSite(const sobj &s,Lattice<vobj> &l,Coordinate
|
||||
idx= grid->iIndex(site);
|
||||
odx= grid->oIndex(site);
|
||||
|
||||
auto l_v = l.View();
|
||||
scalar_type * vp = (scalar_type *)&l_v[odx];
|
||||
vector_type * vp = (vector_type *)&l[odx];
|
||||
scalar_type * pt = (scalar_type *)&s;
|
||||
for(int w=0;w<words;w++){
|
||||
vp[idx+w*Nsimd] = pt[w];
|
||||
putlane(vp[w],pt[w],idx);
|
||||
}
|
||||
return;
|
||||
};
|
||||
|
||||
template<class vobj,class sobj>
|
||||
inline void pokeLocalSite(const sobj &s, Lattice<vobj> &l,Coordinate &site)
|
||||
{
|
||||
autoView(lv,l,CpuWrite);
|
||||
pokeLocalSite(s,lv,site);
|
||||
return;
|
||||
};
|
||||
|
||||
|
79
Grid/lattice/Lattice_real_imag.h
Normal file
79
Grid/lattice/Lattice_real_imag.h
Normal file
@ -0,0 +1,79 @@
|
||||
/*************************************************************************************
|
||||
|
||||
Grid physics library, www.github.com/paboyle/Grid
|
||||
|
||||
Source file: ./lib/lattice/Lattice_reality.h
|
||||
|
||||
Copyright (C) 2015
|
||||
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: neo <cossu@post.kek.jp>
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
|
||||
See the full license in the file "LICENSE" in the top level distribution directory
|
||||
*************************************************************************************/
|
||||
/* END LEGAL */
|
||||
#ifndef GRID_LATTICE_REAL_IMAG_H
|
||||
#define GRID_LATTICE_REAL_IMAG_H
|
||||
|
||||
|
||||
// FIXME .. this is the sector of the code
|
||||
// I am most worried about the directions
|
||||
// The choice of burying complex in the SIMD
|
||||
// is making the use of "real" and "imag" very cumbersome
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class vobj> inline Lattice<vobj> real(const Lattice<vobj> &lhs){
|
||||
Lattice<vobj> ret(lhs.Grid());
|
||||
|
||||
autoView( lhs_v, lhs, AcceleratorRead);
|
||||
autoView( ret_v, ret, AcceleratorWrite);
|
||||
|
||||
ret.Checkerboard()=lhs.Checkerboard();
|
||||
accelerator_for( ss, lhs_v.size(), 1, {
|
||||
ret_v[ss] =real(lhs_v[ss]);
|
||||
});
|
||||
return ret;
|
||||
};
|
||||
template<class vobj> inline Lattice<vobj> imag(const Lattice<vobj> &lhs){
|
||||
Lattice<vobj> ret(lhs.Grid());
|
||||
|
||||
autoView( lhs_v, lhs, AcceleratorRead);
|
||||
autoView( ret_v, ret, AcceleratorWrite);
|
||||
|
||||
ret.Checkerboard()=lhs.Checkerboard();
|
||||
accelerator_for( ss, lhs_v.size(), 1, {
|
||||
ret_v[ss] =imag(lhs_v[ss]);
|
||||
});
|
||||
return ret;
|
||||
};
|
||||
|
||||
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
|
||||
auto real(const Expression &expr) -> decltype(real(closure(expr)))
|
||||
{
|
||||
return real(closure(expr));
|
||||
}
|
||||
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
|
||||
auto imag(const Expression &expr) -> decltype(imag(closure(expr)))
|
||||
{
|
||||
return imag(closure(expr));
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
@ -40,24 +40,77 @@ NAMESPACE_BEGIN(Grid);
|
||||
|
||||
template<class vobj> inline Lattice<vobj> adj(const Lattice<vobj> &lhs){
|
||||
Lattice<vobj> ret(lhs.Grid());
|
||||
auto lhs_v = lhs.View();
|
||||
auto ret_v = ret.View();
|
||||
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
|
||||
coalescedWrite(ret_v[ss], adj(lhs_v(ss)));
|
||||
|
||||
autoView( lhs_v, lhs, AcceleratorRead);
|
||||
autoView( ret_v, ret, AcceleratorWrite);
|
||||
|
||||
ret.Checkerboard()=lhs.Checkerboard();
|
||||
accelerator_for( ss, lhs_v.size(), 1, {
|
||||
ret_v[ss] = adj(lhs_v[ss]);
|
||||
});
|
||||
return ret;
|
||||
};
|
||||
|
||||
template<class vobj> inline Lattice<vobj> conjugate(const Lattice<vobj> &lhs){
|
||||
Lattice<vobj> ret(lhs.Grid());
|
||||
auto lhs_v = lhs.View();
|
||||
auto ret_v = ret.View();
|
||||
|
||||
autoView( lhs_v, lhs, AcceleratorRead);
|
||||
autoView( ret_v, ret, AcceleratorWrite);
|
||||
|
||||
ret.Checkerboard() = lhs.Checkerboard();
|
||||
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
|
||||
coalescedWrite( ret_v[ss] , conjugate(lhs_v(ss)));
|
||||
});
|
||||
return ret;
|
||||
};
|
||||
|
||||
template<class vobj> inline Lattice<typename vobj::Complexified> toComplex(const Lattice<vobj> &lhs){
|
||||
Lattice<typename vobj::Complexified> ret(lhs.Grid());
|
||||
|
||||
autoView( lhs_v, lhs, AcceleratorRead);
|
||||
autoView( ret_v, ret, AcceleratorWrite);
|
||||
|
||||
ret.Checkerboard() = lhs.Checkerboard();
|
||||
accelerator_for( ss, lhs_v.size(), 1, {
|
||||
ret_v[ss] = toComplex(lhs_v[ss]);
|
||||
});
|
||||
return ret;
|
||||
};
|
||||
template<class vobj> inline Lattice<typename vobj::Realified> toReal(const Lattice<vobj> &lhs){
|
||||
Lattice<typename vobj::Realified> ret(lhs.Grid());
|
||||
|
||||
autoView( lhs_v, lhs, AcceleratorRead);
|
||||
autoView( ret_v, ret, AcceleratorWrite);
|
||||
|
||||
ret.Checkerboard() = lhs.Checkerboard();
|
||||
accelerator_for( ss, lhs_v.size(), 1, {
|
||||
ret_v[ss] = toReal(lhs_v[ss]);
|
||||
});
|
||||
return ret;
|
||||
};
|
||||
|
||||
|
||||
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
|
||||
auto toComplex(const Expression &expr) -> decltype(closure(expr))
|
||||
{
|
||||
return toComplex(closure(expr));
|
||||
}
|
||||
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
|
||||
auto toReal(const Expression &expr) -> decltype(closure(expr))
|
||||
{
|
||||
return toReal(closure(expr));
|
||||
}
|
||||
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
|
||||
auto adj(const Expression &expr) -> decltype(closure(expr))
|
||||
{
|
||||
return adj(closure(expr));
|
||||
}
|
||||
template<class Expression,typename std::enable_if<is_lattice_expr<Expression>::value,void>::type * = nullptr>
|
||||
auto conjugate(const Expression &expr) -> decltype(closure(expr))
|
||||
{
|
||||
return conjugate(closure(expr));
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
#endif
|
||||
|
@ -5,6 +5,7 @@
|
||||
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
||||
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
||||
Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
Author: Christoph Lehner <christoph@lhnr.de>
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
@ -24,9 +25,13 @@ Author: paboyle <paboyle@ph.ed.ac.uk>
|
||||
#include <Grid/Grid_Eigen_Dense.h>
|
||||
|
||||
|
||||
#ifdef GRID_NVCC
|
||||
#if defined(GRID_CUDA)||defined(GRID_HIP)
|
||||
#include <Grid/lattice/Lattice_reduction_gpu.h>
|
||||
#endif
|
||||
#if defined(GRID_SYCL)
|
||||
#include <Grid/lattice/Lattice_reduction_sycl.h>
|
||||
#endif
|
||||
#include <Grid/lattice/Lattice_slicesum_core.h>
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
@ -38,7 +43,7 @@ inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
|
||||
const int Nsimd = vobj::Nsimd();
|
||||
// const int Nsimd = vobj::Nsimd();
|
||||
const int nthread = GridThread::GetThreads();
|
||||
|
||||
Vector<sobj> sumarray(nthread);
|
||||
@ -61,24 +66,132 @@ inline typename vobj::scalar_object sum_cpu(const vobj *arg, Integer osites)
|
||||
for(int i=0;i<nthread;i++){
|
||||
ssum = ssum+sumarray[i];
|
||||
}
|
||||
|
||||
return ssum;
|
||||
}
|
||||
template<class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_cpu(const vobj *arg, Integer osites)
|
||||
{
|
||||
typedef typename vobj::scalar_objectD sobj;
|
||||
|
||||
const int nthread = GridThread::GetThreads();
|
||||
|
||||
Vector<sobj> sumarray(nthread);
|
||||
for(int i=0;i<nthread;i++){
|
||||
sumarray[i]=Zero();
|
||||
}
|
||||
|
||||
thread_for(thr,nthread, {
|
||||
int nwork, mywork, myoff;
|
||||
nwork = osites;
|
||||
GridThread::GetWork(nwork,thr,mywork,myoff);
|
||||
vobj vvsum=Zero();
|
||||
for(int ss=myoff;ss<mywork+myoff; ss++){
|
||||
vvsum = vvsum + arg[ss];
|
||||
}
|
||||
sumarray[thr]=Reduce(vvsum);
|
||||
});
|
||||
|
||||
sobj ssum=Zero(); // sum across threads
|
||||
for(int i=0;i<nthread;i++){
|
||||
ssum = ssum+sumarray[i];
|
||||
}
|
||||
return ssum;
|
||||
}
|
||||
/*
|
||||
Threaded max, don't use for now
|
||||
template<class Double>
|
||||
inline Double max(const Double *arg, Integer osites)
|
||||
{
|
||||
// const int Nsimd = vobj::Nsimd();
|
||||
const int nthread = GridThread::GetThreads();
|
||||
|
||||
std::vector<Double> maxarray(nthread);
|
||||
|
||||
thread_for(thr,nthread, {
|
||||
int nwork, mywork, myoff;
|
||||
nwork = osites;
|
||||
GridThread::GetWork(nwork,thr,mywork,myoff);
|
||||
Double max=arg[0];
|
||||
for(int ss=myoff;ss<mywork+myoff; ss++){
|
||||
if( arg[ss] > max ) max = arg[ss];
|
||||
}
|
||||
maxarray[thr]=max;
|
||||
});
|
||||
|
||||
Double tmax=maxarray[0];
|
||||
for(int i=0;i<nthread;i++){
|
||||
if (maxarray[i]>tmax) tmax = maxarray[i];
|
||||
}
|
||||
return tmax;
|
||||
}
|
||||
*/
|
||||
template<class vobj>
|
||||
inline typename vobj::scalar_object sum(const vobj *arg, Integer osites)
|
||||
{
|
||||
#ifdef GRID_NVCC
|
||||
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
|
||||
return sum_gpu(arg,osites);
|
||||
#else
|
||||
return sum_cpu(arg,osites);
|
||||
#endif
|
||||
}
|
||||
template<class vobj>
|
||||
inline typename vobj::scalar_objectD sumD(const vobj *arg, Integer osites)
|
||||
{
|
||||
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
|
||||
return sumD_gpu(arg,osites);
|
||||
#else
|
||||
return sumD_cpu(arg,osites);
|
||||
#endif
|
||||
}
|
||||
template<class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_large(const vobj *arg, Integer osites)
|
||||
{
|
||||
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
|
||||
return sumD_gpu_large(arg,osites);
|
||||
#else
|
||||
return sumD_cpu(arg,osites);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
inline typename vobj::scalar_object rankSum(const Lattice<vobj> &arg)
|
||||
{
|
||||
Integer osites = arg.Grid()->oSites();
|
||||
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
|
||||
autoView( arg_v, arg, AcceleratorRead);
|
||||
return sum_gpu(&arg_v[0],osites);
|
||||
#else
|
||||
autoView(arg_v, arg, CpuRead);
|
||||
return sum_cpu(&arg_v[0],osites);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
inline typename vobj::scalar_object sum(const Lattice<vobj> &arg)
|
||||
{
|
||||
auto arg_v = arg.View();
|
||||
auto ssum = rankSum(arg);
|
||||
arg.Grid()->GlobalSum(ssum);
|
||||
return ssum;
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
inline typename vobj::scalar_object rankSumLarge(const Lattice<vobj> &arg)
|
||||
{
|
||||
#if defined(GRID_CUDA)||defined(GRID_HIP)||defined(GRID_SYCL)
|
||||
autoView( arg_v, arg, AcceleratorRead);
|
||||
Integer osites = arg.Grid()->oSites();
|
||||
auto ssum= sum(&arg_v[0],osites);
|
||||
return sum_gpu_large(&arg_v[0],osites);
|
||||
#else
|
||||
autoView(arg_v, arg, CpuRead);
|
||||
Integer osites = arg.Grid()->oSites();
|
||||
return sum_cpu(&arg_v[0],osites);
|
||||
#endif
|
||||
}
|
||||
|
||||
template<class vobj>
|
||||
inline typename vobj::scalar_object sum_large(const Lattice<vobj> &arg)
|
||||
{
|
||||
auto ssum = rankSumLarge(arg);
|
||||
arg.Grid()->GlobalSum(ssum);
|
||||
return ssum;
|
||||
}
|
||||
@ -91,57 +204,131 @@ template<class vobj> inline RealD norm2(const Lattice<vobj> &arg){
|
||||
return real(nrm);
|
||||
}
|
||||
|
||||
|
||||
template<class Op,class T1>
|
||||
inline auto norm2(const LatticeUnaryExpression<Op,T1> & expr) ->RealD
|
||||
{
|
||||
return norm2(closure(expr));
|
||||
}
|
||||
|
||||
template<class Op,class T1,class T2>
|
||||
inline auto norm2(const LatticeBinaryExpression<Op,T1,T2> & expr) ->RealD
|
||||
{
|
||||
return norm2(closure(expr));
|
||||
}
|
||||
|
||||
|
||||
template<class Op,class T1,class T2,class T3>
|
||||
inline auto norm2(const LatticeTrinaryExpression<Op,T1,T2,T3> & expr) ->RealD
|
||||
{
|
||||
return norm2(closure(expr));
|
||||
}
|
||||
|
||||
|
||||
//The global maximum of the site norm2
|
||||
template<class vobj> inline RealD maxLocalNorm2(const Lattice<vobj> &arg)
|
||||
{
|
||||
typedef typename vobj::tensor_reduced vscalar; //iScalar<iScalar<.... <vPODtype> > >
|
||||
typedef typename vscalar::scalar_object scalar; //iScalar<iScalar<.... <PODtype> > >
|
||||
|
||||
Lattice<vscalar> inner = localNorm2(arg);
|
||||
|
||||
auto grid = arg.Grid();
|
||||
|
||||
RealD max;
|
||||
for(int l=0;l<grid->lSites();l++){
|
||||
Coordinate coor;
|
||||
scalar val;
|
||||
RealD r;
|
||||
grid->LocalIndexToLocalCoor(l,coor);
|
||||
peekLocalSite(val,inner,coor);
|
||||
r=real(TensorRemove(val));
|
||||
if( (l==0) || (r>max)){
|
||||
max=r;
|
||||
}
|
||||
}
|
||||
grid->GlobalMax(max);
|
||||
return max;
|
||||
}
|
||||
|
||||
// Double inner product
|
||||
template<class vobj>
|
||||
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
|
||||
inline ComplexD rankInnerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right)
|
||||
{
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_typeD vector_type;
|
||||
ComplexD nrm;
|
||||
|
||||
GridBase *grid = left.Grid();
|
||||
|
||||
// Might make all code paths go this way.
|
||||
auto left_v = left.View();
|
||||
auto right_v=right.View();
|
||||
|
||||
const uint64_t nsimd = grid->Nsimd();
|
||||
const uint64_t sites = grid->oSites();
|
||||
|
||||
#ifdef GRID_NVCC
|
||||
// GPU - SIMT lane compliance...
|
||||
typedef decltype(innerProduct(left_v[0],right_v[0])) inner_t;
|
||||
// Might make all code paths go this way.
|
||||
#if 0
|
||||
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
|
||||
Vector<inner_t> inner_tmp(sites);
|
||||
auto inner_tmp_v = &inner_tmp[0];
|
||||
|
||||
|
||||
accelerator_for( ss, sites, nsimd,{
|
||||
auto x_l = left_v(ss);
|
||||
auto y_l = right_v(ss);
|
||||
coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
|
||||
})
|
||||
|
||||
// This is in single precision and fails some tests
|
||||
// Need a sumD that sums in double
|
||||
nrm = TensorRemove(sumD_gpu(inner_tmp_v,sites));
|
||||
{
|
||||
autoView( left_v , left, AcceleratorRead);
|
||||
autoView( right_v,right, AcceleratorRead);
|
||||
// This code could read coalesce
|
||||
// GPU - SIMT lane compliance...
|
||||
accelerator_for( ss, sites, nsimd,{
|
||||
auto x_l = left_v(ss);
|
||||
auto y_l = right_v(ss);
|
||||
coalescedWrite(inner_tmp_v[ss],innerProductD(x_l,y_l));
|
||||
});
|
||||
}
|
||||
#else
|
||||
// CPU
|
||||
typedef decltype(innerProductD(left_v[0],right_v[0])) inner_t;
|
||||
typedef decltype(innerProduct(vobj(),vobj())) inner_t;
|
||||
Vector<inner_t> inner_tmp(sites);
|
||||
auto inner_tmp_v = &inner_tmp[0];
|
||||
|
||||
accelerator_for( ss, sites, nsimd,{
|
||||
auto x_l = left_v[ss];
|
||||
auto y_l = right_v[ss];
|
||||
inner_tmp_v[ss]=innerProductD(x_l,y_l);
|
||||
})
|
||||
nrm = TensorRemove(sum(inner_tmp_v,sites));
|
||||
#endif
|
||||
grid->GlobalSum(nrm);
|
||||
|
||||
{
|
||||
autoView( left_v , left, AcceleratorRead);
|
||||
autoView( right_v,right, AcceleratorRead);
|
||||
|
||||
// GPU - SIMT lane compliance...
|
||||
accelerator_for( ss, sites, nsimd,{
|
||||
auto x_l = left_v(ss);
|
||||
auto y_l = right_v(ss);
|
||||
coalescedWrite(inner_tmp_v[ss],innerProduct(x_l,y_l));
|
||||
});
|
||||
}
|
||||
#endif
|
||||
// This is in single precision and fails some tests
|
||||
auto anrm = sumD(inner_tmp_v,sites);
|
||||
nrm = anrm;
|
||||
return nrm;
|
||||
}
|
||||
|
||||
|
||||
template<class vobj>
|
||||
inline ComplexD innerProduct(const Lattice<vobj> &left,const Lattice<vobj> &right) {
|
||||
GridBase *grid = left.Grid();
|
||||
|
||||
#ifdef GRID_SYCL
|
||||
uint64_t csum=0;
|
||||
if ( FlightRecorder::LoggingMode != FlightRecorder::LoggingModeNone)
|
||||
{
|
||||
// Hack
|
||||
// Fast integer xor checksum. Can also be used in comms now.
|
||||
autoView(l_v,left,AcceleratorRead);
|
||||
Integer words = left.Grid()->oSites()*sizeof(vobj)/sizeof(uint64_t);
|
||||
uint64_t *base= (uint64_t *)&l_v[0];
|
||||
csum=svm_xor(base,words);
|
||||
}
|
||||
FlightRecorder::CsumLog(csum);
|
||||
#endif
|
||||
ComplexD nrm = rankInnerProduct(left,right);
|
||||
RealD local = real(nrm);
|
||||
FlightRecorder::NormLog(real(nrm));
|
||||
grid->GlobalSum(nrm);
|
||||
FlightRecorder::ReductionLog(local,real(nrm));
|
||||
return nrm;
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////
|
||||
// Fast axpby_norm
|
||||
// z = a x + b y
|
||||
@ -161,21 +348,30 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
|
||||
conformable(z,x);
|
||||
conformable(x,y);
|
||||
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_typeD vector_type;
|
||||
// typedef typename vobj::vector_typeD vector_type;
|
||||
RealD nrm;
|
||||
|
||||
GridBase *grid = x.Grid();
|
||||
|
||||
auto x_v=x.View();
|
||||
auto y_v=y.View();
|
||||
auto z_v=z.View();
|
||||
|
||||
const uint64_t nsimd = grid->Nsimd();
|
||||
const uint64_t sites = grid->oSites();
|
||||
|
||||
#ifdef GRID_NVCC
|
||||
// GPU
|
||||
autoView( x_v, x, AcceleratorRead);
|
||||
autoView( y_v, y, AcceleratorRead);
|
||||
autoView( z_v, z, AcceleratorWrite);
|
||||
#if 0
|
||||
typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
|
||||
Vector<inner_t> inner_tmp(sites);
|
||||
auto inner_tmp_v = &inner_tmp[0];
|
||||
|
||||
accelerator_for( ss, sites, nsimd,{
|
||||
auto tmp = a*x_v(ss)+b*y_v(ss);
|
||||
coalescedWrite(inner_tmp_v[ss],innerProductD(tmp,tmp));
|
||||
coalescedWrite(z_v[ss],tmp);
|
||||
});
|
||||
nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
|
||||
#else
|
||||
typedef decltype(innerProduct(x_v[0],y_v[0])) inner_t;
|
||||
Vector<inner_t> inner_tmp(sites);
|
||||
auto inner_tmp_v = &inner_tmp[0];
|
||||
@ -185,27 +381,50 @@ axpby_norm_fast(Lattice<vobj> &z,sobj a,sobj b,const Lattice<vobj> &x,const Latt
|
||||
coalescedWrite(inner_tmp_v[ss],innerProduct(tmp,tmp));
|
||||
coalescedWrite(z_v[ss],tmp);
|
||||
});
|
||||
|
||||
nrm = real(TensorRemove(sumD_gpu(inner_tmp_v,sites)));
|
||||
#else
|
||||
// CPU
|
||||
typedef decltype(innerProductD(x_v[0],y_v[0])) inner_t;
|
||||
Vector<inner_t> inner_tmp(sites);
|
||||
auto inner_tmp_v = &inner_tmp[0];
|
||||
|
||||
accelerator_for( ss, sites, nsimd,{
|
||||
auto tmp = a*x_v(ss)+b*y_v(ss);
|
||||
inner_tmp_v[ss]=innerProductD(tmp,tmp);
|
||||
z_v[ss]=tmp;
|
||||
});
|
||||
// Already promoted to double
|
||||
nrm = real(TensorRemove(sum(inner_tmp_v,sites)));
|
||||
nrm = real(TensorRemove(sumD(inner_tmp_v,sites)));
|
||||
#endif
|
||||
grid->GlobalSum(nrm);
|
||||
return nrm;
|
||||
}
|
||||
|
||||
|
||||
template<class vobj> strong_inline void
|
||||
innerProductNorm(ComplexD& ip, RealD &nrm, const Lattice<vobj> &left,const Lattice<vobj> &right)
|
||||
{
|
||||
conformable(left,right);
|
||||
|
||||
typedef typename vobj::vector_typeD vector_type;
|
||||
Vector<ComplexD> tmp(2);
|
||||
|
||||
GridBase *grid = left.Grid();
|
||||
|
||||
const uint64_t nsimd = grid->Nsimd();
|
||||
const uint64_t sites = grid->oSites();
|
||||
|
||||
// GPU
|
||||
typedef decltype(innerProductD(vobj(),vobj())) inner_t;
|
||||
typedef decltype(innerProductD(vobj(),vobj())) norm_t;
|
||||
Vector<inner_t> inner_tmp(sites);
|
||||
Vector<norm_t> norm_tmp(sites);
|
||||
auto inner_tmp_v = &inner_tmp[0];
|
||||
auto norm_tmp_v = &norm_tmp[0];
|
||||
{
|
||||
autoView(left_v,left, AcceleratorRead);
|
||||
autoView(right_v,right,AcceleratorRead);
|
||||
accelerator_for( ss, sites, 1,{
|
||||
auto left_tmp = left_v[ss];
|
||||
inner_tmp_v[ss]=innerProductD(left_tmp,right_v[ss]);
|
||||
norm_tmp_v [ss]=innerProductD(left_tmp,left_tmp);
|
||||
});
|
||||
}
|
||||
|
||||
tmp[0] = TensorRemove(sum(inner_tmp_v,sites));
|
||||
tmp[1] = TensorRemove(sum(norm_tmp_v,sites));
|
||||
|
||||
grid->GlobalSumVector(&tmp[0],2); // keep norm Complex -> can use GlobalSumVector
|
||||
ip = tmp[0];
|
||||
nrm = real(tmp[1]);
|
||||
}
|
||||
|
||||
template<class Op,class T1>
|
||||
inline auto sum(const LatticeUnaryExpression<Op,T1> & expr)
|
||||
->typename decltype(expr.op.func(eval(0,expr.arg1)))::scalar_object
|
||||
@ -243,6 +462,7 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
|
||||
// But easily avoided by using double precision fields
|
||||
///////////////////////////////////////////////////////
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_object::scalar_type scalar_type;
|
||||
GridBase *grid = Data.Grid();
|
||||
assert(grid!=NULL);
|
||||
|
||||
@ -268,19 +488,10 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
|
||||
int e1= grid->_slice_nblock[orthogdim];
|
||||
int e2= grid->_slice_block [orthogdim];
|
||||
int stride=grid->_slice_stride[orthogdim];
|
||||
|
||||
// sum over reduced dimension planes, breaking out orthog dir
|
||||
// Parallel over orthog direction
|
||||
auto Data_v=Data.View();
|
||||
thread_for( r,rd, {
|
||||
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
int ss= so+n*stride+b;
|
||||
lvSum[r]=lvSum[r]+Data_v[ss];
|
||||
}
|
||||
}
|
||||
});
|
||||
int ostride=grid->_ostride[orthogdim];
|
||||
|
||||
//Reduce Data down to lvSum
|
||||
sliceSumReduction(Data,lvSum,rd, e1,e2,stride,ostride,Nsimd);
|
||||
|
||||
// Sum across simd lanes in the plane, breaking out orthog dir.
|
||||
Coordinate icoor(Nd);
|
||||
@ -301,21 +512,29 @@ template<class vobj> inline void sliceSum(const Lattice<vobj> &Data,std::vector<
|
||||
}
|
||||
|
||||
// sum over nodes.
|
||||
sobj gsum;
|
||||
for(int t=0;t<fd;t++){
|
||||
int pt = t/ld; // processor plane
|
||||
int lt = t%ld;
|
||||
if ( pt == grid->_processor_coor[orthogdim] ) {
|
||||
gsum=lsSum[lt];
|
||||
result[t]=lsSum[lt];
|
||||
} else {
|
||||
gsum=Zero();
|
||||
result[t]=Zero();
|
||||
}
|
||||
|
||||
grid->GlobalSum(gsum);
|
||||
|
||||
result[t]=gsum;
|
||||
}
|
||||
scalar_type * ptr = (scalar_type *) &result[0];
|
||||
int words = fd*sizeof(sobj)/sizeof(scalar_type);
|
||||
grid->GlobalSumVector(ptr, words);
|
||||
}
|
||||
template<class vobj> inline
|
||||
std::vector<typename vobj::scalar_object>
|
||||
sliceSum(const Lattice<vobj> &Data,int orthogdim)
|
||||
{
|
||||
std::vector<typename vobj::scalar_object> result;
|
||||
sliceSum(Data,result,orthogdim);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
template<class vobj>
|
||||
static void sliceInnerProductVector( std::vector<ComplexD> & result, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int orthogdim)
|
||||
@ -349,8 +568,8 @@ static void sliceInnerProductVector( std::vector<ComplexD> & result, const Latti
|
||||
int e2= grid->_slice_block [orthogdim];
|
||||
int stride=grid->_slice_stride[orthogdim];
|
||||
|
||||
auto lhv=lhs.View();
|
||||
auto rhv=rhs.View();
|
||||
autoView( lhv, lhs, CpuRead);
|
||||
autoView( rhv, rhs, CpuRead);
|
||||
thread_for( r,rd,{
|
||||
|
||||
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
|
||||
@ -420,7 +639,8 @@ static void sliceNorm (std::vector<RealD> &sn,const Lattice<vobj> &rhs,int Ortho
|
||||
template<class vobj>
|
||||
static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice<vobj> &X,const Lattice<vobj> &Y,
|
||||
int orthogdim,RealD scale=1.0)
|
||||
{
|
||||
{
|
||||
// perhaps easier to just promote A to a field and use regular madd
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
@ -451,20 +671,17 @@ static void sliceMaddVector(Lattice<vobj> &R,std::vector<RealD> &a,const Lattice
|
||||
for(int l=0;l<Nsimd;l++){
|
||||
grid->iCoorFromIindex(icoor,l);
|
||||
int ldx =r+icoor[orthogdim]*rd;
|
||||
scalar_type *as =(scalar_type *)&av;
|
||||
as[l] = scalar_type(a[ldx])*zscale;
|
||||
av.putlane(scalar_type(a[ldx])*zscale,l);
|
||||
}
|
||||
|
||||
tensor_reduced at; at=av;
|
||||
|
||||
auto Rv=R.View();
|
||||
auto Xv=X.View();
|
||||
auto Yv=Y.View();
|
||||
thread_for_collapse(2, n, e1, {
|
||||
for(int b=0;b<e2;b++){
|
||||
autoView( Rv, R, CpuWrite);
|
||||
autoView( Xv, X, CpuRead);
|
||||
autoView( Yv, Y, CpuRead);
|
||||
thread_for2d( n, e1, b,e2, {
|
||||
int ss= so+n*stride+b;
|
||||
Rv[ss] = at*Xv[ss]+Yv[ss];
|
||||
}
|
||||
});
|
||||
}
|
||||
};
|
||||
@ -494,7 +711,6 @@ template<class vobj>
|
||||
static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,const Lattice<vobj> &Y,int Orthog,RealD scale=1.0)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
|
||||
@ -517,9 +733,9 @@ static void sliceMaddMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice
|
||||
int nblock=FullGrid->_slice_nblock[Orthog];
|
||||
int ostride=FullGrid->_ostride[Orthog];
|
||||
|
||||
auto X_v=X.View();
|
||||
auto Y_v=Y.View();
|
||||
auto R_v=R.View();
|
||||
autoView( X_v, X, CpuRead);
|
||||
autoView( Y_v, Y, CpuRead);
|
||||
autoView( R_v, R, CpuWrite);
|
||||
thread_region
|
||||
{
|
||||
Vector<vobj> s_x(Nblock);
|
||||
@ -548,7 +764,6 @@ template<class vobj>
|
||||
static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<vobj> &X,int Orthog,RealD scale=1.0)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
int Nblock = X.Grid()->GlobalDimensions()[Orthog];
|
||||
@ -564,13 +779,14 @@ static void sliceMulMatrix (Lattice<vobj> &R,Eigen::MatrixXcd &aa,const Lattice<
|
||||
// int nl=1;
|
||||
|
||||
//FIXME package in a convenient iterator
|
||||
// thread_for2d_in_region
|
||||
//Should loop over a plane orthogonal to direction "Orthog"
|
||||
int stride=FullGrid->_slice_stride[Orthog];
|
||||
int block =FullGrid->_slice_block [Orthog];
|
||||
int nblock=FullGrid->_slice_nblock[Orthog];
|
||||
int ostride=FullGrid->_ostride[Orthog];
|
||||
auto R_v = R.View();
|
||||
auto X_v = X.View();
|
||||
autoView( R_v, R, CpuWrite);
|
||||
autoView( X_v, X, CpuRead);
|
||||
thread_region
|
||||
{
|
||||
std::vector<vobj> s_x(Nblock);
|
||||
@ -601,7 +817,6 @@ template<class vobj>
|
||||
static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj> &lhs,const Lattice<vobj> &rhs,int Orthog)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
|
||||
GridBase *FullGrid = lhs.Grid();
|
||||
@ -628,8 +843,8 @@ static void sliceInnerProductMatrix( Eigen::MatrixXcd &mat, const Lattice<vobj>
|
||||
|
||||
typedef typename vobj::vector_typeD vector_typeD;
|
||||
|
||||
auto lhs_v=lhs.View();
|
||||
auto rhs_v=rhs.View();
|
||||
autoView( lhs_v, lhs, CpuRead);
|
||||
autoView( rhs_v, rhs, CpuRead);
|
||||
thread_region
|
||||
{
|
||||
std::vector<vobj> Left(Nblock);
|
||||
|
@ -1,7 +1,14 @@
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
#define WARP_SIZE 32
|
||||
#ifdef GRID_HIP
|
||||
extern hipDeviceProp_t *gpu_props;
|
||||
#define WARP_SIZE 64
|
||||
#endif
|
||||
#ifdef GRID_CUDA
|
||||
extern cudaDeviceProp *gpu_props;
|
||||
#define WARP_SIZE 32
|
||||
#endif
|
||||
|
||||
__device__ unsigned int retirementCount = 0;
|
||||
|
||||
template <class Iterator>
|
||||
@ -16,23 +23,27 @@ unsigned int nextPow2(Iterator x) {
|
||||
}
|
||||
|
||||
template <class Iterator>
|
||||
void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
|
||||
int getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator &threads, Iterator &blocks) {
|
||||
|
||||
int device;
|
||||
#ifdef GRID_CUDA
|
||||
cudaGetDevice(&device);
|
||||
#endif
|
||||
#ifdef GRID_HIP
|
||||
auto r=hipGetDevice(&device);
|
||||
#endif
|
||||
|
||||
Iterator warpSize = gpu_props[device].warpSize;
|
||||
Iterator sharedMemPerBlock = gpu_props[device].sharedMemPerBlock;
|
||||
Iterator maxThreadsPerBlock = gpu_props[device].maxThreadsPerBlock;
|
||||
Iterator multiProcessorCount = gpu_props[device].multiProcessorCount;
|
||||
|
||||
/*
|
||||
std::cout << GridLogDebug << "GPU has:" << std::endl;
|
||||
std::cout << GridLogDebug << "\twarpSize = " << warpSize << std::endl;
|
||||
std::cout << GridLogDebug << "\tsharedMemPerBlock = " << sharedMemPerBlock << std::endl;
|
||||
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << maxThreadsPerBlock << std::endl;
|
||||
std::cout << GridLogDebug << "\tmaxThreadsPerBlock = " << warpSize << std::endl;
|
||||
std::cout << GridLogDebug << "\tmultiProcessorCount = " << multiProcessorCount << std::endl;
|
||||
|
||||
*/
|
||||
if (warpSize != WARP_SIZE) {
|
||||
std::cout << GridLogError << "The warp size of the GPU in use does not match the warp size set when compiling Grid." << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
@ -40,10 +51,14 @@ void getNumBlocksAndThreads(const Iterator n, const size_t sizeofsobj, Iterator
|
||||
|
||||
// let the number of threads in a block be a multiple of 2, starting from warpSize
|
||||
threads = warpSize;
|
||||
if ( threads*sizeofsobj > sharedMemPerBlock ) {
|
||||
std::cout << GridLogError << "The object is too large for the shared memory." << std::endl;
|
||||
return 0;
|
||||
}
|
||||
while( 2*threads*sizeofsobj < sharedMemPerBlock && 2*threads <= maxThreadsPerBlock ) threads *= 2;
|
||||
// keep all the streaming multiprocessors busy
|
||||
blocks = nextPow2(multiProcessorCount);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
template <class sobj, class Iterator>
|
||||
@ -53,7 +68,7 @@ __device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid
|
||||
|
||||
// cannot use overloaded operators for sobj as they are not volatile-qualified
|
||||
memcpy((void *)&sdata[tid], (void *)&mySum, sizeof(sobj));
|
||||
__syncwarp();
|
||||
acceleratorSynchronise();
|
||||
|
||||
const Iterator VEC = WARP_SIZE;
|
||||
const Iterator vid = tid & (VEC-1);
|
||||
@ -67,9 +82,9 @@ __device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid
|
||||
beta += temp;
|
||||
memcpy((void *)&sdata[tid], (void *)&beta, sizeof(sobj));
|
||||
}
|
||||
__syncwarp();
|
||||
acceleratorSynchronise();
|
||||
}
|
||||
__syncthreads();
|
||||
acceleratorSynchroniseAll();
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
beta = Zero();
|
||||
@ -79,7 +94,7 @@ __device__ void reduceBlock(volatile sobj *sdata, sobj mySum, const Iterator tid
|
||||
}
|
||||
memcpy((void *)&sdata[0], (void *)&beta, sizeof(sobj));
|
||||
}
|
||||
__syncthreads();
|
||||
acceleratorSynchroniseAll();
|
||||
}
|
||||
|
||||
|
||||
@ -147,7 +162,7 @@ __global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) {
|
||||
sobj *smem = (sobj *)shmem_pointer;
|
||||
|
||||
// wait until all outstanding memory instructions in this thread are finished
|
||||
__threadfence();
|
||||
acceleratorFence();
|
||||
|
||||
if (tid==0) {
|
||||
unsigned int ticket = atomicInc(&retirementCount, gridDim.x);
|
||||
@ -156,8 +171,8 @@ __global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) {
|
||||
}
|
||||
|
||||
// each thread must read the correct value of amLast
|
||||
__syncthreads();
|
||||
|
||||
acceleratorSynchroniseAll();
|
||||
|
||||
if (amLast) {
|
||||
// reduce buffer[0], ..., buffer[gridDim.x-1]
|
||||
Iterator i = tid;
|
||||
@ -183,7 +198,7 @@ __global__ void reduceKernel(const vobj *lat, sobj *buffer, Iterator n) {
|
||||
// Possibly promote to double and sum
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
|
||||
inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osites)
|
||||
{
|
||||
typedef typename vobj::scalar_objectD sobj;
|
||||
typedef decltype(lat) Iterator;
|
||||
@ -192,23 +207,77 @@ inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
|
||||
Integer size = osites*nsimd;
|
||||
|
||||
Integer numThreads, numBlocks;
|
||||
getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
|
||||
Integer smemSize = numThreads * sizeof(sobj);
|
||||
int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
|
||||
assert(ok);
|
||||
|
||||
Integer smemSize = numThreads * sizeof(sobj);
|
||||
// Move out of UVM
|
||||
// Turns out I had messed up the synchronise after move to compute stream
|
||||
// as running this on the default stream fools the synchronise
|
||||
#undef UVM_BLOCK_BUFFER
|
||||
#ifndef UVM_BLOCK_BUFFER
|
||||
commVector<sobj> buffer(numBlocks);
|
||||
sobj *buffer_v = &buffer[0];
|
||||
sobj result;
|
||||
reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
|
||||
accelerator_barrier();
|
||||
acceleratorCopyFromDevice(buffer_v,&result,sizeof(result));
|
||||
#else
|
||||
Vector<sobj> buffer(numBlocks);
|
||||
sobj *buffer_v = &buffer[0];
|
||||
|
||||
reduceKernel<<< numBlocks, numThreads, smemSize >>>(lat, buffer_v, size);
|
||||
cudaDeviceSynchronize();
|
||||
|
||||
cudaError err = cudaGetLastError();
|
||||
if ( cudaSuccess != err ) {
|
||||
printf("Cuda error %s\n",cudaGetErrorString( err ));
|
||||
exit(0);
|
||||
}
|
||||
auto result = buffer_v[0];
|
||||
sobj result;
|
||||
reduceKernel<<< numBlocks, numThreads, smemSize, computeStream >>>(lat, buffer_v, size);
|
||||
accelerator_barrier();
|
||||
result = *buffer_v;
|
||||
#endif
|
||||
return result;
|
||||
}
|
||||
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osites)
|
||||
{
|
||||
typedef typename vobj::vector_type vector;
|
||||
typedef typename vobj::scalar_typeD scalarD;
|
||||
typedef typename vobj::scalar_objectD sobj;
|
||||
sobj ret;
|
||||
scalarD *ret_p = (scalarD *)&ret;
|
||||
|
||||
const int words = sizeof(vobj)/sizeof(vector);
|
||||
|
||||
Vector<vector> buffer(osites);
|
||||
vector *dat = (vector *)lat;
|
||||
vector *buf = &buffer[0];
|
||||
iScalar<vector> *tbuf =(iScalar<vector> *) &buffer[0];
|
||||
for(int w=0;w<words;w++) {
|
||||
|
||||
accelerator_for(ss,osites,1,{
|
||||
buf[ss] = dat[ss*words+w];
|
||||
});
|
||||
|
||||
ret_p[w] = sumD_gpu_small(tbuf,osites);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
|
||||
{
|
||||
typedef typename vobj::scalar_objectD sobj;
|
||||
sobj ret;
|
||||
|
||||
Integer nsimd= vobj::Nsimd();
|
||||
Integer size = osites*nsimd;
|
||||
Integer numThreads, numBlocks;
|
||||
int ok = getNumBlocksAndThreads(size, sizeof(sobj), numThreads, numBlocks);
|
||||
|
||||
if ( ok ) {
|
||||
ret = sumD_gpu_small(lat,osites);
|
||||
} else {
|
||||
ret = sumD_gpu_large(lat,osites);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Return as same precision as input performing reduction in double precision though
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -221,6 +290,13 @@ inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites)
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osites)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
sobj result;
|
||||
result = sumD_gpu_large(lat,osites);
|
||||
return result;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
140
Grid/lattice/Lattice_reduction_sycl.h
Normal file
140
Grid/lattice/Lattice_reduction_sycl.h
Normal file
@ -0,0 +1,140 @@
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Possibly promote to double and sum
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu_tensor(const vobj *lat, Integer osites)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
typedef typename vobj::scalar_objectD sobjD;
|
||||
// sobj *mysum =(sobj *) malloc_shared(sizeof(sobj),*theGridAccelerator);
|
||||
// sobj *mysum =(sobj *) malloc(sizeof(sobj));
|
||||
|
||||
sobj identity; zeroit(identity);
|
||||
sobj ret ;
|
||||
|
||||
Integer nsimd= vobj::Nsimd();
|
||||
|
||||
{
|
||||
sycl::buffer<sobj, 1> abuff(&ret, {1});
|
||||
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
|
||||
|
||||
auto Reduction = cl::sycl::reduction(abuff,cgh,identity,std::plus<>());
|
||||
cgh.parallel_for(cl::sycl::range<1>{osites},
|
||||
Reduction,
|
||||
[=] (cl::sycl::id<1> item, auto &sum) {
|
||||
auto osite = item[0];
|
||||
sum +=Reduce(lat[osite]);
|
||||
});
|
||||
});
|
||||
}
|
||||
theGridAccelerator->wait();
|
||||
// acceleratorCopyFromDevice(mysum,&ret,sizeof(sobj));
|
||||
// ret = mysum[0];
|
||||
|
||||
sobjD dret; convertType(dret,ret);
|
||||
// free(mysum,*theGridAccelerator);
|
||||
// free(mysum);
|
||||
return dret;
|
||||
}
|
||||
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu_large(const vobj *lat, Integer osites)
|
||||
{
|
||||
return sumD_gpu_tensor(lat,osites);
|
||||
}
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu_small(const vobj *lat, Integer osites)
|
||||
{
|
||||
return sumD_gpu_large(lat,osites);
|
||||
}
|
||||
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu(const vobj *lat, Integer osites)
|
||||
{
|
||||
return sumD_gpu_large(lat,osites);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Return as same precision as input performing reduction in double precision though
|
||||
/////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_object sum_gpu(const vobj *lat, Integer osites)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
sobj result;
|
||||
result = sumD_gpu(lat,osites);
|
||||
return result;
|
||||
}
|
||||
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_object sum_gpu_large(const vobj *lat, Integer osites)
|
||||
{
|
||||
typedef typename vobj::scalar_object sobj;
|
||||
sobj result;
|
||||
result = sumD_gpu_large(lat,osites);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
template<class Word> Word svm_xor(Word *vec,uint64_t L)
|
||||
{
|
||||
Word xorResult; xorResult = 0;
|
||||
// Word *d_sum =(Word *)cl::sycl::malloc_shared(sizeof(Word),*theGridAccelerator);
|
||||
Word identity; identity=0;
|
||||
Word ret;
|
||||
{
|
||||
sycl::buffer<Word, 1> abuff(&ret, {1});
|
||||
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
|
||||
// auto Reduction = cl::sycl::reduction(d_sum,identity,std::bit_xor<>());
|
||||
auto Reduction = cl::sycl::reduction(abuff,cgh,identity,std::bit_xor<>());
|
||||
cgh.parallel_for(cl::sycl::range<1>{L},
|
||||
Reduction,
|
||||
[=] (cl::sycl::id<1> index, auto &sum) {
|
||||
sum ^=vec[index];
|
||||
});
|
||||
});
|
||||
}
|
||||
theGridAccelerator->wait();
|
||||
// ret = d_sum[0];
|
||||
// free(d_sum,*theGridAccelerator);
|
||||
return ret;
|
||||
}
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
|
||||
/*
|
||||
|
||||
template <class vobj>
|
||||
inline typename vobj::scalar_objectD sumD_gpu_repack(const vobj *lat, Integer osites)
|
||||
{
|
||||
typedef typename vobj::vector_type vector;
|
||||
typedef typename vobj::scalar_type scalar;
|
||||
|
||||
typedef typename vobj::scalar_typeD scalarD;
|
||||
typedef typename vobj::scalar_objectD sobjD;
|
||||
|
||||
sobjD ret;
|
||||
scalarD *ret_p = (scalarD *)&ret;
|
||||
|
||||
const int nsimd = vobj::Nsimd();
|
||||
const int words = sizeof(vobj)/sizeof(vector);
|
||||
|
||||
Vector<scalar> buffer(osites*nsimd);
|
||||
scalar *buf = &buffer[0];
|
||||
vector *dat = (vector *)lat;
|
||||
|
||||
for(int w=0;w<words;w++) {
|
||||
|
||||
accelerator_for(ss,osites,nsimd,{
|
||||
int lane = acceleratorSIMTlane(nsimd);
|
||||
buf[ss*nsimd+lane] = dat[ss*words+w].getlane(lane);
|
||||
});
|
||||
//Precision change at this point is to late to gain precision
|
||||
ret_p[w] = svm_reduce(buf,nsimd*osites);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
*/
|
@ -152,6 +152,7 @@ public:
|
||||
#ifdef RNG_FAST_DISCARD
|
||||
static void Skip(RngEngine &eng,uint64_t site)
|
||||
{
|
||||
#if 0
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// Skip by 2^40 elements between successive lattice sites
|
||||
// This goes by 10^12.
|
||||
@ -162,9 +163,9 @@ public:
|
||||
// tens of seconds per trajectory so this is clean in all reasonable cases,
|
||||
// and margin of safety is orders of magnitude.
|
||||
// We could hack Sitmo to skip in the higher order words of state if necessary
|
||||
//
|
||||
// Replace with 2^30 ; avoid problem on large volumes
|
||||
//
|
||||
//
|
||||
// Replace with 2^30 ; avoid problem on large volumes
|
||||
//
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
// uint64_t skip = site+1; // Old init Skipped then drew. Checked compat with faster init
|
||||
const int shift = 30;
|
||||
@ -179,6 +180,9 @@ public:
|
||||
assert((skip >> shift)==site); // check for overflow
|
||||
|
||||
eng.discard(skip);
|
||||
#else
|
||||
eng.discardhi(site);
|
||||
#endif
|
||||
// std::cout << " Engine " <<site << " state " <<eng<<std::endl;
|
||||
}
|
||||
#endif
|
||||
@ -361,9 +365,14 @@ public:
|
||||
_bernoulli.resize(_vol,std::discrete_distribution<int32_t>{1,1});
|
||||
_uid.resize(_vol,std::uniform_int_distribution<uint32_t>() );
|
||||
}
|
||||
|
||||
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist){
|
||||
|
||||
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,std::vector<distribution> &dist)
|
||||
{
|
||||
if ( l.Grid()->_isCheckerBoarded ) {
|
||||
Lattice<vobj> tmp(_grid);
|
||||
fill(tmp,dist);
|
||||
pickCheckerboard(l.Checkerboard(),l,tmp);
|
||||
return;
|
||||
}
|
||||
typedef typename vobj::scalar_object scalar_object;
|
||||
typedef typename vobj::scalar_type scalar_type;
|
||||
typedef typename vobj::vector_type vector_type;
|
||||
@ -375,7 +384,7 @@ public:
|
||||
int osites = _grid->oSites(); // guaranteed to be <= l.Grid()->oSites() by a factor multiplicity
|
||||
int words = sizeof(scalar_object) / sizeof(scalar_type);
|
||||
|
||||
auto l_v = l.View();
|
||||
autoView(l_v, l, CpuWrite);
|
||||
thread_for( ss, osites, {
|
||||
ExtractBuffer<scalar_object> buf(Nsimd);
|
||||
for (int m = 0; m < multiplicity; m++) { // Draw from same generator multiplicity times
|
||||
@ -407,7 +416,7 @@ public:
|
||||
std::cout << GridLogMessage << "Seed SHA256: " << GridChecksum::sha256_string(seeds) << std::endl;
|
||||
SeedFixedIntegers(seeds);
|
||||
}
|
||||
void SeedFixedIntegers(const std::vector<int> &seeds){
|
||||
void SeedFixedIntegers(const std::vector<int> &seeds, int britney=0){
|
||||
|
||||
// Everyone generates the same seed_seq based on input seeds
|
||||
CartesianCommunicator::BroadcastWorld(0,(void *)&seeds[0],sizeof(int)*seeds.size());
|
||||
@ -424,22 +433,29 @@ public:
|
||||
// MT implementation does not implement fast discard even though
|
||||
// in principle this is possible
|
||||
////////////////////////////////////////////////
|
||||
thread_for( lidx, _grid->lSites(), {
|
||||
|
||||
// Everybody loops over global volume.
|
||||
thread_for( gidx, _grid->_gsites, {
|
||||
// Where is it?
|
||||
int rank;
|
||||
int64_t gidx;
|
||||
int o_idx;
|
||||
int i_idx;
|
||||
|
||||
int rank;
|
||||
Coordinate pcoor;
|
||||
Coordinate lcoor;
|
||||
Coordinate gcoor;
|
||||
_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
|
||||
_grid->LocalIndexToLocalCoor(lidx,lcoor);
|
||||
pcoor=_grid->ThisProcessorCoor();
|
||||
_grid->ProcessorCoorLocalCoorToGlobalCoor(pcoor,lcoor,gcoor);
|
||||
_grid->GlobalCoorToGlobalIndex(gcoor,gidx);
|
||||
|
||||
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
|
||||
|
||||
assert(rank == _grid->ThisRank() );
|
||||
|
||||
// If this is one of mine we take it
|
||||
if( rank == _grid->ThisRank() ){
|
||||
int l_idx=generator_idx(o_idx,i_idx);
|
||||
_generators[l_idx] = master_engine;
|
||||
int l_idx=generator_idx(o_idx,i_idx);
|
||||
_generators[l_idx] = master_engine;
|
||||
if ( britney ) {
|
||||
Skip(_generators[l_idx],l_idx); // Skip to next RNG sequence
|
||||
} else {
|
||||
Skip(_generators[l_idx],gidx); // Skip to next RNG sequence
|
||||
}
|
||||
});
|
||||
@ -461,8 +477,8 @@ public:
|
||||
}
|
||||
|
||||
{
|
||||
// Obtain one reseeded generator per thread
|
||||
int Nthread = GridThread::GetThreads();
|
||||
// Obtain one reseeded generator per thread
|
||||
int Nthread = 32; // Hardwire a good level or parallelism
|
||||
std::vector<RngEngine> seeders(Nthread);
|
||||
for(int t=0;t<Nthread;t++){
|
||||
seeders[t] = Reseed(master_engine);
|
||||
|
224
Grid/lattice/Lattice_slicesum_core.h
Normal file
224
Grid/lattice/Lattice_slicesum_core.h
Normal file
@ -0,0 +1,224 @@
|
||||
#pragma once
|
||||
|
||||
#if defined(GRID_CUDA)
|
||||
|
||||
#include <cub/cub.cuh>
|
||||
#define gpucub cub
|
||||
#define gpuError_t cudaError_t
|
||||
#define gpuSuccess cudaSuccess
|
||||
|
||||
#elif defined(GRID_HIP)
|
||||
|
||||
#include <hipcub/hipcub.hpp>
|
||||
#define gpucub hipcub
|
||||
#define gpuError_t hipError_t
|
||||
#define gpuSuccess hipSuccess
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
NAMESPACE_BEGIN(Grid);
|
||||
|
||||
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
|
||||
template<class vobj> inline void sliceSumReduction_cub_small(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
|
||||
size_t subvol_size = e1*e2;
|
||||
commVector<vobj> reduction_buffer(rd*subvol_size);
|
||||
auto rb_p = &reduction_buffer[0];
|
||||
vobj zero_init;
|
||||
zeroit(zero_init);
|
||||
|
||||
|
||||
void *temp_storage_array = NULL;
|
||||
size_t temp_storage_bytes = 0;
|
||||
vobj *d_out;
|
||||
int* d_offsets;
|
||||
|
||||
std::vector<int> offsets(rd+1,0);
|
||||
|
||||
for (int i = 0; i < offsets.size(); i++) {
|
||||
offsets[i] = i*subvol_size;
|
||||
}
|
||||
|
||||
//Allocate memory for output and offset arrays on device
|
||||
d_out = static_cast<vobj*>(acceleratorAllocDevice(rd*sizeof(vobj)));
|
||||
|
||||
d_offsets = static_cast<int*>(acceleratorAllocDevice((rd+1)*sizeof(int)));
|
||||
|
||||
//copy offsets to device
|
||||
acceleratorCopyToDeviceAsync(&offsets[0],d_offsets,sizeof(int)*(rd+1),computeStream);
|
||||
|
||||
|
||||
gpuError_t gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p,d_out, rd, d_offsets, d_offsets+1, ::gpucub::Sum(), zero_init, computeStream);
|
||||
if (gpuErr!=gpuSuccess) {
|
||||
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce (setup)! Error: " << gpuErr <<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
//allocate memory for temp_storage_array
|
||||
temp_storage_array = acceleratorAllocDevice(temp_storage_bytes);
|
||||
|
||||
//prepare buffer for reduction
|
||||
//use non-blocking accelerator_for to avoid syncs (ok because we submit to same computeStream)
|
||||
//use 2d accelerator_for to avoid launch latencies found when serially looping over rd
|
||||
accelerator_for2dNB( s,subvol_size, r,rd, Nsimd,{
|
||||
|
||||
int n = s / e2;
|
||||
int b = s % e2;
|
||||
int so=r*ostride; // base offset for start of plane
|
||||
int ss= so+n*stride+b;
|
||||
|
||||
coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss]));
|
||||
|
||||
});
|
||||
|
||||
//issue segmented reductions in computeStream
|
||||
gpuErr = gpucub::DeviceSegmentedReduce::Reduce(temp_storage_array, temp_storage_bytes, rb_p, d_out, rd, d_offsets, d_offsets+1,::gpucub::Sum(), zero_init, computeStream);
|
||||
if (gpuErr!=gpuSuccess) {
|
||||
std::cout << GridLogError << "Lattice_slicesum_gpu.h: Encountered error during gpucub::DeviceSegmentedReduce::Reduce! Error: " << gpuErr <<std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
acceleratorCopyFromDeviceAsync(d_out,&lvSum[0],rd*sizeof(vobj),computeStream);
|
||||
|
||||
//sync after copy
|
||||
accelerator_barrier();
|
||||
|
||||
acceleratorFreeDevice(temp_storage_array);
|
||||
acceleratorFreeDevice(d_out);
|
||||
acceleratorFreeDevice(d_offsets);
|
||||
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#if defined(GRID_SYCL)
|
||||
template<class vobj> inline void sliceSumReduction_sycl_small(const vobj *Data, Vector <vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
|
||||
{
|
||||
size_t subvol_size = e1*e2;
|
||||
|
||||
vobj *mysum = (vobj *) malloc_shared(rd*sizeof(vobj),*theGridAccelerator);
|
||||
vobj vobj_zero;
|
||||
zeroit(vobj_zero);
|
||||
for (int r = 0; r<rd; r++) {
|
||||
mysum[r] = vobj_zero;
|
||||
}
|
||||
|
||||
commVector<vobj> reduction_buffer(rd*subvol_size);
|
||||
|
||||
auto rb_p = &reduction_buffer[0];
|
||||
|
||||
// autoView(Data_v, Data, AcceleratorRead);
|
||||
|
||||
//prepare reduction buffer
|
||||
accelerator_for2d( s,subvol_size, r,rd, (size_t)Nsimd,{
|
||||
|
||||
int n = s / e2;
|
||||
int b = s % e2;
|
||||
int so=r*ostride; // base offset for start of plane
|
||||
int ss= so+n*stride+b;
|
||||
|
||||
coalescedWrite(rb_p[r*subvol_size+s], coalescedRead(Data[ss]));
|
||||
|
||||
});
|
||||
|
||||
for (int r = 0; r < rd; r++) {
|
||||
theGridAccelerator->submit([&](cl::sycl::handler &cgh) {
|
||||
auto Reduction = cl::sycl::reduction(&mysum[r],std::plus<>());
|
||||
cgh.parallel_for(cl::sycl::range<1>{subvol_size},
|
||||
Reduction,
|
||||
[=](cl::sycl::id<1> item, auto &sum) {
|
||||
auto s = item[0];
|
||||
sum += rb_p[r*subvol_size+s];
|
||||
});
|
||||
});
|
||||
|
||||
|
||||
}
|
||||
theGridAccelerator->wait();
|
||||
for (int r = 0; r < rd; r++) {
|
||||
lvSum[r] = mysum[r];
|
||||
}
|
||||
free(mysum,*theGridAccelerator);
|
||||
}
|
||||
#endif
|
||||
|
||||
template<class vobj> inline void sliceSumReduction_large(const vobj *Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd) {
|
||||
typedef typename vobj::vector_type vector;
|
||||
const int words = sizeof(vobj)/sizeof(vector);
|
||||
const int osites = rd*e1*e2;
|
||||
commVector<vector>buffer(osites);
|
||||
vector *dat = (vector *)Data;
|
||||
vector *buf = &buffer[0];
|
||||
Vector<vector> lvSum_small(rd);
|
||||
vector *lvSum_ptr = (vector *)&lvSum[0];
|
||||
|
||||
for (int w = 0; w < words; w++) {
|
||||
accelerator_for(ss,osites,1,{
|
||||
buf[ss] = dat[ss*words+w];
|
||||
});
|
||||
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
|
||||
sliceSumReduction_cub_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
|
||||
#elif defined(GRID_SYCL)
|
||||
sliceSumReduction_sycl_small(buf,lvSum_small,rd,e1,e2,stride, ostride,Nsimd);
|
||||
#endif
|
||||
|
||||
for (int r = 0; r < rd; r++) {
|
||||
lvSum_ptr[w+words*r]=lvSum_small[r];
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
template<class vobj> inline void sliceSumReduction_gpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int rd, const int e1, const int e2, const int stride, const int ostride, const int Nsimd)
|
||||
{
|
||||
autoView(Data_v, Data, AcceleratorRead); //reduction libraries cannot deal with large vobjs so we split into small/large case.
|
||||
if constexpr (sizeof(vobj) <= 256) {
|
||||
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP)
|
||||
sliceSumReduction_cub_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
#elif defined (GRID_SYCL)
|
||||
sliceSumReduction_sycl_small(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
#endif
|
||||
|
||||
}
|
||||
else {
|
||||
sliceSumReduction_large(&Data_v[0], lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<class vobj> inline void sliceSumReduction_cpu(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
|
||||
{
|
||||
// sum over reduced dimension planes, breaking out orthog dir
|
||||
// Parallel over orthog direction
|
||||
autoView( Data_v, Data, CpuRead);
|
||||
thread_for( r,rd, {
|
||||
int so=r*ostride; // base offset for start of plane
|
||||
for(int n=0;n<e1;n++){
|
||||
for(int b=0;b<e2;b++){
|
||||
int ss= so+n*stride+b;
|
||||
lvSum[r]=lvSum[r]+Data_v[ss];
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
template<class vobj> inline void sliceSumReduction(const Lattice<vobj> &Data, Vector<vobj> &lvSum, const int &rd, const int &e1, const int &e2, const int &stride, const int &ostride, const int &Nsimd)
|
||||
{
|
||||
#if defined(GRID_CUDA) || defined(GRID_HIP) || defined(GRID_SYCL)
|
||||
|
||||
sliceSumReduction_gpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
|
||||
#else
|
||||
sliceSumReduction_cpu(Data, lvSum, rd, e1, e2, stride, ostride, Nsimd);
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
@ -37,17 +37,19 @@ NAMESPACE_BEGIN(Grid);
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Trace
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/*
|
||||
template<class vobj>
|
||||
inline auto trace(const Lattice<vobj> &lhs) -> Lattice<decltype(trace(vobj()))>
|
||||
{
|
||||
Lattice<decltype(trace(vobj()))> ret(lhs.Grid());
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
autoView(ret_v , ret, AcceleratorWrite);
|
||||
autoView(lhs_v , lhs, AcceleratorRead);
|
||||
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
|
||||
coalescedWrite(ret_v[ss], trace(lhs_v(ss)));
|
||||
});
|
||||
return ret;
|
||||
};
|
||||
*/
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Trace Index level dependent operation
|
||||
@ -56,14 +58,73 @@ template<int Index,class vobj>
|
||||
inline auto TraceIndex(const Lattice<vobj> &lhs) -> Lattice<decltype(traceIndex<Index>(vobj()))>
|
||||
{
|
||||
Lattice<decltype(traceIndex<Index>(vobj()))> ret(lhs.Grid());
|
||||
auto ret_v = ret.View();
|
||||
auto lhs_v = lhs.View();
|
||||
autoView( ret_v , ret, AcceleratorWrite);
|
||||
autoView( lhs_v , lhs, AcceleratorRead);
|
||||
accelerator_for( ss, lhs_v.size(), vobj::Nsimd(), {
|
||||
coalescedWrite(ret_v[ss], traceIndex<Index>(lhs_v(ss)));
|
||||
});
|
||||
return ret;
|
||||
};
|
||||
|
||||
template<int N, class Vec>
|
||||
Lattice<iScalar<iScalar<iScalar<Vec> > > > Determinant(const Lattice<iScalar<iScalar<iMatrix<Vec, N> > > > &Umu)
|
||||
{
|
||||
GridBase *grid=Umu.Grid();
|
||||
auto lvol = grid->lSites();
|
||||
Lattice<iScalar<iScalar<iScalar<Vec> > > > ret(grid);
|
||||
typedef typename Vec::scalar_type scalar;
|
||||
autoView(Umu_v,Umu,CpuRead);
|
||||
autoView(ret_v,ret,CpuWrite);
|
||||
thread_for(site,lvol,{
|
||||
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
|
||||
Coordinate lcoor;
|
||||
grid->LocalIndexToLocalCoor(site, lcoor);
|
||||
iScalar<iScalar<iMatrix<scalar, N> > > Us;
|
||||
peekLocalSite(Us, Umu_v, lcoor);
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
scalar tmp= Us()()(i,j);
|
||||
ComplexD ztmp(real(tmp),imag(tmp));
|
||||
EigenU(i,j)=ztmp;
|
||||
}}
|
||||
ComplexD detD = EigenU.determinant();
|
||||
typename Vec::scalar_type det(detD.real(),detD.imag());
|
||||
pokeLocalSite(det,ret_v,lcoor);
|
||||
});
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<int N>
|
||||
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > Inverse(const Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > &Umu)
|
||||
{
|
||||
GridBase *grid=Umu.Grid();
|
||||
auto lvol = grid->lSites();
|
||||
Lattice<iScalar<iScalar<iMatrix<vComplexD, N> > > > ret(grid);
|
||||
|
||||
autoView(Umu_v,Umu,CpuRead);
|
||||
autoView(ret_v,ret,CpuWrite);
|
||||
thread_for(site,lvol,{
|
||||
Eigen::MatrixXcd EigenU = Eigen::MatrixXcd::Zero(N,N);
|
||||
Coordinate lcoor;
|
||||
grid->LocalIndexToLocalCoor(site, lcoor);
|
||||
iScalar<iScalar<iMatrix<ComplexD, N> > > Us;
|
||||
iScalar<iScalar<iMatrix<ComplexD, N> > > Ui;
|
||||
peekLocalSite(Us, Umu_v, lcoor);
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
EigenU(i,j) = Us()()(i,j);
|
||||
}}
|
||||
Eigen::MatrixXcd EigenUinv = EigenU.inverse();
|
||||
for(int i=0;i<N;i++){
|
||||
for(int j=0;j<N;j++){
|
||||
Ui()()(i,j) = EigenUinv(i,j);
|
||||
}}
|
||||
pokeLocalSite(Ui,ret_v,lcoor);
|
||||
});
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
NAMESPACE_END(Grid);
|
||||
#endif
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user